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Abstract- Recommendation system is an information filtering 
technique, which provides users with information, which 
he/she may be interested in. It helps in addressing the 
information overload problem by retrieving the information 
desired by the user based on his or similar users’ preferences 
and interests. Service recommender systems proves to be a 
valuable tool for providing appropriate recommendations to 
users. Most of existing service recommender systems present 
the same ratings and rankings of services to different users 
without considering diverse users preferences, and therefore 
fails to meet users personalized requirements. A Keyword-
Aware Service Recommendation method, named KASR has 
been prposed to address the above challenges. It aims at 
presenting a personalized service recommendation list and 
recommending the most appropriate services to the users 
effectively. Specifically, keywords are used to indicate users 
preferences, and a user-based Collaborative Filtering 
algorithm is adopted to generate appropriate 
recommendations. To improve its scalability and efficiency in 
big data environment, KASR is implemented on Hadoop, a 
widely-adopted distributed computing platform using the 
MapReduce parallel processing paradigm.  
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I. INTRODUCTION

The increase in the number of services over the internet 
has inundated service users with many choices. For 
instance, Netflix.com has over 17,000 movies in its 
selection, and Amazon. com has over 410,000 titles in its 
Kindle store alone. In order to reduce the number of 
choices users can decide on, recommendation systems are 
necessary. Recommendation systems are attracting lots of 
attention because they provide users with prior knowledge 
of candidate choices to deal with information overload on 
the Web. 

Similar to most big data applications, the big data 
tendancy also poses heavy impacts on service 
recommender systems. With the growing number of 
alternative services, effectively recommending services that 
users preferred has become an important research issue. 
Service recommender systems have been shown as 
valuable tools to help users deal with services overload and 
provide appropriate recommendations to them. Examples 
of such practical applications include CDs, books, 
webpages and various other products now use 
recommender systems. Over the last decade, there has been 
much research done both in industry and academia on 
developing new approaches for service recommender 
systems. 

Collaborative filtering (CF) is one of the widely used 
service recommendation techniques that bases its 
recommendations on the ratings or behavior of other users 
in the system . Intuitively, it assumes that, if users agree 
about the quality or relevance of some service items, then 
they will likely agree about other service items as well. 
Existing memory-based CF techniques accomplish this by 
computing the similarity between users or service items 
using nonfunctional attribute values obtained at service 
invocation. However using nonfunctional attribute values 
of invoked services alone gives inaccurate similarity 
measure. This is because, the invoked services are typically 
based on different user personalized preferences on those 
nonfunctional attributes.  

Hadoop-MapReduce has become a powerful 
Computation Model addresses to these problems. Hadoop 
HDFS became more popular amongst all the Big Data tools 
as it is open source with exible scalability, less total cost of 
ownership and allows data stores of any form without the 
need to have data types or schemas defined. Hadoop 
MapReduce is a programming model and software 
framework for writing applications that rapidly process vast 
amounts of data in parallel on large clusters of compute 
nodes. Map reduce is a software frame work introduced by 
Google in 2004 to support distributed computing on large 
data sets on clusters of computers. The original MapReduce 
implementation by Google, as well as its open-source 
counterpart, Hadoop, is aimed for parallelizing computing 
in large clusters of commodity machines. MapReduce 
model advantage is the easy scaling of data processing over 
multiple computing nodes. 

II. LITERATURE SURVEY

A "recommender system" is a fully functional software 
system that applies at least one implementation to make 
recommendations. In addition, recommender systems 
feature several other components, such as a user interface, a 
corpus of recommendation candidates, and an operator that 
owns/runs the system. Some recommender systems also use 
two or more recommendation approaches: CiteULike, a 
service for discovering and managing scholarly references, 
lets their users choose between two approaches. 

The First recommender system was developed by 
Goldberg, Nichols, OkiTerry in 1992. Tapestry was an 
electronic messaging system that allowed users to either 
rate messages ("good" or "bad") Recommender system as 
defined by M. Deshpande and G. Karypis: A personalized 
information filltering technology used to either predict 
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whether a particular user will like a particular item 
(prediction problem) or to identify a set of N items that will 
be of interest to a certain User. Recommender systems form 
or work from a specific type of information filtering system 
technique that attempts to recommend information items 
(movies, TV program/show/episode, video on demand, 
music, books, news, images, web pages, scientific literature 
etc.) or social elements (e.g. people, events or groups) that 
are likely to be of interest to the user. Typically, a 
recommender system compares a user profile to some 
reference characteristics, and seeks to predict the ’rating’ or 
’preference’ that a user would give to an item they had not 
yet considered. These characteristics may be from the 
information item (the content-based approach) or the user’s 
social environment (the collaborative filtering). The 
recommender system apply data mining  techniques and 
prediction algorithms to predict users interest on 
information ,product and services user . 

Recommender systems apply techniques and 
methodologies from another neighboring areas such as 
Human computer interaction (HCI) or Information 
Retrieval(IR). However, most of these systems bear in their 
core an algorithm that can be understand as a particular 
instance of a data mining (DM) technique. The process of 
data mining consists of 3 steps carried out in succession: 
Data Preprocessing, Data Analysis and Result 
Interpretation. Examples of recommender system 
areamazon.com,Reel.com,eBay,Levis,Moviefinder.com. 
Recommender systems typically produce a list of 
recommendations in one of two ways  through 
collaborative or content-based filtering. Collaborative 
filtering approaches building a model from a user’s past 
behavior (items previously purchased or selected and/or 
numerical ratings given to those items) as well as similar 
decisions made by other users. This model  is then used to 
predict items (or ratings for items) that the user may have 
an interest in. Content-based filtering approaches utilize a 
series of discrete characteristics of an item in order to 
recommend additional items with similar properties. These 
approaches are often combined. 

Collaborative filtering (CF) is one of the widely 
used service recommendation techniques that bases its 
recommendations on the ratings or behavior of other users 
in the system . Intuitively, it assumes that, if users agree 
about the quality or relevance of some service items, then 
they will likely agree about other service items as well. 
Existing memory-based CF techniques accomplish this by 
computing the similarity between users or service items 
using nonfunctional attribute values obtained at service 
invocation. However using nonfunctional attribute values 
of invoked services alone gives inaccurate similarity 
measure. This is because, the invoked services are typically 
based on different user personalized preferences on those 
nonfunctional attributes. The nonfunctional attribute values 
observed by users during service invocation may not 
necessarily represent their satisfaction for that service. For 
this reason, disregarding the personalized preferences of 
users in similarity computation creates a gap between users 
nonfunctional attribute value and their satisfaction. Users 
personalized preferences ensures that the nonfunctional 

attribute closely aligns with their satisfaction, bridging that 
gap and resulting in similarity values that accurately depicts 
the similar relationship between two users. Intuitively, if a 
nonfunctional attribute value used in similarity computation 
fails to satisfy a user’s personalized preference it in turn 
produces similarity results that are inaccurate. Thus, to 
accurately recommend services, which are personalized to 
users, it is necessary for recommendation systems to 
incorporate users personalized preferences on 
nonfunctional attributes when recommending services to an 
active user. 

One growing area of research in the area of 
recommender systems is mobile recommender systems. 
With the increasing ubiquity of internet-accessing smart 
phones, it is now possible to offer personalized, context-
sensitive recommendations. This is a particularly difficult 
area of research as mobile data is more complex than 
recommender systems often have to deal with (it is 
heterogeneous, noisy, requires spatial and temporal auto-
correlation, and has validation and generality problems). 
Additionally, mobile recommender systems suffer from a 
transplantation problem - recommendations may not apply 
in all regions (for instance, it would be unwise to 
recommend a recipe in an area where all of the ingredients 
may not be available). One example of a mobile 
recommender system is one that offers potentially 
profitable driving routes for taxi drivers in a city. This 
system takes as input data in the form of GPS traces of the 
routes that taxi drivers took while working, which include 
location (latitude and longitude), time stamps, and 
operational status (with or without passengers). It then 
recommends a list of pickup points along a route that will 
lead to optimal occupancy times and profits. This type of 
system is obviously location-dependent, and as it must 
operate on a handheld or embedded device, the 
computation and energy requirements must remain low.  

Mobile recommendation systems have also been 
successfully built using the Web of Data as a source for 
structured information. A good example of such system is 
SMARTMUSEUM The system uses semantic modelling, 
information retrieval and machine learning techniques in 
order to recommend contents matching user’s interest, even 
when the evidence of user’s interests is initially vague and 
based on heterogeneous information.[ 

 
III. METHOD 

A. TF-IDF 
TF-IDF, short for Term Frequency-Inverse Document 

Frequency, is a numerical statistic that is intended to reflect 
how important a word is to a document in a collection or 
corpus. It is often used as a weighting factor in information 
retrieval and text mining. The tf-idf value increases 
proportionally to the number of times a word appears in the 
document, but is offset by the frequency of the word in the 
corpus, which helps to adjust for the fact that some words 
appear more frequently in general. Variations of the tf-idf 
weighting scheme are often used by search engines as a 
central tool in scoring and ranking a document’s relevance 
given a user query. tf-idf can be successfully used for stop-
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words filtering in various subject fields including text 
summarization and classification. 

Term frequency: Suppose we have a set of English text 
documents and wish to determine which document is most 
relevant to the query "the brown cow". A simple way to 
start out is by eliminating documents that do not contain all 
three words "the", "brown", and "cow", but this still leaves 
many documents. To further distinguish them, we might 
count the number of times each term occurs in each 
document and sum them all together; the number of times a 
term occurs in a document is called its term frequency. 
Inverse document frequency: However, because the term 
"the" is so common, this will tend to incorrectly emphasize 
documents which happen to use the word "the" more 
frequently, without giving enough weight to the more 
meaningful terms "brown" and "cow". The term "the" is not 
a good keyword to distinguish relevant and non-relevant 
documents and terms, unlike the less common words 
"brown" and "cow". Hence an inverse document frequency 
factor is incorporated which diminishes the weight of terms 
that occur very frequently in the document set and 
increases the weight of terms that occur rarely. 
 
B. MapReduce 

MapReduce is a programming model and an associated 
implementation for processing and generating large data 
sets. Users specify a map function that processes a 
key/value pair to generate a set of intermediate key/value 
pairs, and a reduce function that merges all intermediate 
values associated with the same intermediate key. 

 
Figure 3.1: Execution Overview 

 
Figure 3.1 shows the overall flow of a MapReduce 

operation in our implementation. When the user program 
calls the MapReduce function, the following sequence of 
actions occurs (the numbered labels in Figure 3.1 
correspond to the numbers in the list below): The 
MapReduce library in the user program first splits the input 
files into M pieces of typically 16 megabytes to 64 
megabytes (MB) per piece (controllable by the user via an 
optional parameter). It then starts up many copies of the 

program on a cluster of machines.  One of the copies of the 
program is special - the master. The rest are workers that 
are assigned work by the master. There are M map tasks 
and R reduce tasks to assign. The master picks idle workers 
and assigns each one a map task or a reduce task. A worker 
who is assigned a map task reads the contents of the 
corresponding input split. It parses key/value pairs out of 
the input data and passes each pair to the user-defined Map 
function. The intermediate key/value pairs produced by the 
Map function are buffered in memory. Periodically, the 
buffered pairs are written to local disk, partitioned into R 
regions by the partitioning function. The locations of these 
buffered pairs on the local disk are passed back to the 
master, who is responsible for forwarding these locations to 
the reduce workers. When a reduce worker is notified by 
the master about these locations, it uses remote procedure 
alls to read the buffered data from the local disks of the 
map workers. When a reduce worker has read all 
intermediate data, it sorts it by the intermediate keys so that 
all occurrences of the same key are grouped together.  

The sorting is needed because typically many 
different keys map to the same reduce task. If the amount 
of intermediate data is too large to t in memory, an external 
sort is used. The reduce worker iterates over the sorted 
intermediate data and for each unique intermediate key 
encountered, it passes the key and the corresponding set of 
intermediate values to the user’s Reduce function. The 
output of the Reduce function is appended to a final output 
file for this reduce partition.  When all map tasks and 
reduce tasks have been completed, the master wakes up the 
user program. At this point, the MapReduce call in the user 
program returns back to the user code. After successful 
completion, the output of the mapreduce execution is 
available in the R output files (one per reduce task, with file 
names as specified by the user). Typically, users do not 
need to combine these R output files into one file - they 
often pass these files as input to another MapReduce call, 
or use them from another distributed application that is able 
to deal with input that is partitioned into multiple files. 

 
IV. RESULT 

Recommender systems made a significant progress over the 
last decade when numerous content based, collaborative 
and hybrid methods were proposed and several “industrial-
strength” systems have been developed. However, despite 
all these advances, the current generation of recommender 
systems surveyed in this paper still requires further 
improvements to make recommendation methods more 
effective in a broader range of applications. In this paper, 
we reviewed various limitations of the current 
recommendation methods and discussed possible 
extensions that can provide better recommendation 
capabilities. This paper presented the various techniques 
and algorithm to build the recommender system. 
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