
Optimal Data Deduplication in Cloud with 
Homomorphic Authenticated Tree 

Abstract— Cloud computing has become a new platform for

personal computing. Cloud computing provides high 
performance computing resources and mass storage 
resources.Data Deduplication involves finding and removing 
duplication within data without compromising its integrity. A 
practical multi-user cloud storage system needs the secure 
client-side cross-user Deduplication technique, which allows a 
user to skip the uploading process and obtain the ownership of 
the files immediately, when other owners of the same files 
have uploaded them to the cloud server. To the best of our 
knowledge, none of the existing dynamic PoSs can support this 
technique. In this paper, we introduce the concept of 
deduplicatable dynamic proof of storage and propose an 
efficient construction called DeyPoS, to achieve dynamic PoS 
and secure cross-user Deduplication, simultaneously. 
Considering the challenges of structure diversity and private 
tag generation, we exploit a novel tool called Homomorphic 
Authenticated Tree (HAT). We prove the security of our 
construction, and the theoretical analysis and experimental 
results show that our construction is efficient in practice. 

Keywords— Structure Diversity, Cloud Storage, 
Deduplication, Dynamic Proof of Storage. 

I. INTRODUCTION

Cloud storage is a model of networked enterprise storage 
where data is stored in virtualized pools of storage which 
are generally hosted by third parties. Cloud storage 
provides customers with benefits, ranging from cost saving 
and simplified convenience, to mobility opportunities and 
scalable service. These great features attract more and more 
customers to utilize and storage their personal data to the 
cloud storage: according to the analysis report, the volume 
of data in cloud is expected to achieve 40 trillion gigabytes 
in 2020.  

Even though cloud storage system has been widely 
adopted, it fails to accommodate some important emerging 
needs such as the abilities of auditing integrity of cloud 
files by cloud clients and detecting duplicated files by 
cloud servers. We illustrate both problems below. 

The first problem is integrity auditing. The cloud server 
is able to relieve clients from the heavy burden of storage 
management and maintenance. The most difference of 
cloud storage from traditional in-house storage is that the 
data is transferred via Internet and stored in an uncertain 
domain, not under control of the clients at all, which 
inevitably raises clients great concerns on the integrity of 

their data. These concerns originate from the fact that the 
cloud storage is susceptible to security threats from both 
outside and inside of the cloud in [1], and the uncontrolled 
cloud servers may passively hide some data loss incidents 
from the clients to maintain their reputation. What is more 
serious is that for saving money and space, the cloud 
servers might even actively and deliberately discard rarely 
accessed data files belonging to an ordinary client. 
Considering the large size of the outsourced data files and 
the clients’ constrained resource capabilities, the first 
problem is generalized as how can the client efficiently 
perform periodical integrity verifications even without the 
local copy of data files. 

However, dynamic PoS remains to be improved in a 
multi-user environment, due to the requirement of cross-
user deduplication on the client-side in [15]. This indicates 
that users can skip the uploading process and obtain the 
ownership of files immediately, as long as the uploaded 
files already exist in the cloud server. This technique can 
reduce storage space for the cloud server in [10], and save 
transmission bandwidth for users. To the best of our 
knowledge, there is no dynamic PoS that can support 
secure cross-user deduplication. 
There are two challenges in order to solve this problem. On 
one hand, the authenticated structures used in dynamic 
PoSs, such as skip list in [8] and Merkle tree in [14], are 
not suitable for deduplication. We call this challenge 
structure diversity, which means the authenticated structure 
of a file in dynamic PoS may have some conflicts. For 
instance, the authenticated structure of a file F is shown in 
Fig. 1a.When the file is updated to F′, the authenticated 
structure stored on the server-side may turn into the 
structure in Fig. 1b. However, an owner who intends to 
upload F′ usually generates a structure as shown in Fig. 
1c, which is different from the structure stored in the cloud 
server. Thus, the cloud server synchronize the authenticated 
structure. On the other hand, even if cross-user 
deduplication is achieved (for example, the cloud server 
sends the entire authenticated structure to the owner), 
private tag generation is still a challenge for dynamic 
operations. In most of the existing dynamic PoSs, a tag 
used for integrity verification is generated by the secret key 
of the uploader. Thus, other owners who have the 
ownership of the file but have not uploaded it due to the 
cross-user deduplication on the client-side, cannot generate 
a new tag when they update the file. In this situation, the 
dynamic PoSs would fail.  
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Fig. 1 An Overview of Tree-based Authenticated  Structures 

 

If we take dynamic PoS and cross-user deduplication on 
the client-side as orthogonal issues, we may simply 
combine the existing dynamic PoS schemes and 
deduplication techniques. Then, structure diversity is 
solved via deduplication scheme. For solving private tag 
generation, each owner can generate its own authenticated 
structure and upload the structure to the cloud server, which 
means that the cloud server stores multiple authenticated 
structures for each file. Also, when a file is updated by a 
user, the cloud server has to update the corresponding 
authenticated structure in dynamic PoS, and construct a 
new authenticated structure for deduplication. As a result, 
this trivial combination introduces introduces unnecessary 
computation and storage cost to the cloud server. Taking 
the combination of in [10] and in [15] as example, [10] is a 
dynamic PoS scheme which employs Merkle tree as its 
authenticated structure, and in [15] is a crossuser 
deduplication scheme which also employs Merkle tree as 
its authenticated structure. Suppose Alice and Bob 
independently own a file F, a Merkle tree TF is generated 
and stored by the cloud server for deduplication, and two 
Merkle trees TA and TB are generated by Alice and Bob 
respectively, and stored in the cloud server for PoS. When 
Alice updates F to F′, the cloud server updates TA to T′
A for PoS and generates a new Merkle tree TF′  for 
deduplication. Thus, the number of Merkle trees grows 
with the version numbers and the number of owners, which 
is 4 (TF , T′A , TB, and TF′ ) in the above example. 
Also, the cloud server has to generate two Merkle trees in 
the above example which is more time-consuming than 
update the Merkle trees. As a summary, existing dynamic 
PoSs cannot be extended to the multi-user environment. 

 

II. RELATED WORK 

The main contributions of this paper are as follows. 

1) To the best of our knowledge, this is the first work to 
introduce a primitive called deduplicatable dynamic 
Proof of Storage (deduplicatable dynamic PoS), which 
solves the structure diversity and private tag generation 
challenges. 

2) In contrast to the existing authenticated structures,such 
as skip list in [8] and Merkle tree in [14], we design a 
novel authenticated structure called Homomorphic 
Authenticated Tree (HAT), to reduce the 
communication cost in both the proof of storage phase 
and the deduplication phase with similar computation 
cost. Note that HAT can support integrity verification, 

dynamic operations, and cross-user deduplication with 
good consistency. 

3) We propose and implement the first efficient 
construction of deduplicatable dynamic PoS called Dey- 
PoS, which supports unlimited number of verification 
and update operations. The security of this construction 
is proved in the random oracle model, and the 
performance is analyzed theoretically and 
experimentally. 

III. DEDUPLICATABLE DYNAMIC POS 

As discussed in Section 1, no trivial extension of dynamic 
PoS can achieve cross-user deduplication. To fill this void, 
we present a novel primitive called deduplicatable dynamic 
proof of storage in this section. 

 
 

Fig. 2 The system model of deduplicatable dynamic PoS 
 
A.System Model 

Our system model considers two types of entities: the 
cloud server and users, as shown in Fig. 2. For each file, 
original user is the user who uploaded the file to the cloud 
server, while subsequent user is the user who proved the 
ownership of the file but did not actually upload the file to 
the cloud server. There are five phases in a deduplicatable 
dynamic PoS system: pre-process, upload, deduplication, 
update, and proof of storage. 

In the pre-process phase, users intend to upload their 
local files. The cloud server decides whether these files 
should be uploaded. If the upload process is granted, go 
into the upload phase; otherwise, go into the deduplication 
phase. 

 In the upload phase, the files to be uploaded do not exist 
in the cloud server. The original users encodes the local 
files and upload them to the cloud server. 

In the deduplication phase, the files to be uploaded 
already exist in the cloud server. The subsequent users 
possess the files locally and the cloud server stores the 
authenticated structures of the files. Subsequent users need 
to convince the cloud server that they own the files without 
uploading them  to the cloud server. 

Note that, these three phases (pre-process, upload, and 
deduplication) are executed only once in the life cycle of a 
file from the perspective of users. That is, these three 
phases appear only when users intend to upload files. If 
these phases terminate normally, i.e., users finish uploading 
in the upload phase, or they pass the verification in the 
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deduplication phase, we say that the users have the 
ownerships of the files. 

In the update phase, users may modify, insert, or delete 
some blocks of the files. Then, they update the 
corresponding parts of the encoded files and the 
authenticated structures in the cloud server, even the 
original files were not uploaded by themselves. Note that, 
users can update the files only if they have the ownerships 
of the files, which means that the users should upload the 
files in the upload phase or pass the verification in the 
deduplication. 

IV. HOMOMORPHIC AUTHENTICATED TREE 

A. Overview 

To implement an efficient deduplicatable dynamic PoS 
scheme, we design a novel authenticated structure called 
homomorphic authenticated tree (HAT). A HAT is a binary 
tree in which each leaf node corresponds to a data block. 
Though HAT does not have any limitation on the number 
of data blocks, for the sake of description simplicity, we 
assume that the number of data blocks n is equal to the 
number of leaf nodes in a full binary tree. Thus, for a file F 
= (m1,m2,m3,m4) where mi represents the  i-th blockof the 
file, we can construct a tree as shown in Fig. 1a.  

Each node in HAT consists of a four-tuple    Vi =(i, li, vi, ti). 
i is the unique index of the node. The index of the root node 
is 1, and the indexes increases from top to bottom and from 
left to right. li denotes the number of leaf nodes that can be 
reached from the i-th node. vi is the version number of the 
i-th node. ti represents the tag of the i-th node. When a 
HAT is initialized, the version number of each leaf is 1, and 
the version number of each non-leaf node is the sum of that 
of its two children. For the i-th node, mi denotes the 
combination of the blocks corresponding to its leaves. The 
tag ti is computed from F(mi), where F denotes a tag 
generation function. We require that for any node Vi and its 
children V2i and V2i+1,  

F(mi) = F(m2i || m2i+1) = F(m2i) & F(m2i+1)  

holds,where || denotes the combination of m2i and m2i+1, and  
& indicates the combination of F(m2i) and F(m2i+1), which 
is why we call it a “homomorphic” tree. An implementation 
of the tag generation function is described in Section 4.3. 

B. Path and Sibling Search 

To facilitate operations on HAT structures, we exploit 
two major algorithms for path search and sibling search. 
We define the path search algorithm Pl← Path(T, l). It takes 
a HAT T and a block index i of a file as input, and outputs 
the index set of nodes in the path from the root node to the 
i-th leaf node among all the leaves which corresponds to 
the i-th block of the file. We extend the path search 
algorithm to support multi-path search as Algorithm 1, 
where the i-th node in T consists of νi = (i, li, vi, ti).The 
algorithm takes as input a HAT and an ordered list of the 
block indexes, and outputs an ordered list of the node 
indexes. Lines 2-5 initialize two auxiliary variables for 
each legal block index l where il_ defines a subtree whose 

root is the il_-th node in T , and ordl_ indicates the location 
of the corresponding leaf node in that subtree. Line 6 
initializes a path P and a state st. The loop of lines 7-18 
calculates the node that should be inserted into P by 
breadth-first search. For each level of T, the loop of lines 9-
18 calculates the node in ρ for each block index l. For 
example, the path (gray nodes) to the 2nd leaf (the 10th 
node in the HAT) and the 5th leaf (the 7th node in the HAT) 
in Fig. 1b is ρ2,5 = Path(T, {2, 5}) = {1, 2, 3, 5, 7, 10}. 

 
Algorithm 1 Path search algorithm 
 
1: procedure PATH(T, I) 
2:  for l ∈ I do 
3:   if l > l1 then 
4:     return 0 
5:    il ← 1, ordl ← l 
6:  ρ ← {1}, st ← TRUE 
7:  while st do 
8:    st ← FALSE 
9:   for l ∈ I do 
10:          if lil = 1 then 
11:   continue 
12:         else if  ordl  ≤  l2i then 
13:   il ← 2il 
14:        else 
15:   ordl ← ordl − l2i , il ← 2il+ 1 
16:         ρ ← ρ ∪ { il } 
17:        if li > 1 then 
18:   st ← TRUE 
19: return ρ 
 

 
Algorithm 2 Sibling search algorithm 
 
1: procedure SIBLING (ρ) 

2:       ψ ←∮, ρ ← ρ \ {1}, £ ←∮, i ← 1 

3:       while ρ≠∮ ∨ £≠∮ do 

4:  if  2i ∈ ρ then 
5:       i ← 2i, ρ ← ρ \ {i} 
6:      if i + 1 ∈ ρ then 
7:   ρ ← ρ ∪ {(i+1, FALSE)} 
8:                else 
9:   ρ ← ρ ∪ {(i + 1, TRUE)} 
10:  else if 2i + 1 ∈ ρ then 
11:  i ← 2i + 1, ρ ← ρ \ {i}  

12:   else if  £ ←∮ then 

13:      pop the last inserted (α, β) in £  
14:      i ← α 
15:      if β = TRUE then 

16:      ψ ← ψ ∪ {i} 
17:   return ψ 
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We define the sibling search algorithm ψ←Sibling (ρ) 
as Algorithm 2. It takes the path ρ as input, and outputs 
the index set of the siblings of all nodes in the path ρ. 
Note that, the output of the sibling search algorithm is not 
an ordered list. It always outputs the leftmost one in the 
remaining siblings. Line 2 initializes the sibling set ψ and 
an auxiliary set £ . The loop of lines 3-16 first determines 
how many children of a node in ρ also appear in ρ (line 4, 
6, and 10). If the answer is two, the algorithm removes 
these children from ρ and inserts the right child into £ for 
further validation (line 4-7). If the answer is one, the 
algorithm removes this child from ρ and inserts the other 
child into the sibling set ψ (line 8-11). However, there is a 
subtle difference between the left child is in ρ and the 
right child is in ρ. In the former, the right child will be 
inserted into ψ (line 15-16) later, while the left child will 
be immediately inserted into ψ (line 11) in the latter since 
the left child is the leftmost sibling in the remaining 
siblings. Lines 12-16 process the node in .From Fig. 1b, we 
have ψ = Sibling (ρ2,5) = {4, 11, 6}. From Algorithm 1 
and Algorithm 2, it is clear that both the path search 
algorithm and the sibling search algorithm have the same 
computation complexity O(b log(n)), where b is the number 
of block indexes (i.e., the size of I) and n is the number of 
leaf nodes. 

 

V. THE CONSTRUCTION OF DEYPOS 

In this section, we propose a concrete scheme of 
deduplicatable dynamic PoS called DeyPoS. It consists of 
five algorithms as described in Section 2: Init, Encode, 
Deduplicate, Update, and Check. 

 
A. Building Blocks 

We employ the following tools as our building blocks: 
1) Collision-resistant hash functions: A hash 

function H : {0, 1}∗  →  {0, 1}∗  is collision-
resistant if the probability of finding two diffenent 
values x and y that satisfy H(x) = H(y) is negligible. 

2) Deterministic symmetric encryption: The  
encryption algorithm takes a key k and a plaintext 
m as input, and outputs the ciphertext. We use the 
notation Enck(m) to denote the encryption 
algorithm. 

3) Hash-based message authentication codes:  
A hash-based message authentication code HMAC :      
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a deterministic 
function that takes a key k and an input x, and 
outputs a value y. We define HMACk(x) def = 
HMAC(k, x). 

4) Pseudorandom functions: A pseudorandom  
function f : {0, 1} ∗×{0, 1} ∗  →  {0, 1} ∗  is a 
deterministic function that takes a key k and a 
value x, and outputs a value y that is 
indistinguishable from a truly random function of 
the same input x. We define fk(x) def = f(k, x). 
 

5) Pseudorandom permutations: A pseudorandom 
permutation π : {0, 1}∗ × [1, n] → [1, n] is a 
deterministic function that takes a key k and an 
integer x where 1 ≤ x ≤ n, and outputs a value y 
where 1 ≤ y ≤ n that is indistinguishable from a 
truly random permutation of the same input x. We 
define    πk(x) def = π(k, x). 
 

Algorithm 3 The tag generation algorithm for a leaf node 
 
1: procedure LEAFTAG (αs , kc , αc , ci , li , vi) 
2:  Tl← αs cl 
3:    til ← fkc (il || lil || vil ) + αcTl 
4:  return Tl , til 

 

 
Algorithm 4 The tag generation algorithm for a non leaf 
node 
 
1: procedure NONLEAFTAG(kc, i, li, vi) 
2:  T2i ← T2i − fkc (2i || l2i || v2i) 
3:  T2i+1 ← t2i+1 − fkc (2i + 1 || l2i+1 || v2i+1) 
4:  return ti ← fkc ( i || li || vi) + T2i + T2i+1 

 
       6) Key derivation functions: A key derivation 
function KDF : {0, 1}* × {0, 1}* → {0, 1}* is a 
deterministic function that can derive a secret key from 
two secret values. 
B  The Pre-Process Phase 

In the pre-process phase, a user runs the 
initialization algorithm (id, e) ←  Init(1ʎ, F) which 
computes: 

e ← H(F), id ← H(e). 
Then, the user announces that it has a certain file 

via id. If the file does not exist, the user goes into the 
upload phase. Otherwise, the user goes into the 
deduplication phase. 

 
C. The Upload Phase 

Let the file F = (m1, . . . ,mn). The user first 
invokes the encoding algorithm (C, T ) ← Encode(e, F) 
which is executed as follows. 

1. Generate a random key k ← {0, 1}|e| ,and  compute 
r ← k ⊕ e. 

2. Compute an encryption key ke ← KDF (k, 0).  
For each block ml (1 ≤ l ≤ n), compute cl ←Encke 
(mi). 

3.  Build a HAT from F where the tags in HAT are 
unassigned. 

4. Compute αs ← KDF(k, 1), kc ← KDF(k, 2), and αc 
← KDF(k, 3). Compute all tags of leaf nodes in 
HAT with (c1, . . . , cn) via Algorithm 3. 

5. Based on the tags of leaf nodes, compute all tags 
of non-leaf nodes in HAT. 

6. Compute w← HMACe(t1). 
7.  Set C = {c1, . . . , cn} and T = (r, αs, T , w,N), 

where T = {T1, . . . , Tn} and N = {V1, V2, . . . } is 
the set of all HAT nodes. 
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We use a random key k rather than the hash value e as 
the encryption key. Thus, the encoding algorithm is 
probabilistic, which is very important to dynamic 
operations. Note that identical blocks always lead to the 
same ciphertext, but it is not a security issue because data 
confidentiality is not the goal of deduplicatable dynamic 
PoS, and the encryption algorithm in our construction is 
used for protecting e. 

Algorithm 3 is designed for computing the tags of leaf 
nodes. Line 2 randomizes the data block which is used for 
deduplication, and line 3 calculates the tag of the data block 
which is attached to the node index of HAT il and other 
information, such as version number. Algorithm 4 is 
designed for computing the tags of non-leaf nodes. Lines 2-
3 calculate the function of its children. Note that, T2i and 
T2i+1 satisfy homomorphism. Then, line 4 binds the tag to 
the node index of HAT and other information. 

At the end of the upload phase, the user uploads C and 
T to the cloud server and only stores e locally. Note that, e 
is an element of small constant size and can be encrypted 
and stored in the cloud server. In contrast with in [14] that 
requires users possessing or downloading a structure which 
has logarithmic size of the number of file blocks, all 
owners of the file can run the deduplication protocol, the 
checking protocol, and the update protocol without the 
complete structure of HAT in our scheme. 

 
 

Algorithm 5 The deduplication proving algorithm 
 
1: procedure DEDUPPROVE (αs, kc, αc, {c1, . . ,cn},Q) 

2:  c ← 0, t ← ∮, ζ ← 1, l ← 1 

3:  while ζ ≤ n do 
4:     δ ← 0 
5:     while ζ < ljl do 

6:   δ ← δ + c ζ, ζ ← ζ + 1 
7:      pop the first element in Q 
8:      t ∪← t  { fkc (i || li || vi) + αcαsδ } 
9:      c ← c + c ζ 
10:     l ← l + 1, ζ ← ζ + 1 
11:   return c, t 
 
 
D. The Deduplication Phase 

If a file announced by a user in the pre- process 
phase exists in the cloud server, the user goes into the 
deduplication phase and runs the deduplication protocol res 
∈ {0, 1} ← Deduplicate(U(e, F), S(T )) as follows. 
       S executes the following instructions. 

a) Choose b ← [1, n] and k ← {0, 1} ʎ. For       
    each j (1 ≤ j ≤ b), compute lj ← πk(b). 
b) Compute the path ρ = Path(I), where I = 

{ι1, . . . , ιb}, and the siblings ψ =Sibling(ρ). 
c) Send (r, b, κ,Q) to U, and keep L local, 
    where Q is the set of (i, li, vi) and L is the 
    set of ti for all i ∈ ψ. 
 
 

E. The Update Phase  
In this phase, a user can arbitrarily update the file, 

such as modify a block, insert a batch of blocks, and delete 
some blocks, by invoking the update protocol res ∈ {(e*, 
(C*, T *))} ← Update(U(e, ι,m,OP), S(C, T )). After all 
operations are finished, the user uploads the updated blocks 
of the file and the updated nodes of the HAT to the cloud 
server as shown in Section 3.3. Then, the user computes the 
updated metadata e* and verifies the updated blocks via the 
checking protocol (described in Section 4.6). 

 
 
Algorithm 6 The response algorithm 
 
1: procedure RESPONSE(I) 
2:  ρ ←PATH(T, I), ψ ←SIBLING(ρ) 
3:  c ← 0, t ← 0 
4:  for l ∈ I do 
5:      c ← c + cl 
6:  for i ∈ ψ do 
7:       t ← t + ti 
8:  return resp ← (c, t, {vil | l∈ I}, {(i, li, vi)} 
 
 
F. The Proof of Storage Phase 

At any time, users can go into the proof of storage 
phase if they have the ownerships of the files. The users 
and the cloud server run the checking protocol res ∈ {0, 1} 
← Check(S(C, T ), U(e)) interactively to check the file 
integrity in the cloud server as follows. 

 
1) U choose b∈ [1, n], k ∈ {0, 1} ʎ , sends (b, κ) to S. 
2) For each j (1 ≤ j ≤ b), S computes lj ← πk(b).Then,    
    the cloud server invokes the response algorithm in      
    Algorithm 6, where I = {l1, . . . , lb}, and sends the    
    proof resp to U with (r, ν1, ω). 
3) U computes k ← r⊕e, αs ← KDF(k, 1), kc ←  
    KDF(k, 2), and αc ← KDF(k, 3). Then, it verifies 
    ν1, and invokes the verification algorithm in    
    Algorithm 7 to accomplish the verification. It  
    outputs 1 if verification succeeds and 0 otherwise. 

 
Algorithm 6 generates a proof on the server-side, 

which consists of the combination of the challenged file 
blocks (line 4-5) and the combination of corresponding tags 
(6-7). The algorithm also returns other information about 
the HAT (line 8), such as the version number of challenged 
leaf nodes. Algorithm 7 is designed for verifying the proof 
generated by Algorithm 6. 

 
Algorithm 7 The verification algorithm 
 
1: procedure VERIFY(αs, kc, αc, ν1, I, resp) 
2:     ctr ← 1, T ← 0 
3:     for l ∈ I do 
4:  while ctr < l do 
5:       pop the first element in {(i, li, vi) | i ∈ ψ} 
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6:      ctr ← ctr + li, T ← T + fkc (i || li || vi) 

7:  if ctr ≠l then 

8:     return 0 
9:  else 
10:     ctr ← ctr + 1 
11:   for (i, li, vi) ∈ {(i, li, vi) | i ∈ ψ} do 
12:  ctr ← ctr + li , T← T + fkc (i || li || vi) 

13:   if ctr ≠ n + 1 then 

14:        return 0 
15:   else if t + fkc (i || li || vi) − T + αsαcc 6= t1 then 
16:  return 0 
17:    else 
18:  return 1 
 

The loop of line 3-10 first calculates current 
indexes of file blocks and the combination of tags (line 5- 
6). If the indexes of file blocks do not match the challenged 
indexes, the algorithm is terminated (line 7-8). The loop of 
line 11-12 calculates the remaining indexes and tags. In the 
end, the algorithm checks whether the number of file 
blocks is correct (line 13-14), and whether the HAT is 
authentic and up-to-date (line 15-16). The computation 
costs to generate challenge on the client-side, to generate a 
proof on the 
server-side, and to verify the proof on the client-side in this 
phase are O(1), O(b log n), and O(b log n), respectively. 
Thecommunication cost is O(b log n). 
 

VI. CONCLUSION 

We proposed the comprehensive requirements in multi-
user cloud storage systems and introduced the model of 
deduplicatable dynamic PoS. We designed a novel tool 
called HAT which is an efficient  uthenticated structure. 
Based on HAT, we proposed the first practical 
deduplicatable dynamic PoS scheme called DeyPoS and 
proved its security in the random oracle model. The 
theoretical and experimental results show that our DeyPoS 
implementation is efficient, especially when the file size 
and the number of the challenged blocks are large. 
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