
Optimal Data Deduplication in Cloud with
Homomorphic Authenticated Tree

Abstract— Cloud computing has become a new platform for

personal computing. Cloud computing provides high
performance computing resources and mass storage
resources.Data Deduplication involves finding and removing
duplication within data without compromising its integrity. A
practical multi-user cloud storage system needs the secure
client-side cross-user Deduplication technique, which allows a
user to skip the uploading process and obtain the ownership of
the files immediately, when other owners of the same files
have uploaded them to the cloud server. To the best of our
knowledge, none of the existing dynamic PoSs can support this
technique. In this paper, we introduce the concept of
deduplicatable dynamic proof of storage and propose an
efficient construction called DeyPoS, to achieve dynamic PoS
and secure cross-user Deduplication, simultaneously.
Considering the challenges of structure diversity and private
tag generation, we exploit a novel tool called Homomorphic
Authenticated Tree (HAT). We prove the security of our
construction, and the theoretical analysis and experimental
results show that our construction is efficient in practice.

Keywords— Structure Diversity, Cloud Storage,
Deduplication, Dynamic Proof of Storage.

I. INTRODUCTION

Cloud storage is a model of networked enterprise storage
where data is stored in virtualized pools of storage which
are generally hosted by third parties. Cloud storage
provides customers with benefits, ranging from cost saving
and simplified convenience, to mobility opportunities and
scalable service. These great features attract more and more
customers to utilize and storage their personal data to the
cloud storage: according to the analysis report, the volume
of data in cloud is expected to achieve 40 trillion gigabytes
in 2020.

Even though cloud storage system has been widely
adopted, it fails to accommodate some important emerging
needs such as the abilities of auditing integrity of cloud
files by cloud clients and detecting duplicated files by
cloud servers. We illustrate both problems below.

The first problem is integrity auditing. The cloud server
is able to relieve clients from the heavy burden of storage
management and maintenance. The most difference of
cloud storage from traditional in-house storage is that the
data is transferred via Internet and stored in an uncertain
domain, not under control of the clients at all, which
inevitably raises clients great concerns on the integrity of

their data. These concerns originate from the fact that the
cloud storage is susceptible to security threats from both
outside and inside of the cloud in [1], and the uncontrolled
cloud servers may passively hide some data loss incidents
from the clients to maintain their reputation. What is more
serious is that for saving money and space, the cloud
servers might even actively and deliberately discard rarely
accessed data files belonging to an ordinary client.
Considering the large size of the outsourced data files and
the clients’ constrained resource capabilities, the first
problem is generalized as how can the client efficiently
perform periodical integrity verifications even without the
local copy of data files.

However, dynamic PoS remains to be improved in a
multi-user environment, due to the requirement of cross-
user deduplication on the client-side in [15]. This indicates
that users can skip the uploading process and obtain the
ownership of files immediately, as long as the uploaded
files already exist in the cloud server. This technique can
reduce storage space for the cloud server in [10], and save
transmission bandwidth for users. To the best of our
knowledge, there is no dynamic PoS that can support
secure cross-user deduplication.
There are two challenges in order to solve this problem. On
one hand, the authenticated structures used in dynamic
PoSs, such as skip list in [8] and Merkle tree in [14], are
not suitable for deduplication. We call this challenge
structure diversity, which means the authenticated structure
of a file in dynamic PoS may have some conflicts. For
instance, the authenticated structure of a file F is shown in
Fig. 1a.When the file is updated to F′, the authenticated
structure stored on the server-side may turn into the
structure in Fig. 1b. However, an owner who intends to
upload F′ usually generates a structure as shown in Fig.
1c, which is different from the structure stored in the cloud
server. Thus, the cloud server synchronize the authenticated
structure. On the other hand, even if cross-user
deduplication is achieved (for example, the cloud server
sends the entire authenticated structure to the owner),
private tag generation is still a challenge for dynamic
operations. In most of the existing dynamic PoSs, a tag
used for integrity verification is generated by the secret key
of the uploader. Thus, other owners who have the
ownership of the file but have not uploaded it due to the
cross-user deduplication on the client-side, cannot generate
a new tag when they update the file. In this situation, the
dynamic PoSs would fail.

V.Manothini #1, K.Karthick *2

#PG Scholar- CSE dept, Kongunadu College Of Engineering &Technology, Trichy, Tamilnadu,India
*Assistant professor-CSE dept,Kongunadu College Of Engineering &Technology, Trichy, Tamilnadu,India

V.Manothini et al | IJCSET(www.ijcset.net) | September 2016 | Vol 6, Issue 9, 325-330

325

Fig. 1 An Overview of Tree-based Authenticated Structures

If we take dynamic PoS and cross-user deduplication on
the client-side as orthogonal issues, we may simply
combine the existing dynamic PoS schemes and
deduplication techniques. Then, structure diversity is
solved via deduplication scheme. For solving private tag
generation, each owner can generate its own authenticated
structure and upload the structure to the cloud server, which
means that the cloud server stores multiple authenticated
structures for each file. Also, when a file is updated by a
user, the cloud server has to update the corresponding
authenticated structure in dynamic PoS, and construct a
new authenticated structure for deduplication. As a result,
this trivial combination introduces introduces unnecessary
computation and storage cost to the cloud server. Taking
the combination of in [10] and in [15] as example, [10] is a
dynamic PoS scheme which employs Merkle tree as its
authenticated structure, and in [15] is a crossuser
deduplication scheme which also employs Merkle tree as
its authenticated structure. Suppose Alice and Bob
independently own a file F, a Merkle tree TF is generated
and stored by the cloud server for deduplication, and two
Merkle trees TA and TB are generated by Alice and Bob
respectively, and stored in the cloud server for PoS. When
Alice updates F to F′, the cloud server updates TA to T′
A for PoS and generates a new Merkle tree TF′ for
deduplication. Thus, the number of Merkle trees grows
with the version numbers and the number of owners, which
is 4 (TF , T′A , TB, and TF′) in the above example.
Also, the cloud server has to generate two Merkle trees in
the above example which is more time-consuming than
update the Merkle trees. As a summary, existing dynamic
PoSs cannot be extended to the multi-user environment.

II. RELATED WORK

The main contributions of this paper are as follows.

1) To the best of our knowledge, this is the first work to
introduce a primitive called deduplicatable dynamic
Proof of Storage (deduplicatable dynamic PoS), which
solves the structure diversity and private tag generation
challenges.

2) In contrast to the existing authenticated structures,such
as skip list in [8] and Merkle tree in [14], we design a
novel authenticated structure called Homomorphic
Authenticated Tree (HAT), to reduce the
communication cost in both the proof of storage phase
and the deduplication phase with similar computation
cost. Note that HAT can support integrity verification,

dynamic operations, and cross-user deduplication with
good consistency.

3) We propose and implement the first efficient
construction of deduplicatable dynamic PoS called Dey-
PoS, which supports unlimited number of verification
and update operations. The security of this construction
is proved in the random oracle model, and the
performance is analyzed theoretically and
experimentally.

III. DEDUPLICATABLE DYNAMIC POS

As discussed in Section 1, no trivial extension of dynamic
PoS can achieve cross-user deduplication. To fill this void,
we present a novel primitive called deduplicatable dynamic
proof of storage in this section.

Fig. 2 The system model of deduplicatable dynamic PoS

A.System Model

Our system model considers two types of entities: the
cloud server and users, as shown in Fig. 2. For each file,
original user is the user who uploaded the file to the cloud
server, while subsequent user is the user who proved the
ownership of the file but did not actually upload the file to
the cloud server. There are five phases in a deduplicatable
dynamic PoS system: pre-process, upload, deduplication,
update, and proof of storage.

In the pre-process phase, users intend to upload their
local files. The cloud server decides whether these files
should be uploaded. If the upload process is granted, go
into the upload phase; otherwise, go into the deduplication
phase.

 In the upload phase, the files to be uploaded do not exist
in the cloud server. The original users encodes the local
files and upload them to the cloud server.

In the deduplication phase, the files to be uploaded
already exist in the cloud server. The subsequent users
possess the files locally and the cloud server stores the
authenticated structures of the files. Subsequent users need
to convince the cloud server that they own the files without
uploading them to the cloud server.

Note that, these three phases (pre-process, upload, and
deduplication) are executed only once in the life cycle of a
file from the perspective of users. That is, these three
phases appear only when users intend to upload files. If
these phases terminate normally, i.e., users finish uploading
in the upload phase, or they pass the verification in the

V.Manothini et al | IJCSET(www.ijcset.net) | September 2016 | Vol 6, Issue 9, 325-330

326

deduplication phase, we say that the users have the
ownerships of the files.

In the update phase, users may modify, insert, or delete
some blocks of the files. Then, they update the
corresponding parts of the encoded files and the
authenticated structures in the cloud server, even the
original files were not uploaded by themselves. Note that,
users can update the files only if they have the ownerships
of the files, which means that the users should upload the
files in the upload phase or pass the verification in the
deduplication.

IV. HOMOMORPHIC AUTHENTICATED TREE

A. Overview

To implement an efficient deduplicatable dynamic PoS
scheme, we design a novel authenticated structure called
homomorphic authenticated tree (HAT). A HAT is a binary
tree in which each leaf node corresponds to a data block.
Though HAT does not have any limitation on the number
of data blocks, for the sake of description simplicity, we
assume that the number of data blocks n is equal to the
number of leaf nodes in a full binary tree. Thus, for a file F
= (m1,m2,m3,m4) where mi represents the i-th blockof the
file, we can construct a tree as shown in Fig. 1a.

Each node in HAT consists of a four-tuple Vi =(i, li, vi, ti).
i is the unique index of the node. The index of the root node
is 1, and the indexes increases from top to bottom and from
left to right. li denotes the number of leaf nodes that can be
reached from the i-th node. vi is the version number of the
i-th node. ti represents the tag of the i-th node. When a
HAT is initialized, the version number of each leaf is 1, and
the version number of each non-leaf node is the sum of that
of its two children. For the i-th node, mi denotes the
combination of the blocks corresponding to its leaves. The
tag ti is computed from F(mi), where F denotes a tag
generation function. We require that for any node Vi and its
children V2i and V2i+1,

F(mi) = F(m2i || m2i+1) = F(m2i) & F(m2i+1)

holds,where || denotes the combination of m2i and m2i+1, and
& indicates the combination of F(m2i) and F(m2i+1), which
is why we call it a “homomorphic” tree. An implementation
of the tag generation function is described in Section 4.3.

B. Path and Sibling Search

To facilitate operations on HAT structures, we exploit
two major algorithms for path search and sibling search.
We define the path search algorithm Pl← Path(T, l). It takes
a HAT T and a block index i of a file as input, and outputs
the index set of nodes in the path from the root node to the
i-th leaf node among all the leaves which corresponds to
the i-th block of the file. We extend the path search
algorithm to support multi-path search as Algorithm 1,
where the i-th node in T consists of νi = (i, li, vi, ti).The
algorithm takes as input a HAT and an ordered list of the
block indexes, and outputs an ordered list of the node
indexes. Lines 2-5 initialize two auxiliary variables for
each legal block index l where il_ defines a subtree whose

root is the il_-th node in T , and ordl_ indicates the location
of the corresponding leaf node in that subtree. Line 6
initializes a path P and a state st. The loop of lines 7-18
calculates the node that should be inserted into P by
breadth-first search. For each level of T, the loop of lines 9-
18 calculates the node in ρ for each block index l. For
example, the path (gray nodes) to the 2nd leaf (the 10th
node in the HAT) and the 5th leaf (the 7th node in the HAT)
in Fig. 1b is ρ2,5 = Path(T, {2, 5}) = {1, 2, 3, 5, 7, 10}.

Algorithm 1 Path search algorithm

1: procedure PATH(T, I)
2: for l ∈ I do
3: if l > l1 then
4: return 0
5: il ← 1, ordl ← l
6: ρ ← {1}, st ← TRUE
7: while st do
8: st ← FALSE
9: for l ∈ I do
10: if lil = 1 then
11: continue
12: else if ordl ≤ l2i then
13: il ← 2il
14: else
15: ordl ← ordl − l2i , il ← 2il+ 1
16: ρ ← ρ ∪ { il }
17: if li > 1 then
18: st ← TRUE
19: return ρ

Algorithm 2 Sibling search algorithm

1: procedure SIBLING (ρ)

2: ψ ←∮, ρ ← ρ \ {1}, £ ←∮, i ← 1

3: while ρ≠∮ ∨ £≠∮ do

4: if 2i ∈ ρ then
5: i ← 2i, ρ ← ρ \ {i}
6: if i + 1 ∈ ρ then
7: ρ ← ρ ∪ {(i+1, FALSE)}
8: else
9: ρ ← ρ ∪ {(i + 1, TRUE)}
10: else if 2i + 1 ∈ ρ then
11: i ← 2i + 1, ρ ← ρ \ {i}

12: else if £ ←∮ then

13: pop the last inserted (α, β) in £
14: i ← α
15: if β = TRUE then

16: ψ ← ψ ∪ {i}
17: return ψ

V.Manothini et al | IJCSET(www.ijcset.net) | September 2016 | Vol 6, Issue 9, 325-330

327

We define the sibling search algorithm ψ←Sibling (ρ)
as Algorithm 2. It takes the path ρ as input, and outputs
the index set of the siblings of all nodes in the path ρ.
Note that, the output of the sibling search algorithm is not
an ordered list. It always outputs the leftmost one in the
remaining siblings. Line 2 initializes the sibling set ψ and
an auxiliary set £ . The loop of lines 3-16 first determines
how many children of a node in ρ also appear in ρ (line 4,
6, and 10). If the answer is two, the algorithm removes
these children from ρ and inserts the right child into £ for
further validation (line 4-7). If the answer is one, the
algorithm removes this child from ρ and inserts the other
child into the sibling set ψ (line 8-11). However, there is a
subtle difference between the left child is in ρ and the
right child is in ρ. In the former, the right child will be
inserted into ψ (line 15-16) later, while the left child will
be immediately inserted into ψ (line 11) in the latter since
the left child is the leftmost sibling in the remaining
siblings. Lines 12-16 process the node in .From Fig. 1b, we
have ψ = Sibling (ρ2,5) = {4, 11, 6}. From Algorithm 1
and Algorithm 2, it is clear that both the path search
algorithm and the sibling search algorithm have the same
computation complexity O(b log(n)), where b is the number
of block indexes (i.e., the size of I) and n is the number of
leaf nodes.

V. THE CONSTRUCTION OF DEYPOS

In this section, we propose a concrete scheme of
deduplicatable dynamic PoS called DeyPoS. It consists of
five algorithms as described in Section 2: Init, Encode,
Deduplicate, Update, and Check.

A. Building Blocks

We employ the following tools as our building blocks:
1) Collision-resistant hash functions: A hash

function H : {0, 1}∗ → {0, 1}∗ is collision-
resistant if the probability of finding two diffenent
values x and y that satisfy H(x) = H(y) is negligible.

2) Deterministic symmetric encryption: The
encryption algorithm takes a key k and a plaintext
m as input, and outputs the ciphertext. We use the
notation Enck(m) to denote the encryption
algorithm.

3) Hash-based message authentication codes:
A hash-based message authentication code HMAC :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a deterministic
function that takes a key k and an input x, and
outputs a value y. We define HMACk(x) def =
HMAC(k, x).

4) Pseudorandom functions: A pseudorandom
function f : {0, 1} ∗×{0, 1} ∗ → {0, 1} ∗ is a
deterministic function that takes a key k and a
value x, and outputs a value y that is
indistinguishable from a truly random function of
the same input x. We define fk(x) def = f(k, x).

5) Pseudorandom permutations: A pseudorandom
permutation π : {0, 1}∗ × [1, n] → [1, n] is a
deterministic function that takes a key k and an
integer x where 1 ≤ x ≤ n, and outputs a value y
where 1 ≤ y ≤ n that is indistinguishable from a
truly random permutation of the same input x. We
define πk(x) def = π(k, x).

Algorithm 3 The tag generation algorithm for a leaf node

1: procedure LEAFTAG (αs , kc , αc , ci , li , vi)
2: Tl← αs cl
3: til ← fkc (il || lil || vil) + αcTl
4: return Tl , til

Algorithm 4 The tag generation algorithm for a non leaf
node

1: procedure NONLEAFTAG(kc, i, li, vi)
2: T2i ← T2i − fkc (2i || l2i || v2i)
3: T2i+1 ← t2i+1 − fkc (2i + 1 || l2i+1 || v2i+1)
4: return ti ← fkc (i || li || vi) + T2i + T2i+1

 6) Key derivation functions: A key derivation
function KDF : {0, 1}* × {0, 1}* → {0, 1}* is a
deterministic function that can derive a secret key from
two secret values.
B The Pre-Process Phase

In the pre-process phase, a user runs the
initialization algorithm (id, e) ← Init(1ʎ, F) which
computes:

e ← H(F), id ← H(e).
Then, the user announces that it has a certain file

via id. If the file does not exist, the user goes into the
upload phase. Otherwise, the user goes into the
deduplication phase.

C. The Upload Phase

Let the file F = (m1, . . . ,mn). The user first
invokes the encoding algorithm (C, T) ← Encode(e, F)
which is executed as follows.

1. Generate a random key k ← {0, 1}|e| ,and compute
r ← k ⊕ e.

2. Compute an encryption key ke ← KDF (k, 0).
For each block ml (1 ≤ l ≤ n), compute cl ←Encke
(mi).

3. Build a HAT from F where the tags in HAT are
unassigned.

4. Compute αs ← KDF(k, 1), kc ← KDF(k, 2), and αc
← KDF(k, 3). Compute all tags of leaf nodes in
HAT with (c1, . . . , cn) via Algorithm 3.

5. Based on the tags of leaf nodes, compute all tags
of non-leaf nodes in HAT.

6. Compute w← HMACe(t1).
7. Set C = {c1, . . . , cn} and T = (r, αs, T , w,N),

where T = {T1, . . . , Tn} and N = {V1, V2, . . . } is
the set of all HAT nodes.

V.Manothini et al | IJCSET(www.ijcset.net) | September 2016 | Vol 6, Issue 9, 325-330

328

We use a random key k rather than the hash value e as
the encryption key. Thus, the encoding algorithm is
probabilistic, which is very important to dynamic
operations. Note that identical blocks always lead to the
same ciphertext, but it is not a security issue because data
confidentiality is not the goal of deduplicatable dynamic
PoS, and the encryption algorithm in our construction is
used for protecting e.

Algorithm 3 is designed for computing the tags of leaf
nodes. Line 2 randomizes the data block which is used for
deduplication, and line 3 calculates the tag of the data block
which is attached to the node index of HAT il and other
information, such as version number. Algorithm 4 is
designed for computing the tags of non-leaf nodes. Lines 2-
3 calculate the function of its children. Note that, T2i and
T2i+1 satisfy homomorphism. Then, line 4 binds the tag to
the node index of HAT and other information.

At the end of the upload phase, the user uploads C and
T to the cloud server and only stores e locally. Note that, e
is an element of small constant size and can be encrypted
and stored in the cloud server. In contrast with in [14] that
requires users possessing or downloading a structure which
has logarithmic size of the number of file blocks, all
owners of the file can run the deduplication protocol, the
checking protocol, and the update protocol without the
complete structure of HAT in our scheme.

Algorithm 5 The deduplication proving algorithm

1: procedure DEDUPPROVE (αs, kc, αc, {c1, . . ,cn},Q)

2: c ← 0, t ← ∮, ζ ← 1, l ← 1

3: while ζ ≤ n do
4: δ ← 0
5: while ζ < ljl do

6: δ ← δ + c ζ, ζ ← ζ + 1
7: pop the first element in Q
8: t ∪← t { fkc (i || li || vi) + αcαsδ }
9: c ← c + c ζ
10: l ← l + 1, ζ ← ζ + 1
11: return c, t

D. The Deduplication Phase

If a file announced by a user in the pre- process
phase exists in the cloud server, the user goes into the
deduplication phase and runs the deduplication protocol res
∈ {0, 1} ← Deduplicate(U(e, F), S(T)) as follows.
 S executes the following instructions.

a) Choose b ← [1, n] and k ← {0, 1} ʎ. For
 each j (1 ≤ j ≤ b), compute lj ← πk(b).
b) Compute the path ρ = Path(I), where I =

{ι1, . . . , ιb}, and the siblings ψ =Sibling(ρ).
c) Send (r, b, κ,Q) to U, and keep L local,
 where Q is the set of (i, li, vi) and L is the
 set of ti for all i ∈ ψ.

E. The Update Phase
In this phase, a user can arbitrarily update the file,

such as modify a block, insert a batch of blocks, and delete
some blocks, by invoking the update protocol res ∈ {(e*,
(C*, T *))} ← Update(U(e, ι,m,OP), S(C, T)). After all
operations are finished, the user uploads the updated blocks
of the file and the updated nodes of the HAT to the cloud
server as shown in Section 3.3. Then, the user computes the
updated metadata e* and verifies the updated blocks via the
checking protocol (described in Section 4.6).

Algorithm 6 The response algorithm

1: procedure RESPONSE(I)
2: ρ ←PATH(T, I), ψ ←SIBLING(ρ)
3: c ← 0, t ← 0
4: for l ∈ I do
5: c ← c + cl
6: for i ∈ ψ do
7: t ← t + ti
8: return resp ← (c, t, {vil | l∈ I}, {(i, li, vi)}

F. The Proof of Storage Phase

At any time, users can go into the proof of storage
phase if they have the ownerships of the files. The users
and the cloud server run the checking protocol res ∈ {0, 1}
← Check(S(C, T), U(e)) interactively to check the file
integrity in the cloud server as follows.

1) U choose b∈ [1, n], k ∈ {0, 1} ʎ , sends (b, κ) to S.
2) For each j (1 ≤ j ≤ b), S computes lj ← πk(b).Then,
 the cloud server invokes the response algorithm in
 Algorithm 6, where I = {l1, . . . , lb}, and sends the
 proof resp to U with (r, ν1, ω).
3) U computes k ← r⊕e, αs ← KDF(k, 1), kc ←
 KDF(k, 2), and αc ← KDF(k, 3). Then, it verifies
 ν1, and invokes the verification algorithm in
 Algorithm 7 to accomplish the verification. It
 outputs 1 if verification succeeds and 0 otherwise.

Algorithm 6 generates a proof on the server-side,

which consists of the combination of the challenged file
blocks (line 4-5) and the combination of corresponding tags
(6-7). The algorithm also returns other information about
the HAT (line 8), such as the version number of challenged
leaf nodes. Algorithm 7 is designed for verifying the proof
generated by Algorithm 6.

Algorithm 7 The verification algorithm

1: procedure VERIFY(αs, kc, αc, ν1, I, resp)
2: ctr ← 1, T ← 0
3: for l ∈ I do
4: while ctr < l do
5: pop the first element in {(i, li, vi) | i ∈ ψ}

V.Manothini et al | IJCSET(www.ijcset.net) | September 2016 | Vol 6, Issue 9, 325-330

329

6: ctr ← ctr + li, T ← T + fkc (i || li || vi)

7: if ctr ≠l then

8: return 0
9: else
10: ctr ← ctr + 1
11: for (i, li, vi) ∈ {(i, li, vi) | i ∈ ψ} do
12: ctr ← ctr + li , T← T + fkc (i || li || vi)

13: if ctr ≠ n + 1 then

14: return 0
15: else if t + fkc (i || li || vi) − T + αsαcc 6= t1 then
16: return 0
17: else
18: return 1

The loop of line 3-10 first calculates current
indexes of file blocks and the combination of tags (line 5-
6). If the indexes of file blocks do not match the challenged
indexes, the algorithm is terminated (line 7-8). The loop of
line 11-12 calculates the remaining indexes and tags. In the
end, the algorithm checks whether the number of file
blocks is correct (line 13-14), and whether the HAT is
authentic and up-to-date (line 15-16). The computation
costs to generate challenge on the client-side, to generate a
proof on the
server-side, and to verify the proof on the client-side in this
phase are O(1), O(b log n), and O(b log n), respectively.
Thecommunication cost is O(b log n).

VI. CONCLUSION

We proposed the comprehensive requirements in multi-
user cloud storage systems and introduced the model of
deduplicatable dynamic PoS. We designed a novel tool
called HAT which is an efficient uthenticated structure.
Based on HAT, we proposed the first practical
deduplicatable dynamic PoS scheme called DeyPoS and
proved its security in the random oracle model. The
theoretical and experimental results show that our DeyPoS
implementation is efficient, especially when the file size
and the number of the challenged blocks are large.

REFERENCES
[1] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc.of

FC, pp. 136–149, 2010.
[2] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A Secure and Dynamic

Multi-Keyword Ranked Search Scheme over Encrypted Cloud
Data,” IEEE Transactions on Parallel and Distributed Systems, vol.
27, no. 2, pp. 340–352, 2016.

[3] Z. Xiao and Y. Xiao, “Security and privacy in cloud
computing,”IEEE Communications Surveys Tutorials, vol. 15, no. 2,
pp. 843–859,2013.

[4] C. A. Ardagna, R. Asal, E. Damiani, and Q. H. Vu, “From Security to
Assurance in the Cloud: A Survey,” ACM Comput. Surv., vol. 48, no.
1, pp. 2:1–2:50, 2015.

[5] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson,and D. Song, “Provable data possession at untrusted
stores,”in Proc. of CCS, pp. 598–609, 2007.

[6] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and Efficient Provable Data Possession,” in Proc. of SecureComm, pp.
1–10, 2008.

[7] G. Ateniese, S. Kamara, and J. Katz, “Proofs of storage from
homomorphic identification protocols,” in Proc. of ASIACRYPT, pp.
319–333, 2009.

[8] C. Erway, A. K¨upc ¨u, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proc. of CCS, pp. 213–222, 2009.

[9] R. Tamassia, “Authenticated Data Structures,” in Proc. of ESA, pp. 2–
5, 2003.

[10] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public
verifiability and data dynamics for storage security in cloud
computing,” in Proc. of ESORICS, pp. 355–370, 2009.

[11] F. Armknecht, J.-M. Bohli, G. O. Karame, Z. Liu, and C. A. Reuter,
“Outsourced proofs of retrievability,” in Proc. of CCS, pp. 831–843,
2014.

[12] H. Shacham and B. Waters, “Compact Proofs of
Retrievability,”Journal of Cryptology, vol. 26, no. 3, pp. 442–483,
2013.

[13] Z. Mo, Y. Zhou, and S. Chen, “A dynamic proof of retrievability
(PoR) scheme with o(logn) complexity,” in Proc. of ICC, pp. 912–
916, 2012.

[14] E. Shi, E. Stefanov, and C. Papamanthou, “Practical dynamic proofs
of retrievability,” in Proc. of CCS, pp. 325–336, 2013.

[15] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of
ownership in remote storage systems,” in Proc. of CCS, pp. 491–500,
2011.

[16] J. Douceur, A. Adya, W. Bolosky, P. Simon, and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed
file system,” in Proc. of ICDCS, pp. 617–624, 2002.

[17] A. Juels and B. S. Kaliski, Jr., “PORs: Proofs of retrievability for
large files,” in Proc. of CCS, pp. 584–597, 2007.

[18] H. Shacham and B. Waters, “Compact proofs of retrievability,” in
Proc. of ASIACRYPT, pp. 90–107, 2008.

[19] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability via
hardness amplification,” in Proc. of TCC, pp. 109–127, 2009.

[20] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A high-availability and
integrity layer for cloud storage,” in Proc. of CCS, pp. 187–198, 2009.

V.Manothini et al | IJCSET(www.ijcset.net) | September 2016 | Vol 6, Issue 9, 325-330

330

