
Development of Data Cleaning algorithm by Finding
Fuzzy Duplicates in Insurance Data Warehouse

 Rajshree Y. Patil Dr. R. V. Kulkarni
Vivekanand College,Kolhapur SIBER, Kolhapur

Abstract-Data cleaning is the method of adjusting or
eradicating information that is wrong, unfinished,
inappropriately formatted or reproduced. A business in a
data-intensive profession like banking, insurance, trade and
telecommunication might use a data cleaning engine to
methodically inspect data for errors by using set of laws,
business rules and algorithms. Data cleaning is a vital
undertaking for data warehouse experts, database managers
and developers in insurance industry. In today’s competitive
environment, there is a need to make available a program for
insurance industry which emphasizes on data quality by using
methods and techniques for data cleaning. This will help
companies to improve data preparation and reporting
capabilities. This paper aims to facilitate the data cleaning
process by addressing the problem of duplicate records
detection pertaining to the name attributes of the data sets. It
provides a sequence of algorithms through a novel framework
for identifying duplicity in the ‘name’ attributes of the data
sets of an already existing data warehouse.

INTRODUCTION
Data cleaning is the process of detecting and correcting (or
removing) corrupt or inaccurate records from a record
set, tables, or database. Used mainly in databases, the term
refers to identifying incomplete, incorrect, inaccurate,
irrelevant, etc. parts of the data and then replacing,
modifying, or deleting this dirty data. After cleaning, a data
set will be consistent with other similar data sets in the
system. The inconsistencies detected or removed may have
been originally caused by user entry errors, by corruption in
transmission or storage, or by different data
dictionary definitions of similar entities in different stores.
Data cleaning differs from data validation in that validation
almost invariably means data is rejected from the system at
entry and is performed at entry time, rather than on batches
of data.
The database structure used to store insurance database, the
framework used to design an algorithm and algorithms used

to clean insurance data. Decision support analysis on data
warehouses influences important business decisions;
therefore, accuracy of such analysis is crucial. However,
data received at the data warehouse from external sources
usually contains errors, e.g., spelling mistakes, inconsistent
conventions across data sources, missing fields.
Consequently, a significant amount of time and money are
spent on data cleaning, the task of detecting and correcting
errors in data. A prudent alternative to the expensive
periodic data cleaning of an entire data warehouse is to
avoid the introduction of errors during the process of
adding new data into the warehouse. This approach
requires input tuples to be validated and corrected before
they are loaded.

Dataset used:
The researchers collected the data of policy holders from
agent of insurance office by using questioner and stored in
the database where each policy tuple consists of different
attributes related to customer profile.

MATCHING TUPLES:
In the following example a policy holder
 .have three different policies ”݊ܽݕܽݎܽܰ	݅ݐ݋ݕܬ	݅݊ݎ݈ܽ݇ݑܭ“
In the tuple with ݀݅ݐ ൌ 1 all the data is correct but in the
tuple where ݀݅ݐ ൌ 2 Name is entered slightly different and
in the tuple where ݀݅ݐ ൌ 3 email address is different. The
system could not identify that all the three tuples are of
same person. Insurer stores all the three policies as different
tuples. In some situations when we want to find a customer
who have more than one policy for campaigning some new
offers this customer did not get this opportunity. So
researchers develop the following algorithm to find
similarity between records to correct errors or to find
number of policies belonging unique customer.

Tid Policyno Name Address1 Area Email Mobileno Bdate Policytype

1 945755760
KulkarniJyoti
Narayan

243,Flat No. G-
1, Safalya Appt.

Tarabai
Park

jyoti_kulkarni@yahoo.com 9420493151
30-
Dec-
65

Jeevan
Sangam

2 945755761
Kulkarni Joti
Narayan

243,Flat No. G-
1, Safalya Appt.

Tarabai
Park

jyoti_kulkarni@yahoo.com 9420493151
30-
Dec-
65

20 years
Money Back

3 945755762
KulkarniJyoti
Narayan

243,Flat No. G-
1, Safalya Appt.

Tarabai
Park

joti_kulkarni@yahoo.com 9420493151
30-
Dec-
65

149 Jeevan
Anand

Figure 1: An example record matching task

Rajshree Y. Patil et al | IJCSET(www.ijcset.net) | September 2016 | Vol 6, Issue 9, 335-338

335

For this type of example researchers develop an algorithm
by using fuzzy matching lookup table. A common
technique validates incoming tuples against reference
relations consisting of known-to-be-clean tuples. The
reference relations may be internal to the data warehouse
(e.g., customer relations) or obtained from external sources
(e.g. valid address relations from postal departments).
Attributes(e.g. ܰܽ݉݁, etc.) The errors in the ݁ݐܽ݀	݄ݐݎܾ݅
input customer tuple need to be corrected before it is
loaded. The information in the input tuple is still very
useful for identifying the correct reference customer tuple,
provided the matching is resilient to errors in the input
tuple. We refer to this error-resilient matching of input
tuples against the reference table as the fuzzy match
operation. The reference relation, Customer, contains tuples
describing all current customers. If the fuzzy match returns
a target customer tuple that is either
 to the input ”݁ݏ݋݈ܿ	ݕ݈ܾܽ݊݋ݏܽ݁ݎ“	ݎ݋	”݈ܽݑݍ݁	ݕ݈ݐܿܽݔ݁“
customer tuple, then we would have validated or corrected,
respectively, the input tuple. The notion of closeness
between tuples is usually measured by a
 If the similarity between an input .݊݋݅ݐܿ݊ݑ݂	ݕݐ݅ݎ݈ܽ݅݉݅ݏ
customer tuple and its closest reference tuple is higher than
some ݈݀݋݄ݏ݁ݎ݄ݐ, then the correct reference tuple is loaded.
Otherwise, the input is routed for further cleaning before
considering it as referring to a new customer. A fuzzy
match operation that is resilient to input errors can
effectively prevent the proliferation of fuzzy duplicates in a
relation, i.e., multiple tuples describing the same real world
entity. Each match includes a similarity score and a
confidence score. The similarity score is a mathematical
measure of the textural similarity between the input record
and the record that Fuzzy Lookup transformation returns
from the reference table. We can think of it as the similarity
point out of 1. The confidence score is a measure of how
likely it is that a particular value is the best match among
the matches found in the reference table. The confidence
score assigned to a record depends on the other matching
records that are returned.
Understanding the Jaccard Index of Similarity:
The magic behind the Fuzzy Lookup Add-in comes from
the Jaccard Index of Similarity. The Jaccard index, also
known as the Jaccard similarity coefficient, was developed
by Paul Jaccard as a way to document the distribution of
different types of flora (yawn). Jaccard's index gave him a
statistical way to measure similarities between sample sets.
Jaccard Index is calculated statistically as follows:
The ݀݅ݐݏሺݔ, ሻ is calculated using Jaccard index known asݕ
Jaccard similarity coefficient is a static used for comparing
the similarity and diversity of sample sets. The Jaccard
coefficient measures similarity between finite sample sets,
and is defined as the size of the intersection divided by
the size of the union of the sample sets:

,ܣሺܬ ሻܤ ൌ
|஺∩஻|

|஺∪஻|
 Where ܣ ∩ ܤ ൌ ሼݔ|ݔ ∈ ݔ	݄ݐ݋ܾ	ܣ ∈ ,ሽܤ ܣ ∪

ܤ ൌ ሼݔ|ݔ ∈ ݔ	ݎ݋	ܣ ∈ ݔ	ݎ݋	ܤ ∈ ܣ ∩ ሽ, Similarity functionܤ
݀ሺݔ, ሻݕ 	ൌ 1	– ,ܣሺܬ	 ሻ. Confidence level is also a scoreܤ
between 0	ܽ݊݀	1; it describes the likelihood that each
possible match record returned by the Fuzzy Lookup is a
match to the input record. This measure indicates the

probability that each returned reference record for any one
input record is actually a match. A high similarity factor
does not necessarily mean that a definitive match has been
found, but the combination of high similarity and
confidence scores usually does. For reference tables that do
not remain static, the Fuzzy Lookup transformation can be
configured to maintain the match index as the underlying
reference table changes. The Fuzzy Lookup Table
Maintenance feature allows the error-tolerant index to be
updated each time the reference table changes and a Fuzzy
Lookup task is executed against it. This feature involves
adding a trigger to the reference table itself, so performance
implications should be weighed carefully when considering
this technique. As an alternative to both of these methods,
the match index can simply be recreated each time the
Fuzzy Lookup transformation is executed. The next steps
are setting the similarity threshold and maximum number
of results per input record. Record matching is the problem
of identifying matching or duplicate records, records that
corresponds to the same real-world entity. The standard
approach to record matching is to use textual similarity
between the records to determine whether or not two
records are matched. The input to the data cleaning a
relation, ܴ is a relation Reference Table with
ܴଵ,…	, ܴ௞	attributes
ܴ ൌ ሼܴଵሺݎଵଵ, ,ଵଶݎ … , ,ଵ௡ሻݎ ܴଶሺݎଶଵ, ,ଶଶݎ … , ,ଶ௡ሻݎ . . . , ܴ௞ሺݎ௞ଵ, ,௞ଶݎ … , ௞௡ሻሽݎ

For the above relation ݔଵ is defined as
	ݔ ൌ 	 ሼ“945755760”, ,”݊ܽݕܽݎܽܰ	݅ݐ݋ݕܬ	݅݊ݎ݈ܽ݇ݑܭ“ “243,
.݋ܰ	ݐ݈ܽܨ ܩ െ 1, ,”ݐ݌݌ܣ	ܽݕ݈݂ܽܽܵ
.݋݋݄ܽݕ@݅݊ݎ݈ܽ݇ݑ݇_݅ݐ݋ݕ݆“ ,”݉݋ܿ “	9420493151”, “30 െ
ܿ݁ܦ െ 65”, ሽ, ܵ is a relation Look up”݉ܽ݃݊ܽܵ	݊ܽݒ݁݁ܬ“
table with ଵܵ, …	 , ܵ௞	attributes
ܵ ൌ ሼ ଵܵሺݏଵଵ, ,ଵଶݏ … , ,ଵ௡ሻݏ ,ଶଵݏଶሺݏ ,ଶଶݏ … , ,ଶ௡ሻݏ . . . , ܵ௞ሺݏ௞ଵ, ,௞ଶݏ … , ௞௡ሻሽݏ

For the lookup table ݕଵ is defined as
ݕ ൌ ሼ“݅݊ݎ݈ܽ݇ݑܭ	݅ݐ݋ݕܬ	݊ܽݕܽݎܽܰ”, .݋݋݄ܽݕ@௞௨௟௞௔௥௡௜݅ݐ݋ݕ݆“ ,”݉݋ܿ
”9420493151”, “30 െ ܿ݁ܦ െ 65”ሽ. In above example for tuple
݅݀	 ൌ 	݀݅ are similar, for tuple ݕ	݀݊ܽ	ݔ 1 ൌ are ݕ	݀݊ܽ	ݔ	2
different because ݔ. ݊ܽ݉݁	 ് .ݕ	 ݊ܽ݉݁ and for tuple
݅݀ ൌ .ݔ are different as ݕ	݀݊ܽ	ݔ	3 ݈݁݉ܽ݅	 ് .ݕ	 ݈݁݉ܽ݅ so to
find matching tuples and similarity between two tuples
researchers used a fuzzy lookup table algorithm. The
matching pair ሺݎଵଵ, ଵଵሻ is textually similar, while theݏ
matching pair ሺݎଶଵ, ଵଵሻ is not. The record matchingݏ
problem is identifying all pairs of matching recordsሺݔ, ሻݕ ∈
ܴ ൈ ܵ, for given two record set ܴ and ܵ.Two records match
if they represent same entity. Let a fuzzy lookup relation
ܵሺ ଵܵ, ܵଶ, …	, ܵ௞ሻ. The output is a partition of the records in
ܴ which we capture through selection of attributes from
relation ܵ. We refer to each equivalence class in the
partition as a group of tuples. The result of matching
between two input relations ݎଵ and ݏଵ is required to be less
than some ߳ is a set:
൛൫ݔ, ,ݕ ,ݔሺ’ݐݏ݅݀ ݔሻ൯หݕ ∈ ଵݎ ∧ ݕ ∈ ଶݎ ∧ ,ݔᇱሺݐݏ݅݀ ሻݕ ൑ ߳ൟ. The
distance ݀݅ݐݏ’ሺݔ, ሻ is calculated by using Jaccard Indexݕ
formula. The distance filtering optimization mapping ݂
(e.g. get the letters of a string up to delimiter space) over
sets ܴଵ	ܽ݊݀	 ଵܵ , with a distance function ݀݅ݐݏᇱ much
cheaper then ݀݅ݐݏ, such that: ∀ݔ, ,ݕ∀ ,ሻݔ൫݂ሺ’ݐݏ݅݀ ݂ሺݕሻ൯ ൑

Rajshree Y. Patil et al | IJCSET(www.ijcset.net) | September 2016 | Vol 6, Issue 9, 335-338

336

,ݔሺݐݏ݅݀ the , ’ݐݏ݅݀	݀݊ܽ	݂ ሻ. Having determinedݕ
optimization consists of computing the set of pairs ሺݔ, ሻݕ
such that ݀݅ݐݏ’൫݂ሺݔሻ, ݂ሺݕሻ൯ ൑ ߳ , which is a superset of the
desired result: ݎ݁ݐ݈݅ܨ_ݐݏ݅ܦ ൌ ሼሺݔ, ݔ|ሻݕ ∈ ଵܵ ∧ ݕ ∈ ܵଶ ∧
,ሻݔ݂ሺ	ሺሺ’ݐݏ݅݀ ݂ሺݕሻሻ ൑ ߳ሽ. Given this, the set defined by
(1)is equivalent to: ሼሺݔ, ,ݕ ,ݔሺݐݏ݅݀ ,ݔሻሻ|ሺݕ ሻݕ ∈
ݎ݁ݐ݈݅ܨ_ݐݏ݅ܦ ∧ ,ݔሺݐݏ݅݀ ሻݕ ൑ ߳ 3. Calculation of Jaccard
Index for insurer data. For our algorithm Input relation ܴ
i.e. Reference Table (Table containing details of policy
holders)
ܴ	 ൌ ሼ݋݊ݕ݈ܿ݅݋݌, ݊ܽ݉݁, ,݈݁ܿܽ݌݄ݐݎܾ݅ ,ݕݐ݈݅ܽ݊݋݅ݐܽ݊ ,1ݏݏ݁ݎ݀݀ܽ 	,2ݏݏ݁ݎ݀݀ܽ

,ܽ݇ݑ݈ܽݐ ,݋݈ܾ݊݁݅݋݉,݁ݐ݄ܽ݀ݐݎܾ݅ ݈݁݉ܽ݅	ሽ

Input relation ܵ i.e. Lookup table (Table containing lookup
data of customer)

ܵ ൌ ሼ݊ܽ݉݁, ,݋݈ܾ݊݁݅݋݉,݁ݐ݄ܽ݀ݐݎܾ݅ ݈݁݉ܽ݅ሻ

Entering these two relations researchers allow to enter
attributes on which matching rules are to be applied. If
matching algorithm is to be performed on names only then
only name attribute has to be selected. If matching is to
perform on all attributes
ሼ݊ܽ݉݁, ,݋݈ܾ݊݁݅݋݉,݁ݐ݄ܽ݀ݐݎܾ݅ ݈݁݉ܽ݅ሽ then all attributes
are to be selected. After selection of attributes the tokens
are partitioned on the basis of delimiter space. Each token
is used as a set and the similarity between two data is
checked. Eg. “݅݊ݎ݈ܽ݇ݑܭ		݅ݐ݋ݕܬ	݊ܽݕܽݎܽܰ” from the
reference table is partitioned as Attribute ܣ ൌ ሼܣଵ ൌ
,ܫܴܰܣܭܮܷܭ ଶܣ ൌ ,ܫܱܻܶܬ ଷܣ ൌ ሽ withܰܣܻܣܴܣܰ
delimiter as space. ܣଵ set is refereed as set ܣ ൌ
ሼܫܴܰܣܭܮܷܭሽ and again lookup table is also partitioned
into ሼܤଵ ൌ ,ܫܴܰܣܭܮܷܭ ଶܤ ൌ ,ܫܱܻܶܬ ଷܤ ൌ ሽܰܣܻܣܴܣܰ
with delimiter space. ଵܵ is referred as set ܤ ൌ
ሼܫܴܰܣܭܮܷܭሽ and then we find the similarity between
these two tokens by using Jaccard Similarity Index. Once
the similarity index is found it is stored and the similarity
index for new token is calculated. This process is repeated
until the last attribute. Average similarity index is
calculated and then it is checked whether it is lies between
0	ܽ݊݀	1. If similarity index is 1 then algorithm gives the
output as “ݕ݈ݐܿܽݔܧ	݄ܿݐܽܯ” if it is greater than 0.80
algorithm displays the ouput as“ݕ݈݁݇݅ܮ	݄ܿݐܽܯ”.

ܣ ൌ ሼܫܴܰܣܭܮܷܭ, ,ܫܱܻܶܬ …,ܰܣܻܣܴܣܰ ሽܽ݊݀	ܤ

ൌ ሼܫܴܰܣܭܮܷܭ, ,ܫܱܻܶܬ …,ܰܣܻܣܴܣܰ ሽ

Researchers calculate ܬሺܣ, ሻܤ ൌ
|஺∩஻|

|஺∪஻|

Similarity Index	ൌ 1	– ,ܣሺܬ	 .ܤ,ܣ ሻ, distance betweenܤ
Researchers used two real datasets in experiments. Each
dataset contains two tables ሺܴ	ܽ݊݀	ܵሻ over which record
matching are performed. The first dataset, called
 ܧܮܤܣܷܶܲܭܱܱܮ the second dataset called ,ܧܮܤܣܶܨܧܴ
with number of records. Follwing figure lists the columns
of these records; for brevity, we abbreviate column names
by their first letters. For record matching, we use 4
similarity dimensions listed in following figure In Figure ܬ
denotes Jaccard similarity.

Size |ܴ| ൌ 150	, |ܵ| ൌ 150
Columns ܰܽ݉݁ሺܰሻ, ,ሻܦሺ݁ݐܽܦ݄ݐݎ݅ܤ ሻܯሺ݋݈ܾ݊݁݅݋ܯ,ሻܧሺ݈݅ܽ݉ܧ
Similarity ܬሺܰሻ, ,ሺܰܬ ,ሻܦ ,ሺܰܬ ,ܦ ,ሻܧ ,ሺܰܬ ,ܦ ሻܯ,ܧ

Blocking
ሺܰሻܬ 	൐	ൌ 0.90	, ,ሺܰܬ ሻܦ 	൐ൌ 	0.90	, ,ܰ	ሺܬ ,ܦ ሻܧ 	൐

ൌ 0.90	, ,ሺܰܬ ,ܦ ሻܯ,ܧ 	൐ 0.90
Figure 2 :Characteristics of Blocking

Algorithm
Step 1 :Input relation ܴ ൌ ሺܴଵ, ܴଶ, …	, ܴ௞ሻ, ܵ ൌ
ሺ ଵܵ, ܵଶ, …	, ܵ௞ሻ, ,ݐݏ݅݀ ߳, ,’ݐݏ݅݀ ݂	
Step 2 : ݔ ൌ ݂	݋ݐ	݃݊݅݀ݎ݋ܿܿܽ	ଵܴ	݂݋	ݏ݊݋݅ݐ݅ݐݎܽ݌	݂݋	ݐ݁ݏ
Step 3 : ݕ	 ൌ 	݂݋	ݏ݊݋݅ݐ݅ݐݎܽ݌	݂݋	ݐ݁ݏ	 ଵܵ	ܽܿܿ݃݊݅݀ݎ݋	݋ݐ	݂
Step 4 : For each partition ݔ ∈ ܴଵ
Step 5 : For each partition ݕ ∈ ଵܵ such
Step 6 : Find ݀݅ݐݏ’	ሺ݂ሺݔሻ, ݂ሺݕሻሻ

If ݀݅ݐݏ’ሺ݂ሺݔሻ, ݂ሺݕሻሻ ൌ 1 then
Output=ݕ݈ݐܿܽݔܧ	݄ܿݐܽ݉
Else
Output=ݕ݈݁݇݅ܮ	݄ܿݐܽ݉

Step 7 : goto 5
Step 8 : goto 4
Step 9 : For each element ݎଵ ∈ ܴଵ
Step 10: For each element ݏଵ ∈ ଵܲ do
Step 11 :Enter ݈݀݋݄ݏ݁ݎ݄ݐ	݁ݑ݈ܽݒ
 If ݀݅ݐݏሺ1ݎ, 1ሻݏ 	൐ൌ then ݁ݑ݈ܽݒ	݈݀݋݄ݏ݁ݎ݄ݐ	
 clean data
Step 12:goto 10
Step 13: goto 9
Step 14: End.

DATA ANALYSIS

This covers analysis of existing data warehouse system, the
architecture and the storage methods used in an insurance
industry. It checks efficiency of algorithms developed to
clean dirty data. One customer in insurer data can have
number of policies. In this module researchers finds
Matching records in reference table by using data given in
fuzzy lookup table. Here researchers demonstrate finding
matching in reference table by giving 4 attributes to search
ܰܽ݉݁, ,݋݈ܾ݊݁݅݋݉,݈݅݉݁ Insurer database .݁ݐܽ݀	݄ݐݎܾ݅
consists of 3 records related to policyholder
 Three records found with ."݊ܽݕܽݎܽܰ	݅ݐ݋ݕܬ	݅݊ݎ݈ܽ݇ݑܭ“
same name and their similarity index was given above. In
first and third records all contents are same but for second
record it contains wrong email id son it displayed similarity
index 0.966. With the help of clean option researchers
allow insurer to clean that particular data. Researchers
compared the duplicate data given by the tool with Pivot
table data in excel. From 150 records researchers found
following duplicates. Researchers used the following
evaluation matrices to calculate efficiency of algorithm.
Accuracy: The percentage of input tuples for which a
match algorithm identifies the seed tuple, from which the
erroneous input tuples was generated, as the closest
reference table is its accuracy.
Parameter Settings: In our entire experiments researchers
set ܭ ൌ 1 (i.e. we only retrieve ݕݐ݅ݎ݈ܽ݅݉݅ݏ	݈݀݋݄ݏ݁ݎ݄ݐ	݅ݏ ൌ
1 and the ݂ܿ݁ܿ݊݁݀݅݊݋	݈݁ݒ݈݁ ൌ 1). Researchers find
accuracy of algorithm with pivot table generated by Excel
for the same dataset.

Rajshree Y. Patil et al | IJCSET(www.ijcset.net) | September 2016 | Vol 6, Issue 9, 335-338

337

Finding matching duplicates by using tool By using Pivot table

CONCLUDING REMARKS
We have introduced Fuzzy logic to find out duplicate and
eliminate duplicate. From this we can find integrated
customer view.

REFERENCES
[1] “A Data Cleaning Method Based on Association Rules” by Weijie

Wei, Mingwei Zhang, Bin Zhang ,www.atlantis-press.com
[2] Applied Brain and Vision Science-Data cleaning algorithm
[3] “Data Cleansing for Web Information Retrieval using Query

Indepandent Features” by Yiqun Liu, Min Zhang, Liyun Ru,
Shaoping Ma- www.thuir.cn

[4] “An Extensive Framework for Data Cleaning “ by Helena Galhardas,
Daniela Flor escu, Dennis Shasha, Eric Simon

[5] “A Token-Based Data Cleaning Technique for Data Warehouse” by
Timothy E. Ohanekwu International Journal of Data Wrehousing and
Mining Volume 1

[6] “The role of visualisation in effective data cleaning” by Yu
Qian,Kang Zhang – Proceddins of 2005 ACM symposium on
applied computing

[7] “A Statistical Method for Integrating Data Cleaning and Imputation”
by Chris Mayfield, Jennifer Neville, Sunil Prabahakar- Purdue
University(Computer Science report-2009)

[8] “Data cleansing based on mathematical morphology” by Sheng Tang
published in ICBBE 2008 The second International Conference-2008

Rajshree Y. Patil et al | IJCSET(www.ijcset.net) | September 2016 | Vol 6, Issue 9, 335-338

338

