
Xj-ASD: Towards a j-ASD DSL eXtension for
application deployment in cloud-based

environment
KANGA Koffi#1, Babri Michel#2 , Brou Konan Marcelin#2

 #1
 Ecole Doctorale Polytechnique de l'Institut Nationale Polytechnique Félix Houphouët Boigny (EDP/INPHB), Côte

D'ivoire UMRI 78: Electronique et Electricité Appliquée.
Laboratoire de recherche en informatique et télécommunication

#2Institut Nationale Polytechnique Félix Houphouët Boigny (INPHB), Côte D'ivoire
UMRI 78 : Electronique et Electricité Appliquée

Laboratoire de Recherche en Informatique et Télécommunication

Abstract— In this paper, we propose an extension of the
grammar of an application deployment constraints
description language from a cloud computing platform.
To do this, we draw a meta data model proposed by [1] for an
application deployment in a cloud. This meta model, we
extend j-ASD for the consideration of compatibility
constraints or conformity between the virtual image data file
formats used by the components of the virtual machines and
those target sites that are deploying Smartphones, pc, etc ...
Indeed for a full deployment of applications from a cloud
environment on high mobility rate (Smartphone, PC, etc ...), it
occurs to ensure compliance of the data formats of these
environments to that of Cloud platform. This conformity
proves a prerequisite for deployment on a device from a cloud.
To address these compliance constraints, we formalize them in
matrix form and propose the use of a constraint solver.

Keywords— application deployment, software component
description language constraint, Cloud computing,
deployment plan

I - INTRODUCTION
Designing application requires an approach called life cycle.
This approach, in whatever form (V, waterfall, spiral ...)
includes a number of activities (design, implementation,
validation, deployment, and administration) regardless of
the approach [1]. These activities include the deployment
which is a complex process ranging from the production of
the application and uninstall it. [2]
 Today, with the emergence of the Internet of Things
monitoring the development of service models in the Cloud,
mobile device users want to use their applications on their
phone, tablet and other materials with high rates of mobility.
In this context, the deployment of applications becomes an
important activity with its constraints corollary, given the
diversity of deployment sites and components that make up
these applications.
Faced with this dilemma, the research tried to find solutions
to the architecture and deployment platform [2], the
definition of deployment constraints languages [3] to
describe the application to deploy, and the constraints of
facilities.

In this paper we propose an extension of this language to
the specificities of a Cloud to benefit users of the benefits
in terms of computing power and the Cloud profitability.
Also in order to cover all the deployment activities, we
integrate other deployment constraints witch are not
supported, namely the management of data formats, image
management from various file virtualization to deploy. The
rest of the paper is organized as follows. In Section 2, we
are a state of the art in this field. Section 3 is devoted to our
contribution. We end with a conclusion while generating
few prospects for our future work.

II- STATE OF THE ART
Several research studies describing the tools and

procedures around the deployment exist. But to our
knowledge, these are almost always intended for fixed
topologies machines and / or known at the time of
deployment and therefore not relevant to our context. This
section presents some research related to the application
deployment.

Fractal Deployment Framework (FDF) [4], is a tool
that provides a generic in deploying applications. It consists
of a deployment description language, a set of components,
and user interfaces.

The deployment unit is an archive that contains the
binaries and software deployment descriptor. The main
limitation of this tool is the static nature of the deployment
although a static deployment plan qualifies in relatively
stable environments such as grid computing, this type of
tool cannot be used in environments characterized by a
topology network dynamics as cloud environments.
Another limitation of FDF is that it does not provide
heuristic dynamic reconfiguration that allows the
incorporation of machinery malfunction situations for
example.

Software Dock [5], it provides a Framework for the
configuration and deployment of software. It uses a system
of events and mobile agents to control deployment
activities such as installation and activation. Deployment
life cycle includes the installation, activation, deactivation,
updating, uninstalling and reconfiguring. The deployment

KANGA Koffi et al | IJCSET(www.ijcset.net) | September 2016 | Vol 6, Issue 9, 311-316

311

system uses a client / server architecture associated with
event management system. A server called "release dock"
is installed at the manufacturer's website. A customer called
"field dock" is installed at each site software consumers,
which acts as an interface for the release dock. However,
Software Dock does not allow the description of the
software architecture and deployment constraints. Software
Dock also offers a centralized, static deployment process
that does not meet the needs of dynamic reconfiguration
and deployment of open environments.

R-OSGi [6] is a middleware that uses the standards of
the OSGi specification to support the management of
distributed modules. Upon deployment, R-OSGi can be
used to execute a distributed application simply indicate the
deployment locations of deferent modules. The developer
of an R-OSGi application has full control over how the
application is distributed. Manual control of the
deployment process and its configuration in a large scale
environment left is a very complex task and represents for
us a very important human intervention in the deployment
process. In addition, R-OSGi is only intended to create
static software deployments that cannot be used in
environments distributed large-scale open as ubiquitous
systems and P2P.

A.Dearle et al proposed in [7] middleware, MADME
(Monitoring Automatic Deployment and Management
Engine) for deploying and managing applications consist of
one or more components called Cingal-bundle.
Deployments constraints are specified with the Deladas
language. The deployment administrator specifies an initial
deployment target, then the deployment system tries to
generate a configuration that describes the process of
deploying the application components. After initial
deployment, the deployment system verifies the satisfaction
of the initial target and redeploys the application if
necessary. This approach has similar motivations to ours.
Indeed, one of the reasons is the reduction of human
intervention in the deployment process by automatically
generating the deployment plan. However, the proposed
middleware is not usable in environments with an
unpredictable topology. In addition the user of the tool
must restart the entire deployment process. Upon the
occurrence of a disconnection or failure for example.

A DSL-based Approach to Software Development
and Deployment on Cloud [8]: in this work, Krzysztof
Sledziewski et al present an approach incorporating a DSL
for the development and deployment of applications in a
Cloud. In this approach the authors propose that developers
use a DSL for describing the model associated with the
application. This model is then translated into a specific
code and automatically deployed in a cloud. This approach
is specific to a deployed in a Cloud and facilitates the work
of the administrator to deploy. However, the proposed
approach does not take into account the conditions or
deployment constraint to satisfy.

A DSL for Multi-Scale Deployment and Autonomic
Software [9]

In this article, Raja BOUBEL and Al. present a
progressive work that aims to define and test a DSL
dedicated to autonomic application deployment in multi-

scale environments. In these environments, the network
topology may vary according to hardware failures.

In this work the authors design a DSL to support the
expression of constraints and properties related to
autonomic application deployment in multi-scale
environments. However, they do not provide in their DSL
prior restraint activation, deactivation, installation,
application uninstall.

J-ASD [3]: A middleware for autonomic software
deployment. It consists of a set of software that can best
meet the deployment problem of a distributed application
regardless of the execution context. In other words this
middleware performs independently (with minimal human
intervention as possible) a deployment that meets a set of
constraints defined by the deployment administrator. It is
able to self-adapt and automatically resolve some problems
associated with the instability and the opening of the
environment. It is based on:

- A specific language (DSL) for the description of
deployment constraints called j-ASD DSL

- A network service to automatically detect deployment
target sites

- A bootstrap middleware for the preparation of the
execution environment

- A constraint solver for solving constraints and
deployment plan generation

- A deployment support and an adaptable mobile agent
system for the execution and supervision of deployment
activities

- A deployment algorithm.
However j-ASD, in defining the conditions to be met for a
deployment does not take into account the level of use of
the battery devices, characteristics that are related to cloud
virtual machines and images of virtualized applications,
formats data images to deploy.

III - CONTRIBUTION:
In view of the existing work, more deployment-related
issues seem to be resolved. In particular, the deployment
constraints related problems (install / uninstall).
Nevertheless, some aspects of the deployment as part of
activation, deactivation and update components seem not
yet to find solutions.
An analysis of existing studies shows that configure and
deploy of application in a large scale environment such as
the Cloud is not easy. This complexity is due to the
multitude of components, the heterogeneity and the large
number of target sites in an environment with high levels of
mobility (and therefore variable topology) that make up an
application. So our contribution is as follows:
- Taking into account the given file formats to deploy the
devices from virtual machines in cloud platforms
- Extension of the grammar description language
deployment constraints J-ASD DSL initiated by [3] to take
into account other constraints (i) pre-deployment, (ii)
relating to the use of the battery deployment target sites
from a cloud platform (iii) network latency which is based
on the deployment plan and also the power of the
processors.

KANGA Koffi et al | IJCSET(www.ijcset.net) | September 2016 | Vol 6, Issue 9, 311-316

312

A- Modeling the inclusion of data formats (Fig 1)
In Fig 1, our model shows different class with roles based on their attributes.

Fig 1: Meta data model for deployment in the cloud [1]

In the following table, we present these different classes and theirs roles in the process of deploying an application.

TABLE1: LIST OF CLASS IN FIG.1 AND THEIR RESPECTIVE ROLES

Class Roles

Software
Is characterized by an application name, version, and an ID. it may consist of components (class has)
and also its use requires the satisfaction of certain vis-à-vis stress-related services to its components
(stress class)

Componant
A component appears as the component of an application. It is also characterized by a name, version
and status (on / off)

Service
This class is characterized by name, a role and also may depend on the operating state of other
services (reflexive link a).

have_constrainte
Determines if a service is available for the proper functioning of an application. In which case an
adaptation of the application to another service arose

Compose _of
Materializes the creation of an application from components.
For proper operation, the component needs the availability of several services (b) or as other
components (reflexive link c)

Virtual_noeud
Represents a virtual machine. It is characterized by a name, CPU frequency, memory value, 2
Boolean attributes (cloudserver and agent_cloud) whether the node is a server or client

disk
This class embodies the place of deployment of the virtual machine. It is characterized by a logical
name (LOGICAL_NAME), size (size), an identifier (name_disk). It consists of a set of files (file).

file
Represents the element to be virtualized to form an image. It has the following features: a Id_image
representing the corresponding image, the disk on which it is stored, its reference (path, a boolean
flag to see if it is a file server to a virtual machine server

image
Represents the file element (file) virtualized. it is characterized by the set of packages that make up
the data and the OS with which it is compatible

package
Each package of the image has a name (name_package), a version (version_package) and a release
(release_package) that distinguish it from other packages

data
Here this class characterizes the image because it determines the version (version_data) Image data
type (or format) (type_data) data, and the data source (source_data)

OS
This class in turn determines the operating system on which an image can be deployed. It has a name
(osname), size (size) for the space installation requires a distribution (os_distribution) and version
(os_version)

KANGA Koffi et al | IJCSET(www.ijcset.net) | September 2016 | Vol 6, Issue 9, 311-316

313

B - Constraints description language extension j-ASD
DSL based on the model of Fig 1

J-ASD DSL is a language with a simplified and intuitive

grammar. This grammar is developed using Xtext1 which
is a specific languages Development Framework. As
stipulated in the j-ASD DSL precursors, an application
consists of one or more components. Each component is
defined by an identifier, a version, execution url or
implementation but also by a set of software dependencies,
hardware constraints and deployment constraints. So from
the j-ASD DSL grammar presented in (a) we extend this
grammar to battery usage constraints (PowerPref) potential
deployment sites, internet network latency constraints
(NetLatency) and also to the constraints CPU power
(MIPSPref Million Instructions Per Second) and also to the
constraints of the data format as shown in (b) in the same
conditions given the high rate of mobility in Cloud
environments

a- J-ASD DSL language grammar Xtext

org.eclipse.xtext.common.Terminals
generate jASDDsl
http://www.itsudparis.eu/inf/JASDDsl
Model:
Software=Software
Components+=Component+(HostConstraints+=HostConstraint*)?
Deployment=Deployment;
Software:"Software" "{""Name" "=" name=ID"Version" "="
ver=INT"Components" "=" components+=(ID)*"}";
Component:"Component" "{""Name" "=" name=ID"Version"
"=" ver=INT"Url" "=" url=STRING("Dependencies" "="
dependencies+=ID*)?"}";
HostConstraint:"HostConstraint" "{""Name" "="
name=IDconstraints+=(OsPref | CPUPref |RAMPref | HDPref |
NetSpeedPref)*"}";
Deployment:"Deployment" "{""}";
MemberDecl:component=ID "@" localisation=Localisation
("with" constraints+=(ID)*)?;
OsPref:"OSNameContains" name=STRING;
CPUPref:"CPULoad" InfSup val=INT "%";
terminal InfSup:"<" | ">" | ">=" | "<=";
RAMPref:"RAM" sym=InfSup val=INT "MB";
HDPref:
"HD" sym=InfSup val=INT "MB";
NetSpeedPref:
"NetSpeed" sym=InfSup val=INT "kb/s";
Localisation:
IPv4 | NetName | Val | Interval | All;
terminal IPv4:
INT ’.’ INT ’.’ INT ’.’ INT;
NetName:
STRING;
Val:
INT;
terminal Interval:
INT ".." INT;
terminal All:
"all";
{Deployment} members+=MemberDecl*

1 http://www.eclipse.org/Xtext

b- Extension given to grammar j-ASD DSL language
‘contribution to the extension of the grammar

'J-ASD DSL# Battery power
PowerPref :
"Power" sym=InfSup Val=INT "%";
network latency
NetLatency :
"NetLat" sym=InfSup Val=INT "ms";
puissance du processeur
MIPSPref :
"MIPSPval" sym=InfSup Val=INT "MIPS";
‘Extension into account the meta data model
Data format
Format :
"format" "=" name=STRING ;
DataConstraint:
"dataConstraint" "{"
"Name" "=" name=ID
"Version" "=" ver=INT
"type" "=" name=STRING
"source" "=" name=STRING
"}";

So as defines our extension grammar highlights a number
of constraints to be satisfied to make a full deployment. In
this work, as we make a deployment from a cloud, we
propose the use XMPP protocol [11] for the management
of network discovery sites belonging to the deployment
plan. If network discovery services are defined and the
constraints of compliance (yes compatibility) of defined
data format property, our second contribution is working to
formalize and solving these constraints as a constraint
satisfaction problem (CSP) that can find solution using a
constraint solver. As part of our prototype we chose the
open source constraint solver Choco [11] to be consistent
with [9].

C - Formalization and resolution of constraints
As part of j DSL-ADS, the constraint satisfaction problem
is constructed from a set of integer variables (compliance
matrix) and a set of constraints on these variables. Under
these conditions we model the CSP program with the
following:
- A set C software components forming the application to
deploy.
- Let C = {C1, C2, C3, ..., Cn}
- A set S deployment target sites detection network
discovery service
- A given compliance matrix (Cfm) modeling the
compliance or non-compliance of file images of the data
formats supported by virtual machines from components
that they have with those of deployment sites is such that:
 Cfm (Ci, Sj) = 1, if the component Ci has the same

data format as the site Sj
 Cfm (Ci, Sj) = 0, if the component Ci has the same

data format as the site Sj
- A set Q of constraints on the Si sites (e.g. Powerload,
Netlatency ...)
- A set of constraints on the variables Cfm (Ci, Sj)

KANGA Koffi et al | IJCSET(www.ijcset.net) | September 2016 | Vol 6, Issue 9, 311-316

314

D-Example of J-ASD Program DSL written taking into
account the constraints of data format compliance for
deployment

Software {
Name=niveau_de_test
Version=1
Components=ramSize display
}
Component {Name=RamSize
Version=1

Url=http://x.fr/RAM-Size.jar }
Component {Name=display
Version=1
Url="http://x.fr/Display.jar"}
HostConstraint {Name=Display-Constraint
CPULoad > 80%
RAM >= 40 MB
OSNameContrains "Linux"}
Deployment {
RamSize @ all
display @ 2 with Display-Constraint
}

extension taking into account our contribution to the
constrained

*** definition of the characteristics of the component
niveau_batterie
Component {
Name=niveau_batterie
Version=1
Url="http://x.fr/niveau_batterie.jar"
}
*** definition of CONSTRAINT deployment contraint3
dataConstraint {
Name=contraint3
version = 2
Type = “.exe”
OSNameContains "Windows"
}
*** component deploying niveau_batterie
*** on all sites is considering the contrainte3
Deployment {
niveau_batterie @ all with Constraint3

}

In this j-ASD DSL program, we have a description of
deploying an application called "niveau_de_test" consists
of the following components: ramsize - Display -
niveau_batterie characterized by their name (Name), their
version, the URL of storage. The program also includes a
set of constraints (Display-constrained constraint3), which
are constraints on the size of the RAM memory, the
processor occupancy and operating system.
The deployment constraints (activation) Niveau_batterie
mean that the component must be deployed on all sites that
respect Contrainte3 constraint. This constraint on the data
format of the images of virtual machine files.
Formally this means:
Niveaubatterie ∀ ∈ C, ∀ If ∈S
If ((version = 2) and (type = ".exe") and (osname =
"Windows")) then
Cfm (niveaubatterie, Si) = 1

else Cfm (niveaubatterie, Si) = 0
As for the second constraint, it means that the display
component must be deployed (on) a set of two sites that
satisfy the constraint "Display-Constraint", it is formally
expressed by:
Display ∀ ∈ C, ∃ S1, S2 ∈S such que:
If ((CPULoad> 80%) and (ramsize ≥ 40 MB) and (osname
= "linux")) then
Cfm (display, S1) = Cfm (display, S2) = 1
else
Cfm (display, S1) = Cfm (display, S2) = 0

IV-CONCLUSION
In this article we presented our contribution to the
application deployment problem solving from a Cloud by
providing an extension to the grammar of deployment
constraints description language j-ASD DSL. These
deployment constraints relate to the compatibility of data
formats virtual images of the component files. This set of
constraints is in solution using a constraint solver for
calculating a deployment plan.
Our proposed extension can be used to manage the power
consumption, latency network's management to ensure full
deployment from a cloud-based environment. Also it helps
enable deployment of equipment in a variable topology
environment.
For now we continue our work with the deployment of
OSGi Framework.
However, the use of new deployment unit as SCA
applications (Service Component Architecture) (Open
Service Architecture Collaboration 2007) with Frascati
platform [Seinturier 2009 Seinturier 2012] as deployment
media is a natural extension of j-ASD DSL.

REFERENCES

[1] Xavier Etchevers. Déploiement d'applications patrimoniales en
environnements de type informatique dans le nuage. Other.
Université de Grenoble, 2012. French. <NNT :2012GRENM100>.
<tel-00875568>

[2] Mariam Dibo. UDeploy : une infrastructure de déploiement pour
les applications à base de composants logiciels distribués. Other.
Université de Grenoble, 2011. French. <NNT : 2011GRENM001>.
<tel-00685853>

[3] Mohamed El Amine MATOUGUI, Sébastien LERICHE. j-ASD : un
middleware pour le déploiement logiciel autonomique.
NOTERE/CFIP '12 : Conférence Internationale Nouvelles
Technologies de la Répartition/Colloque Francophone sur
l'Ingénierie des Protocoles, Oct. 2012, Anglet, France. Cepadues.
<hal-00757154>

[3] Clément Quinton, Laurence Duchien. Vers un Outil de
Configuration et de Déploiement pour les Nuages. JLdP - Journee
Lignes de Produits, Nov 2012, Lille, France. pp.83-94. <hal-
00747319>

[4] A. Flissi, J. Dubus, N. Dolet, and P. Merle, “Deploying on the grid
with deployware,” in CCGRID, 2008, pp. 177–184

[5] M. Eysholdt and H. Behrens, “Xtext: implement your language
faster than the quick and dirty way,” in SPLASH/OOPSLA
Companion,ser. Companion to the 25th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, SPLASH/OOPSLA 2010, Reno/Tahoe, Nevada,
USA, W. R. Cook, S. Clarke, and M. C. Rinard, Eds. ACM, October
2010, pp. 307–309, doi:10.1145/1869542.1869625

[6] J. S. Rellermeyer, G. Alonso, and T. Roscoe, “R-osgi : distributed
applications through software modularization,” in Proceedings of
the 8th ACM/IFIP/USENIX international conference on Middleware,
ser. MIDDLEWARE2007. Berlin, Heidelberg: Springer-Verlag,
2007.

KANGA Koffi et al | IJCSET(www.ijcset.net) | September 2016 | Vol 6, Issue 9, 311-316

315

[7] A. Dearle, G. N. C. Kirby, and A. McCarthy, “A framework for
constraint-based deployment and autonomic management of
distributed applications,” CoRR, vol. abs/1006.4572, 2010.

[8] K. Sledziewski, B. Bordbar, and R. Anane, “A DSL-based
approach to software development and deployment on cloud,” in
AINA, ser. 24th IEEE International Conference on Advanced
Information Networking and Applications, AINA 2010, Perth,
Australia, 2013. IEEE Computer Society, April 2010, pp. 414–421,
doi:10.1109/AINA.2010.81

[9] Raja BOUJBEL et al: A DSL for Multi-Scale and Autonomic
Software Deployment ICSEA 2013: The Eighth International
Conference on Software Engineering Advances pp 291-296

[10] C. Team, “Choco: an open source java constraint programming
library,” Ecole des Mines de Nantes, Research report, 2010.
[Online]. Available: http://www.emn.fr/z-info/choco-
solver/pdf/choco-presentation.pdf

[11] P. Saint-Andre, K. Smith, and R. Tronçon, XMPP: The Definitive
Guide: Building Real-Time Applications with Jabber
Technologies. O’Reilly Media, Inc., 2009.

KANGA Koffi et al | IJCSET(www.ijcset.net) | September 2016 | Vol 6, Issue 9, 311-316

316

