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Abstract-Data cleaning is the method of adjusting or 
eradicating information that is wrong, unfinished, 
inappropriately formatted or reproduced. A business in a 
data-intensive profession like banking, insurance, trade and 
telecommunication might use a data cleaning engine to 
methodically inspect data for errors by using set of laws, 
business rules and algorithms. Data cleaning is a vital 
undertaking for data warehouse experts, database managers 
and developers in insurance industry. In today’s competitive 
environment, there is a need to make available a program for 
insurance industry which emphasizes on data quality by using 
methods and techniques for data cleaning. This will help 
companies to improve data preparation and reporting 
capabilities. This paper aims to facilitate the data cleaning 
process by addressing the problem of duplicate records 
detection pertaining to the name attributes of the data sets. It 
provides a sequence of algorithms through a novel framework 
for identifying duplicity in the ‘name’ attributes of the data 
sets of an already existing data warehouse. 

INTRODUCTION 
Data cleaning is the process of detecting and correcting (or 
removing) corrupt or inaccurate records from a record 
set, tables, or database. Used mainly in databases, the term 
refers to identifying incomplete, incorrect, inaccurate, 
irrelevant, etc. parts of the data and then replacing, 
modifying, or deleting this dirty data. After cleaning, a data 
set will be consistent with other similar data sets in the 
system. The inconsistencies detected or removed may have 
been originally caused by user entry errors, by corruption in 
transmission or storage, or by different data 
dictionary definitions of similar entities in different stores. 
Data cleaning differs from data validation in that validation 
almost invariably means data is rejected from the system at 
entry and is performed at entry time, rather than on batches 
of data. 
The database structure used to store insurance database, the 
framework used to design an algorithm and algorithms used 

to clean insurance data. Decision support analysis on data 
warehouses influences important business decisions; 
therefore, accuracy of such analysis is crucial. However, 
data received at the data warehouse from external sources 
usually contains errors, e.g., spelling mistakes, inconsistent 
conventions across data sources, missing fields. 
Consequently, a significant amount of time and money are 
spent on data cleaning, the task of detecting and correcting 
errors in data. A prudent alternative to the expensive 
periodic data cleaning of an entire data warehouse is to 
avoid the introduction of errors during the process of 
adding new data into the warehouse. This approach 
requires input tuples to be validated and corrected before 
they are loaded.  

Dataset used:  
The researchers collected the data of policy holders from 
agent of insurance office by using questioner and stored in 
the database where each policy tuple consists of different 
attributes related to customer profile. 

MATCHING TUPLES: 
In the following example a policy holder 
 .have three different policies ”݊ܽݕܽݎܽܰ	݅ݐ݋ݕܬ	݅݊ݎ݈ܽ݇ݑܭ“
In the tuple with ݀݅ݐ ൌ 1 all the data is correct but in the 
tuple where ݀݅ݐ ൌ 2 Name is entered slightly different and 
in the tuple where ݀݅ݐ ൌ 3 email address is different.  The 
system could not identify that all the three tuples are of 
same person. Insurer stores all the three policies as different 
tuples. In some situations when we want to find a customer 
who have more than one policy for campaigning some new 
offers this customer did not get this opportunity. So 
researchers develop the following algorithm to find 
similarity between records to correct errors or to find 
number of policies belonging unique customer. 

Tid Policyno Name Address1 Area Email Mobileno Bdate Policytype 

1 945755760 
KulkarniJyoti 
Narayan 

243,Flat No. G-
1, Safalya Appt. 

Tarabai 
Park 

jyoti_kulkarni@yahoo.com 9420493151 
30-
Dec-
65 

Jeevan 
Sangam 

2 945755761 
Kulkarni Joti 
Narayan 

243,Flat No. G-
1, Safalya Appt. 

Tarabai 
Park 

jyoti_kulkarni@yahoo.com 9420493151 
30-
Dec-
65 

20 years 
Money Back 

3 945755762 
KulkarniJyoti 
Narayan 

243,Flat No. G-
1, Safalya Appt. 

Tarabai 
Park 

joti_kulkarni@yahoo.com 9420493151 
30-
Dec-
65 

149  Jeevan 
Anand 

Figure 1: An example record matching task 
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For this type of example researchers develop an algorithm 
by using fuzzy matching lookup table. A common 
technique validates incoming tuples against reference 
relations consisting of known-to-be-clean tuples. The 
reference relations may be internal to the data warehouse 
(e.g., customer relations) or obtained from external sources 
(e.g. valid address relations from postal departments). 
Attributes(e.g. ܰܽ݉݁,  etc.) The errors in the ݁ݐܽ݀	݄ݐݎܾ݅
input customer tuple need to be corrected before it is 
loaded. The information in the input tuple is still very 
useful for identifying the correct reference customer tuple, 
provided the matching is resilient to errors in the input 
tuple. We refer to this error-resilient matching of input 
tuples against the reference table as the fuzzy match 
operation. The reference relation, Customer, contains tuples 
describing all current customers. If the fuzzy match returns 
a target customer tuple that is either 
 to the input ”݁ݏ݋݈ܿ	ݕ݈ܾܽ݊݋ݏܽ݁ݎ“	ݎ݋	”݈ܽݑݍ݁	ݕ݈ݐܿܽݔ݁“
customer tuple, then we would have validated or corrected, 
respectively, the input tuple. The notion of closeness 
between tuples is usually measured by a 
 If the similarity between an input .݊݋݅ݐܿ݊ݑ݂	ݕݐ݅ݎ݈ܽ݅݉݅ݏ
customer tuple and its closest reference tuple is higher than 
some ݈݀݋݄ݏ݁ݎ݄ݐ, then the correct reference tuple is loaded. 
Otherwise, the input is routed for further cleaning before 
considering it as referring to a new customer. A fuzzy 
match operation that is resilient to input errors can 
effectively prevent the proliferation of fuzzy duplicates in a 
relation, i.e., multiple tuples describing the same real world 
entity. Each match includes a similarity score and a 
confidence score. The similarity score is a mathematical 
measure of the textural similarity between the input record 
and the record that Fuzzy Lookup transformation returns 
from the reference table. We can think of it as the similarity 
point out of 1. The confidence score is a measure of how 
likely it is that a particular value is the best match among 
the matches found in the reference table. The confidence 
score assigned to a record depends on the other matching 
records that are returned. 
Understanding the Jaccard Index of Similarity: 
The magic behind the Fuzzy Lookup Add-in comes from 
the Jaccard Index of Similarity. The Jaccard index, also 
known as the Jaccard similarity coefficient, was developed 
by Paul Jaccard as a way to document the distribution of 
different types of flora (yawn). Jaccard's index gave him a 
statistical way to measure similarities between sample sets.  
Jaccard Index is calculated statistically as follows: 
The ݀݅ݐݏሺݔ,  ሻ is calculated using Jaccard index known asݕ
Jaccard similarity coefficient  is a static used for comparing 
the similarity and diversity of sample sets. The Jaccard 
coefficient measures similarity between finite sample sets, 
and is defined as the size of the intersection divided by 
the size of the union of the sample sets: 

,ܣሺܬ ሻܤ ൌ
|஺∩஻|

|஺∪஻|
 Where ܣ ∩ ܤ ൌ ሼݔ|ݔ ∈ ݔ	݄ݐ݋ܾ	ܣ ∈ ,ሽܤ ܣ ∪

ܤ ൌ ሼݔ|ݔ ∈ ݔ	ݎ݋	ܣ ∈ ݔ	ݎ݋	ܤ ∈ ܣ ∩  ሽ, Similarity functionܤ
݀ሺݔ, ሻݕ 	ൌ 1	– ,ܣሺܬ	  ሻ. Confidence level is also a scoreܤ
between 0	ܽ݊݀	1; it describes the likelihood that each 
possible match record returned by the Fuzzy Lookup is a 
match to the input record. This measure indicates the 

probability that each returned reference record for any one 
input record is actually a match. A high similarity factor 
does not necessarily mean that a definitive match has been 
found, but the combination of high similarity and 
confidence scores usually does. For reference tables that do 
not remain static, the Fuzzy Lookup transformation can be 
configured to maintain the match index as the underlying 
reference table changes. The Fuzzy Lookup Table 
Maintenance feature allows the error-tolerant index to be 
updated each time the reference table changes and a Fuzzy 
Lookup task is executed against it. This feature involves 
adding a trigger to the reference table itself, so performance 
implications should be weighed carefully when considering 
this technique. As an alternative to both of these methods, 
the match index can simply be recreated each time the 
Fuzzy Lookup transformation is executed. The next steps 
are setting the similarity threshold and maximum number 
of results per input record. Record matching is the problem 
of identifying matching or duplicate records, records that 
corresponds to the same real-world entity. The standard 
approach to record matching is to use textual similarity 
between the records to determine whether or not two 
records are matched. The input to the data cleaning a 
relation, ܴ is a relation Reference Table with 
ܴଵ,…	, ܴ௞	attributes 
ܴ ൌ ሼܴଵሺݎଵଵ, ,ଵଶݎ … , ,ଵ௡ሻݎ ܴଶሺݎଶଵ, ,ଶଶݎ … , ,ଶ௡ሻݎ . . . , ܴ௞ሺݎ௞ଵ, ,௞ଶݎ … ,   ௞௡ሻሽݎ
 
For the above relation ݔଵ is defined as  
	ݔ ൌ 	 ሼ“945755760”, ,”݊ܽݕܽݎܽܰ	݅ݐ݋ݕܬ	݅݊ݎ݈ܽ݇ݑܭ“ “243,
.݋ܰ	ݐ݈ܽܨ ܩ െ 1, ,”ݐ݌݌ܣ	ܽݕ݈݂ܽܽܵ
.݋݋݄ܽݕ@݅݊ݎ݈ܽ݇ݑ݇_݅ݐ݋ݕ݆“ ,”݉݋ܿ “	9420493151”, “30 െ
ܿ݁ܦ െ 65”,  ሽ, ܵ is a relation Look up”݉ܽ݃݊ܽܵ	݊ܽݒ݁݁ܬ“
table with ଵܵ, …	 , ܵ௞	attributes 
ܵ ൌ ሼ ଵܵሺݏଵଵ, ,ଵଶݏ … , ,ଵ௡ሻݏ ,ଶଵݏଶሺݏ ,ଶଶݏ … , ,ଶ௡ሻݏ . . . , ܵ௞ሺݏ௞ଵ, ,௞ଶݏ … ,   ௞௡ሻሽݏ
 
For the lookup table ݕଵ is defined as  
ݕ ൌ ሼ“݅݊ݎ݈ܽ݇ݑܭ	݅ݐ݋ݕܬ	݊ܽݕܽݎܽܰ”, .݋݋݄ܽݕ@௞௨௟௞௔௥௡௜݅ݐ݋ݕ݆“ ,”݉݋ܿ
”9420493151”, “30 െ ܿ݁ܦ െ 65”ሽ. In above example  for tuple 
݅݀	 ൌ 	݀݅ are similar, for tuple ݕ	݀݊ܽ	ݔ 1 ൌ  are ݕ	݀݊ܽ	ݔ	2
different because ݔ. ݊ܽ݉݁	 ് .ݕ	 ݊ܽ݉݁ and for tuple 
݅݀ ൌ .ݔ are different as ݕ	݀݊ܽ	ݔ	3 ݈݁݉ܽ݅	 ് .ݕ	 ݈݁݉ܽ݅ so to 
find matching tuples and similarity between two tuples 
researchers used a fuzzy lookup table algorithm. The 
matching pair ሺݎଵଵ,  ଵଵሻ  is textually similar, while theݏ
matching pair ሺݎଶଵ,  ଵଵሻ is not. The record matchingݏ
problem is identifying all pairs of matching recordsሺݔ, ሻݕ ∈
ܴ ൈ ܵ, for given two record set ܴ and ܵ.Two records match 
if they represent same entity. Let a fuzzy lookup relation 
ܵሺ ଵܵ, ܵଶ, …	, ܵ௞ሻ. The output is a partition of the records in 
ܴ which we capture through selection of attributes from 
relation ܵ. We refer to each equivalence class in the 
partition as a group of tuples. The result of matching 
between two input relations ݎଵ and ݏଵ is required to be less 
than some ߳ is a set: 
൛൫ݔ, ,ݕ ,ݔሺ’ݐݏ݅݀ ݔሻ൯หݕ ∈ ଵݎ ∧ ݕ ∈ ଶݎ ∧ ,ݔᇱሺݐݏ݅݀ ሻݕ ൑ ߳ൟ. The 
distance ݀݅ݐݏ’ሺݔ,  ሻ is calculated by using Jaccard Indexݕ
formula. The distance filtering optimization mapping  ݂ 
(e.g. get the letters of a string up to delimiter space) over 
sets ܴଵ	ܽ݊݀	 ଵܵ , with a distance function ݀݅ݐݏᇱ much 
cheaper then ݀݅ݐݏ, such that: ∀ݔ, ,ݕ∀ ,ሻݔ൫݂ሺ’ݐݏ݅݀ ݂ሺݕሻ൯ ൑
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,ݔሺݐݏ݅݀  the , ’ݐݏ݅݀	݀݊ܽ	݂  ሻ. Having determinedݕ
optimization consists of computing the set of pairs ሺݔ,  ሻݕ
such that ݀݅ݐݏ’൫݂ሺݔሻ, ݂ሺݕሻ൯ ൑ ߳ , which is a superset of the 
desired result: ݎ݁ݐ݈݅ܨ_ݐݏ݅ܦ ൌ ሼሺݔ, ݔ|ሻݕ ∈ ଵܵ ∧ ݕ ∈ ܵଶ ∧
,ሻݔ݂ሺ	ሺሺ’ݐݏ݅݀ ݂ሺݕሻሻ ൑ ߳ሽ. Given this, the set defined by 
(1)is equivalent to: ሼሺݔ, ,ݕ ,ݔሺݐݏ݅݀ ,ݔሻሻ|ሺݕ ሻݕ ∈
ݎ݁ݐ݈݅ܨ_ݐݏ݅ܦ ∧ ,ݔሺݐݏ݅݀ ሻݕ ൑ ߳ 3. Calculation of Jaccard 
Index for insurer data. For our algorithm Input relation ܴ 
i.e. Reference Table (Table containing details of policy 
holders) 
ܴ	 ൌ ሼ݋݊ݕ݈ܿ݅݋݌, ݊ܽ݉݁, ,݈݁ܿܽ݌݄ݐݎܾ݅ ,ݕݐ݈݅ܽ݊݋݅ݐܽ݊ ,1ݏݏ݁ݎ݀݀ܽ  	,2ݏݏ݁ݎ݀݀ܽ

,ܽ݇ݑ݈ܽݐ ,݋݈ܾ݊݁݅݋݉,݁ݐ݄ܽ݀ݐݎܾ݅ ݈݁݉ܽ݅	ሽ 
 
Input relation ܵ i.e. Lookup table (Table containing lookup 
data of customer)  

ܵ ൌ ሼ݊ܽ݉݁, ,݋݈ܾ݊݁݅݋݉,݁ݐ݄ܽ݀ݐݎܾ݅ ݈݁݉ܽ݅ሻ 
 
Entering these two relations researchers allow to enter 
attributes on which matching rules are to be applied. If 
matching algorithm is to be performed on names only then 
only name attribute has to be selected. If matching is to 
perform on all attributes 
ሼ݊ܽ݉݁, ,݋݈ܾ݊݁݅݋݉,݁ݐ݄ܽ݀ݐݎܾ݅ ݈݁݉ܽ݅ሽ then all attributes 
are to be selected. After selection of attributes the tokens 
are partitioned on the basis of delimiter space. Each token 
is used as a set and the similarity between two data is 
checked. Eg. “݅݊ݎ݈ܽ݇ݑܭ		݅ݐ݋ݕܬ	݊ܽݕܽݎܽܰ” from the 
reference table is partitioned as Attribute ܣ ൌ ሼܣଵ ൌ
,ܫܴܰܣܭܮܷܭ ଶܣ ൌ ,ܫܱܻܶܬ ଷܣ ൌ  ሽ withܰܣܻܣܴܣܰ
delimiter as space. ܣଵ set is refereed as set ܣ ൌ
ሼܫܴܰܣܭܮܷܭሽ and again lookup table is also partitioned 
into ሼܤଵ ൌ ,ܫܴܰܣܭܮܷܭ ଶܤ ൌ ,ܫܱܻܶܬ ଷܤ ൌ  ሽܰܣܻܣܴܣܰ
with delimiter space. ଵܵ is referred as set ܤ ൌ
ሼܫܴܰܣܭܮܷܭሽ and then we find the similarity between 
these two tokens by using Jaccard Similarity Index. Once 
the similarity index is found it is stored and the similarity 
index for new token is calculated. This process is repeated 
until the last attribute. Average similarity index is 
calculated and then it is checked whether it is lies between 
0	ܽ݊݀	1. If similarity index is 1 then algorithm gives the 
output as “ݕ݈ݐܿܽݔܧ	݄ܿݐܽܯ” if it is greater than 0.80 
algorithm displays the ouput as“ݕ݈݁݇݅ܮ	݄ܿݐܽܯ”. 
 
ܣ ൌ ሼܫܴܰܣܭܮܷܭ, ,ܫܱܻܶܬ …,ܰܣܻܣܴܣܰ ሽܽ݊݀	ܤ

ൌ ሼܫܴܰܣܭܮܷܭ, ,ܫܱܻܶܬ …,ܰܣܻܣܴܣܰ ሽ 

Researchers calculate ܬሺܣ, ሻܤ ൌ
|஺∩஻|

|஺∪஻|
  

 
Similarity Index	ൌ 1	– ,ܣሺܬ	  .ܤ,ܣ ሻ, distance betweenܤ
Researchers used two real datasets in experiments. Each 
dataset contains two tables ሺܴ	ܽ݊݀	ܵሻ over which record 
matching are performed. The first dataset, called 
 ܧܮܤܣܷܶܲܭܱܱܮ the second dataset called ,ܧܮܤܣܶܨܧܴ
with number of records. Follwing figure lists the columns 
of these records; for brevity, we abbreviate column names 
by their first letters. For record matching, we use 4 
similarity dimensions listed in following figure In Figure ܬ 
denotes Jaccard similarity. 
 
 

Size |ܴ| ൌ 150	, |ܵ| ൌ 150 
Columns ܰܽ݉݁ሺܰሻ, ,ሻܦሺ݁ݐܽܦ݄ݐݎ݅ܤ ሻܯሺ݋݈ܾ݊݁݅݋ܯ,ሻܧሺ݈݅ܽ݉ܧ
Similarity ܬሺܰሻ, ,ሺܰܬ ,ሻܦ ,ሺܰܬ ,ܦ ,ሻܧ ,ሺܰܬ ,ܦ  ሻܯ,ܧ

Blocking 
ሺܰሻܬ 	൐	ൌ 0.90	, ,ሺܰܬ ሻܦ 	൐ൌ 	0.90	, ,ܰ	ሺܬ ,ܦ ሻܧ 	൐

ൌ 0.90	, ,ሺܰܬ ,ܦ ሻܯ,ܧ 	൐ 0.90 
Figure 2 :Characteristics of Blocking 

 
Algorithm  
Step 1 :Input relation ܴ ൌ ሺܴଵ, ܴଶ, …	, ܴ௞ሻ, ܵ ൌ
ሺ ଵܵ, ܵଶ, …	, ܵ௞ሻ, ,ݐݏ݅݀ ߳, ,’ݐݏ݅݀ ݂	
Step 2 : ݔ ൌ  ݂	݋ݐ	݃݊݅݀ݎ݋ܿܿܽ	ଵܴ	݂݋	ݏ݊݋݅ݐ݅ݐݎܽ݌	݂݋	ݐ݁ݏ
Step 3 : ݕ	 ൌ 	݂݋	ݏ݊݋݅ݐ݅ݐݎܽ݌	݂݋	ݐ݁ݏ	 ଵܵ	ܽܿܿ݃݊݅݀ݎ݋	݋ݐ	݂ 
Step 4 : For each  partition ݔ ∈ ܴଵ  
Step 5 : For each partition ݕ ∈ ଵܵ such 
Step 6 : Find ݀݅ݐݏ’	ሺ݂ሺݔሻ, ݂ሺݕሻሻ   

If ݀݅ݐݏ’ሺ݂ሺݔሻ, ݂ሺݕሻሻ ൌ 1 then 
Output=ݕ݈ݐܿܽݔܧ	݄ܿݐܽ݉                                                               
Else 
Output=ݕ݈݁݇݅ܮ	݄ܿݐܽ݉ 

Step 7 : goto 5 
Step 8 : goto 4 
Step 9 : For each element  ݎଵ ∈ ܴଵ  
Step 10: For each element ݏଵ ∈ ଵܲ do  
Step 11 :Enter ݈݀݋݄ݏ݁ݎ݄ݐ	݁ݑ݈ܽݒ 
 If ݀݅ݐݏሺ1ݎ, 1ሻݏ 	൐ൌ  then ݁ݑ݈ܽݒ	݈݀݋݄ݏ݁ݎ݄ݐ	
 clean data  
Step 12:goto 10 
Step 13: goto 9 
Step 14: End. 

 
DATA ANALYSIS 

This covers analysis of existing data warehouse system, the 
architecture and the storage methods used in an insurance 
industry. It checks efficiency of algorithms developed to 
clean dirty data. One customer in insurer data can have 
number of policies. In this module researchers finds 
Matching records in reference table by using data given in 
fuzzy lookup table. Here researchers demonstrate  finding 
matching in reference table by giving 4 attributes to search 
ܰܽ݉݁, ,݋݈ܾ݊݁݅݋݉,݈݅݉݁  Insurer database .݁ݐܽ݀	݄ݐݎܾ݅
consists of 3 records related to policyholder 
 Three records found with ."݊ܽݕܽݎܽܰ	݅ݐ݋ݕܬ	݅݊ݎ݈ܽ݇ݑܭ“
same name and their similarity index was given above. In 
first and third records all contents are same but for second 
record it contains wrong email id son it displayed similarity 
index 0.966. With the help of clean option researchers 
allow insurer to clean that particular data. Researchers 
compared the duplicate data given by the tool with Pivot 
table data in excel.  From 150 records researchers found 
following duplicates. Researchers used the following 
evaluation matrices to calculate efficiency of algorithm.  
Accuracy: The percentage of input tuples for which a 
match algorithm identifies the seed tuple, from which the 
erroneous input tuples was generated, as the closest 
reference table is its accuracy.  
Parameter Settings: In our entire experiments researchers 
set ܭ ൌ 1 (i.e. we only retrieve ݕݐ݅ݎ݈ܽ݅݉݅ݏ	݈݀݋݄ݏ݁ݎ݄ݐ	݅ݏ ൌ
1 and the ݂ܿ݁ܿ݊݁݀݅݊݋	݈݁ݒ݈݁ ൌ 1). Researchers find 
accuracy of algorithm with pivot table generated by Excel 
for the same dataset. 
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Finding matching duplicates by using tool  By using Pivot table 

CONCLUDING REMARKS 
We have introduced Fuzzy logic to find out duplicate and 
eliminate duplicate.  From this we can find integrated 
customer view.  
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