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Abstract: Recent baseline extraction and correction techniques 
are based on Penalized Least Square method; which is focused 
on two mains parameters: weight vector and smooth 
parameters estimation. Weight vector is computed iteratively 
based on the difference between original signal and the ith 
extracted baseline, when the smooth parameters are generally 
computed empirically. The drawback of these techniques is 
that the algorithm associated for baseline optimization; which 
mainly overestimated if the signal is below a fitted baseline and 
under estimated when the signal is above a fitted baseline. In 
this paper, we proposed an efficient algorithm for robust 
baseline extraction; in which the optimal weight vector is 
computed based on logic distribution function; and, the smooth 
parameters using PCA method. The new algorithm has been 
extended to existing extraction methods. Simulations results 
have shown the effectiveness of the propose algorithm, and the 
advantage of using multi-smooth parameters for automatic 
baseline removal. 

Keywords: Baseline extraction method, Spectral analysis, logic 
distribution function, Penalized Least Square method, PCA, 
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I. INTRODUCTION

Data processing techniques dealing with various 
wavelengths is still a challenge. Mainly all of them share a 
common pre-processing step; which is the removal of 
extraneous baseline (background) signal from the data of 
interest. Baseline can be caused by a large number of factors 
depending on the type of spectrum [1, 2, 3, 4, 5]. Baseline 
correction problem is common to many areas of spectrum 
analysis, a large variety of techniques have been proposed [6, 
10, 7, 8, 9]. Accurate algorithm for automatic removal of 
baseline (RBL) signal [6, 7, 11, 12] is important. 

The nature of background noise and additive noise make 
it is hard to correct or extracted the baseline. Existence of 
the baseline and random noises can negatively affect 
qualitatively or quantitatively peaks alignment in spectrum 
analysis. If we consider the baseline always appears as a 
sample-independent smooth curve; it should be fitted and 
corrected routinely to mitigate the negative influence. 
Efficient peak detection algorithm needs accurate baseline 
extraction method. Several peak detection algorithms have 
been proposed [3, 6, 13, 14]. However, different drawbacks 
have been pointed out as: (i) true signal could be removed 
during the process; (ii) baseline removal step may get rid of 
true peaks or created new false peaks [14, 15]. In theory, 

two approaches are mainly used to eliminate the baseline: (a) 
first approach need a prior knowledge of the type of  noise 
or signal to be extracted, and (b) the second approach do not 
need any information of the type of noise, which mostly 
reflect the reality. Several methods were proposed for 
baseline elimination using second approach [14, 16]; most 
of them fit a baseline used polynomial function by cutting 
out signal peaks iteratively or by using linear constraints. 
For baseline extraction and optimization, numerous 
algorithms have been proposed [17, 18, 19, 20]. Example 
Bivariate shrinkage estimator in stationary domain to avoid 
removing true peaks in demising step, and zero-crossing 
lines in multi-scale of derivative Gaussian wavelet is 
investigated with mixture of Gaussian to estimate 
discriminative parameters of peaks is recently proposed by 
Nha et al [15]. To avoid removing true peaks, CWT-based 
pattern-matching algorithm was also introduced in study by 
Du et al [21] using Mexican Hat wavelet. 

Baseline extraction is also necessary to improve low 
concentration chemical signal processing; in this approach, 
Jakob et al [22] introduced the roughness penalty method to 
reduce the influence of measurement noise. Shao et al [23] 
proposed wavelet transform for baseline correction. To 
correct the measured spectra during elution for the 
background contribution Boeleans et al [24] applied 
asymmetric least squares regression; Cheung et al [25] 
proposed the Asymmetric Least Square in order to remove 
any unavoidable noise in gas chromatography, also a modify 
least-squares polynomial curve fitting to avoid shortcomings 
for simple curve fitting have been proposed by Lieber et al 
[19]. 

Most of above existing methods need the prior knowledge 
of the type of noise or compute noise empirically; few of 
them are based on automatic estimation. In this approach, 
Zhi-Min et al[1] proposed adaptive iterative reweighted 
Penalized Least Squares (arPLS) which method does not 
require any intervention and prior information about noise. 
He works by iteratively changing weighted of sum squares 
errors (SSE) between the fitted baseline and original signals, 
and the weights of the SSE are obtained adaptively using the 
difference between the previously fitted baseline and the 
original signals. 

Efficient baseline extraction method depends on two 
parameters: the weight vector, which is computed iteratively; 
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and the smooth parameters mainly estimated empirically. 
Based on an extensive review of existing literature, we 
propose a full algorithm, which allowed an automatic 
computation of optimal smooth parameters based on PCA 
method. PCA is commonly used for dimensionality 
reduction, and optimization [22, 26, 28, 29]. The proposed 
algorithm for smooth parameters computation is fast. The 
proposed smooth parameters computation algorithm was 
been extended to the existing baseline extraction method. 
We also proposed a new extraction method in which weight 
vector is computed iteratively based on logic distribution 
function. Most importantly, this framework supports 
automated construction of BLR techniques. 

The paper is organized as the follows: in next section, we 
presented a review of recent baseline extraction methods; 
the optimization problem has been also analyzed. In section 
three is focused on the framework of the propose method for 
weight and smooth parameters computation, the simulation 
and discussion are presented in section four, following the 
conclusion in section five.. 

II. RECENT BASELINE EXTRACTION METHODS 

REVIEW  

A.  Baseline extraction theory 

Recent years have seen the effectiveness of least square 
method for background (called baseline) noise extraction. 
Background noise signal degrades the accuracy and 
precision of analysis; it also reduces the detection limit of 
the instrumental technique. Baseline extraction involve the 
computation of noise signal from input (original) signal, the 
extraction produces a heavily biased approximation that 
does not fit peaks in the input. The goal of spectra baseline 
correction algorithm is to remove noise from original signal 
without deteriorated the useful signal. Recent approaches for 
signal correction or baseline extraction have associated a 
nonlinear function with OLS (optimality Least Square) and 
WLS (weighted least squares). Baseline estimation formula 
can be written as (reference [1, 2, 29]): 
 Q S R                                                                         (1) 

Where S is the sum of squares residual difference between 
the original signal or spectrum, and R is the associated 
penalized function all computed iteratively. The residual 
difference is definite as: 

 2
 i i

i

S w y z                                                          (2) 

 
Where y  is the original signal, iz   the extracted baseline, 

and iw  the weight vector at the thi  iteration respectively.  

And, R  is the penalized function characterizing the 
roughness of iz . Computed as: 

 2d
d i

i

R z                                                             (3) 

 

Where   is the differential matrix, and d  the order of 

differential matrix ( 1, 2, ,d n  ), 

 1d d
dz D z z      in this paper n=2), and d  the 

smooth parameter (constant) associated with the differential 
matrix. In this paper, by selecting  n=2 equ 3 is written as: 

   2 21 2
1 2i i

i i

R z z                                     (4) 

Where 1  , 2   are the smoothness factors for the first and 

second order variation of R. In equa 4 
1

1 1i iz D z z z      and 
2

2 1 22i i iz D z z z z       represented the first and 

second order differential matrix associated with the smooth 

parameter respectively. The matrix 1D  and 2D can be 

selected as [1, 2]: 
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The optimization of Q can be resumed as to find 

the optimal z  with a fixe smooth parameters ( 1  , 2  ) 

written as: 

1
1 1 1 2 1 1( )T Tz w D D D D wy                                    (6) 

Up to a constant factors or coefficients ( 1 , and 2 ), 

the optimization  Q should be equivalent to the minimization 
of following equation [1, 2]: 

   2 22 1 2
1 2( )i i i i

i i i i

Q optimal w y z z z        
 
    (7) 

For a number of iterations I ( 1I  ) select the iz  which 

minimized equ (7); the optimal iz
  

must verified equ (6). 

From equ (7), three cases can be observed according the 

value of the smooth parameter: i) if 1 0  and 2 0  , the 

first smooth parameter is only to extracted the baseline, ii) if 

1 0  and 2 0  , the secondly smooth parameter is only 

to extracted the baseline, and iii) if 1 0  and 2 0  , the 

two smooth parameters are used for baseline extraction. 
 

B. Optimization Framework 

The optimization framework is focused on two main 
parameters: (a) weight vector iw computation, which 

element are the diagonal matrix of w and, (b) the 
choice of smooth parameters ( 1  , 2 ) which should 

control the roughness of the baseline signal. 

1) Weight vector computation: Efficient algorithm for 
weight vector computation is the main issue for efficient 
baseline extraction. Since 1994, Eilers et al [29], have 
proposed ALS (Asymmetric Least squares) method using 
probability approach to compute the weight, where the 

weight component iw  is definite according the sign of the 
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different between the original y signal and the estimated 

noise signal iz . Mostly the recent weight value attributions

are based on analysis of the sign id   from the following 

equation: 

i id y z    (8) 

Which can be resume as: iw is  p  if 0iy z   and 

1 p  if 0iy z  for each iteration, where p  (optimal 

value 0.025p  ) is a constant belonging to interval [0,1]; 

for ALS (Asymmetric Least Square) method. The constancy 

of iw  components. In this respect, Zhang et al[1] proposed 

arPLS (adaptive iterated re-weighted Penalized Least Square) 
method. The weight assignment can be resumed as the 
follows: for original signal ( y ) greater than the candidate of 

the baseline ( iz ), noise can be regarded as a part of the peak;

thus weight is set to zero; otherwise the weight vector iw  is 

obtained adaptively using exponential function [1]. The 
problem of the method is the final baseline is 
underestimated in the no peak region and the height of peaks 
might be overestimated in single signal baseline extraction. 
To resolve this drawback Sung-June et al [2] 2015, proposes 
a partially balanced weighting called arPLS (asymmetric re-
weighted Penalized Least Square) method, they computed 
the weight vector by introducing the so call logistic function 
which is an exponential function [2]. The main drawback of 
above methods is that the smooth parameters mostly are 
estimated empirically. 

2) Smooth parameters: Research focused on data
smoothing (noise data) in baseline extraction for noisily data 
is based on penalized regression splines smoothing methods 
[7] characterized by the introduction of smooth parameters.
The idea of using differences in a penalty goes back at least
to Whittaker [30] in 1923. Recently some authors combine
Gaussian Mixture Model (extreme value) and HP filtering to
compute an efficient weight vector [31].

Several methods or techniques are used to estimate 

the smooth factors 1  , 2 ; but the common approach is the 

empirical estimation or computation, based on  [32]. In this 
approach, Gianluca [12] in 2013 used two differential matrix 

(first and second) and chooses 1 2     in case of non-

isotropic smoothing data, where   a positive constant 
selected empirically. Also in 1994 Eilers et al used both a 

first ( 1 )- and second ( 2 )-order penalty to control the 

smoothness to analysis data by using the following formula: 
2

2

1

 
 
 



  (9) 

Where   is called the pleasant factor depending on the type 

of signal, and   is a constant selected in order to keep the 
impulse response from becoming non-positive [29]. Some 
authors [9, 12] use cross-validation method to determine 

2 and 1 . or find some relation between them. 

III. PROPOSED METHOD

A. Weight vector estimation

The propose method uses logic distribution function 

for weight vector iw  optimization, which function is widely

applied in signal processing [33]. Let resume our proposed 

weight vector estimation method, we denoted by id  , id 

be the set of data for 0id   and 0id   respectively. We 

used the partial balance asymmetric weights logic 
distribution function defines as. 

f ( , , )       0

1       0
i i

i

i

d m if d
w

if d


   


   (10) 

Where ( 0)m mean d   ,   ( 0)std d   the 

mean and standard deviation of  id  ; and m ,   ,

and the function f is definite as: 

( ( ) )/

1
f( , , ) ,     0

1
1,    0

i d d d m
i

d m if d
w e

if d


 


   

   
 

   (11) 

For each iw , the smoothness of baseline function iz  depend 

on smooth parameter, computed used PCA method 

B. PCA for Smooth factors computation

1) Introduction: Principal component analysis is a
prevalent data reduction tool that transforms the data 
orthogonally and reduces its dimensionality. It is an 
important well-studied subject in statistic and signal 
processing. PCA is a well-known statistical technique that 
has been widely applied to solve important signal-
processing problems like future extraction, signal estimation 
[34, 35]. We proposed a new approach of smooth 
parameters computation using PCA. From equ (7) two steps 
are used; firstly we used PCA to estimate the eigenvalues; 
then the optimal smooth parameters are computed based on 
some appropriated formula. The detail of the method and 
simulation is presented in the next section. 

2) Mathematical Approach: As mentioned above, from
equ (6), according smooth parameters cases, we have can 
write the following equation. 

 
 
 

-1

1 1 1 2

-1

2 2 1 2

-1

1 1 2 2 1 2

wy  ( 1,   0) (12. )

wy   ( 0,   1) (12. )

wy  ( 1,   1) (12. c)

T

T

T T

z w D D a

z w D D b

z w D D D D

 

 

 

    

    

     

For each case (equ (12, 1), (12, b) and (12, c)), we denote by 

iz  the value of smooth vector at iteration thi . To estimate 

the eigenvalues, we used the following approach: firstly, let 

1 2, , , iz z z be the set of iz  ( 1i  ); where iz  is a 1 l
dimension ( l the length of iz ) vector at ith iteration 

obtaining using equ 12. For 1i  , we compute the mean

vector as a single vector by: 
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  1 2

1
aver iz z z z

i
                                              (13) 

In order to re-center the data, we subtracted  averv  from 

each vector iz . Secondly, we definite the matrix B  as a 

i l  dimension matrix whose thi column is definite by 

i averz z , so B  can be written as: 

1[ , , ]aver i averz z z z z                                            (14) 

than, we definite the covariance matrix S as: 
1

1
TS B B

i
 


                                                             (15) 

Where 
TB  is the transposed matrix of B; the dimension of 

S is i i . 

3)  Proposed Algorithm: Let iS  be the symmetric and 

positive matrix S with dimension i i , obtained at 
thi iteration. We denote by iD the eigenvalue matrix and 

iE  the eigenvalue vector (1 i  dimension) composed of 

iD  diagonal elements;
 iE can be written as 

 1 2 3, , , ,i rE      where 1,2, ,r i  . Each 

eigenvalue r  can be viewed as an estimation of noise 

variance [19, 23, 35, 36]. To select the thi iteration iE  , we 

used the decreasing rule; i.e. each iE  vector component 

elements should satisfied to the following relation 

1 1 0r r      . We denoted by jE the 

eigenvalue vector which satisfied to the decreasing rule. For 

each jE , we denote by jD  , jZ  and jS  the associate 

diagonal, baseline and covariance matrix respectively; with 

1[ , , ]j iZ z z   and 1, 2, ,j m   where m is the 

number of matrix satisfying the decreasing rule. To estimate 

the optimal eigenvalue vector jE , we computed the 

eigenspread coefficient definite as 1( ) /spr iC j   , which 

characterize the convergence speed . The smaller 
eigenspread coefficient will be; faster and smoother the 

extracted baseline is [26]; so the minimum ( )sprC j value of 

coefficient correspond to the optimal opj ,
opjE , 

opjD  , 

opjZ  and 
opjS  respectively. 

4)  Optimal smooth parameters estimation: Using equ 12 
and based on the propose algorithm (section  III.2.3), we 
computed the smooth parameters for each case (12, a; 12, b; 

12, c ) according the value of opj . 

 Smooth curve based on first differential matrix only:  

In this case only 1  is used as smooth parameter; for opj  

we computed op  using the following formula: 

 min

max

2med z
op

z

N

N
                                                 (16) 

Where 

 

min

max

,

1  i
1n=1 to l

,

1  i
1n=1 to l

med median

min( ) min

max( ) max

op

jop jop

jop jop

j

L
u n

z u to
l

L
u n

z
j to

l

E

N Z z

N Z z




 







     
 


       





                    (17) 

With  op

u
jl length z   

 Smooth parameter based on second differential matrix 

only: For this case only 2  is used as smooth parameter; 

the optimal smooth parameter is computed by the 
following formula: 

  min

max

2
max max,    max

op
i

z
op j

z

N
with E

N 
          (18) 

Where 
maxzN  and 

minzN  are estimated used equ 17. 

 Smooth parameter estimation based on first and the 

second differential matrix: The two smooth 

parameters ( 1 , 2 ) are computed, the relation 

between them is defined as: 

 
2

1

  
op

op

 

 


 

                                                                (19) 

Where the so call pleasant coefficient [1]   is compute as: 

 
median( )

   op

op

j

j
F

E

S
                                              (20) 

and 
F

 is the frobenius norm of 
opjS . 

 

IV . SIMULATION RESULTS AND DISCUSSIONS 

A.  Smooth parameters 

In this paper, we used the same data that have been using 
by Wong et al  in 2005 [37]. Equ 15-18 are used for optimal 
smooth parameters estimation; which result has been 
presented in the table 1. Table 1 contains the optimal value 

of opj  and the smooth parameters op for the ASL, arPLS, 

asPLS and the proposed method. 
From table 1, we find that for the same method, the 

optimal iteration opj  “corresponding to the maximum 

spreadvalue” and smooth parameter   may be different and 

depends on the case. The smooth parameters 1 computed in 

case one from equ 15-16 are 1668.7, 176, 534.7 and 384.5 
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for ALS, arPLS asPLS and the proposed method 

respectively, with the corresponding opj  (1, 2, 3 and 5). 

The optimal smooth parameters according the two other 
cases and their optimal iteration are also included in table 1. 
These values will be used to determine the optimal baseline 
in next section. 

Table 1: optimal iteration value opj and smooth parameters 

op obtaining from the equ 15-18.

ALS 1 1668.7

arPLS 2 176

asPLS 3 534.7

Proposed 5 384.5

Methods
1 20, 0  

opj 1

Table 1 (a): used only first differential matrix to extract 
baseline  

ALS 2 948731.8

arPLS 1 408038.5

asPLS 2 1264547

Proposed 2 4643134

Methods

2opj

1 20, 0  

Table 1 (b): used only second differential matrix to extract 
baseline 

ALS 1 2466140 785.2

arPLS 1 364151,4 201.75

asPLS 3 625927.3 375.65

Proposed 1 2039706 793.917

Methods
1 20, 0  1 20, 0  

opj 2 2

Table 1 (a): used first and second differential matrix to 
extract baseline 

B. Baseline optimization

1) Introduction: Optimal baseline is extracted using
the data (smooth parameters) of table 1. For example in case 

if first differential matrix ( 1 20, 0   ) is only used to

extracted the baseline, the smooth parameters 1  values are 

the following value:  1668.7, 176, 534.7 and 384.5 for ALS, 

arPLS, asPLS and Proposed method respectively (table 1 
column 3). The same approach is used if the second 
differential matrix is only used to smooth the extracted 

baseline ( 1 20, 0   ) the data of column 5 of table 1

should be used as the smooth parameters 2 according each 

method. Than if in this case the combine smooth parameters 

( 1 20, 0   ) for optimal baseline extraction, data of

column 6 and 7of table 1 as 1 and 2  respectively. 

2) Method estimation: As mentioned in the
introduction for each case and method we associated the 
corresponding smooth parameters from equ 10. To estimate 
the optimal extracted baseline: (i) firstly, we fixed the same 
iteration number for each case and method. (ii) secondly, we 
estimated the degree of smoothness by comparing the 
extracted wave (baseline) to the fundamental. We denoted 

uv  the extracted baseline vector at thu  iteration  

( 1, 2, ,u U  ); and u  the fundamental wave at the thu
iteration, definite as: 

 sin( )u u ut           (21) 

where 
max min

2 / ; 2( )u u
u u uT T t t    with 

max

ut  and 
min

ut
values of t corresponding to the maximum and minimum 

value of uv ; and u  the initial phase (value of uv  for 

1u  ).  
To improve our analysis, we definite the similarity 

coefficient as: 

( ) /u
u u usim v   (22) 

The smaller is usim , the smoother the extracted baseline 
uv  will be. (ii) thirdly, to strength our estimation, we 

introduce other statistical approaches called Contrast Noise 
Ratio (CNR) which are efficiently used for complex noise 
baseline extraction [38]; two different concepts are used; the 
first is focused on amplitude of the activation signal 
(amplitude), by definite CNR as the amplitude measurement 
to the extracted baseline variance [39, 40] defined by: 

2

,1 10 2
10 log

u

u

v

A
CNR



 
   

 
(23) 

Where A is the absolute value of amplitude of the original 
signal with baseline which is the difference between the 
baseline of the signal and the signal peak. While the second 
definition incorporates the standard deviation of the 
activation as the signal of interest; based on the ratio of 
variance in dB scale [39, 40] as: 

2

,2 10 2
10 log

u

X
u

v

CNR


 

   
 

 (24) 

Where X  is the variance of the original signal (signal with 

noise). 

In theory, the smaller is the uSNR  ratio the better 

will be the proposed method, but as mentioned on above the 
drawback is that some real peak can be eliminate. This 
approach will be more efficient if we have a prior 
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knowledge of noise of baseline to be extracted; which is not 
the case in practice. In case of multiple events causing 
several peaks in the signal and the timing of the stimuli will 
have an effect on the height of the peak [41]. 

For complex and multiple peak signal baseline 
extraction, the amplitude of the signal could be either the 
difference between the baseline and the maximal height of 
the signal, or the mean amplitude over all peaks [42].  

To selected the optimal extracted baseline, we mainly 
focused on two feature the smoothness characterized by 

usim and the two features ratios which are ,1uCNR and 

,2uCNR ; by using the u uCNR sim ratio which simulation 

is represented on table 2. 
 

CNR2/sim CNR1/sim

Als 310.8367 514.6228

arPLS 307.3595 367.1587

asPLS 582.3476 674.352

Proposed 574.838 666.4418

Method 1 20  0  

 
 

Table 2 (a): simulation ration ( u uCNR sim ) if we used 

only first matrix differential matrix for baseline extraction 
and smooth. 
 

CNR2/sim CNR1/sim

Als 251.6472149 256.287798

arPLS 1044.03966 1155.04533

asPLS 1661.690079 1731.2072

Proposed 1050.298343 1217.6105

Method 2 10  0  

 
 

Table 2 (b): simulation ration ( u uCNR sim )used only 

second matrix differential matrix for baseline extraction and 
smooth. 
 

CNR2/sim CNR1/sim

Als 349.5602094 412.8795812

arPLS 512.4619423 637.9120735

asPLS 1365.536232 1406.717391

Proposed 1617.45339 1750.877119

Method 1 20  0  

 
 

Table 2 (a): simulation ration ( u uCNR sim ) using only 

first and second differential matrix for baseline extraction 
and smooth. 

The simulation result is presented in fig 1 represented 
(a) the extracted baseline in case of only first differential 

matrix ( 1 20, 0   ); (b) ; represented the extracted 

baseline if we used only second differential matrix to 

extracted the baseline ( 1 20, 0   ), and (c) the 

extracted baseline in case of  first and second differential 

matrix ( 1 20, 0   ) 

The simulation results using the data from table 2 have been 
presented in fig 1. 

 
Fig 1 (a): used only the first differential matrix 

From table 2 (a), the maximum ratio CNR sim  values 

are 582.34757 and 674.352 for 2CNR sim and 

1CNR sim  respectively asPLS method; in case of using 

only the first differential matrix to extract the baseline. In 
conclusion using only first differential matrix for baseline 
extraction asPLS method is more efficient than ALS, asPLS 
and our propose extraction method. Which is confirmed fig 
1, a 

 

 
Fig 1 (b): used only second first differential matrix 

 
Fig 1, b; represented the extracted baseline if we used 

only second differential matrix to extracted the baseline 

( 1 20, 0   ). The smoothness of the extracted baseline 

confirm the result of table 2 (b). The extracted baseline 

based on asPLS is butter (ratio 2CNR sim , 1CNR sim is 
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1661.69008, 1731.2072 respectively) than other existing 
method and the proposed method. 

Fig 1 (c): used the first and second  differential matrix 

Fig 1, c; shown the extracted baseline in case of 

1 20, 0   ; that is mean the first and second

differential matrix have been used to extract the baseline. 
From the table 2 the optimal extracted baseline method is 

the proposed method (ratio 2CNR sim , 1CNR sim is 

1617.45339, 1750.877119 respectively). So, the proposed 
method is a butter method to extract baseline extraction in 
case of using two smooth parameters.  Fig 1. d; represented 
the fig 1 c with the original signal y. 

Fig 1 (d):Optimal baseline extracted and original signal 
plotted 

V. CONCLUSION

In this paper, we firstly make a review of baseline 
extraction method, and secondly, we the optimization is also 
be investigated. We proposed and efficient algorithm of 
signal baseline extraction by computing the smooth 
parameters based on PCA without using empirical 
approaches and without any prior knowledge of associate 
noise. The smooth parameters are calculated using the 
eigenvalues, several conditions are imposed to compute the 
optimal smooth parameters values.  We also proposed a new 
method for baseline extraction based on the extreme values. 

In the proposed method the weight vector is estimated based 
on the characteristics of the signal. Comparing to the well 
know existing baseline extraction method, the simulation 
results show the efficiency of the proposed method in case 
we used two smooth parameters to extract the baseline. 

The new algorithm allowed an automatic baseline 
extraction without empirical estimation of smooth 
parameters.  This eliminates the need for users to spend 
valuable time learning the internals of existing approaches 
in order to facilitate educated choices about which method is 
best for their application. 
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