
Segmented File Transfer
Lalit Adithya#1, Sampada K S#2

#Department of Computer Science and Engineering, RN Shetty Institute of Technology
RN Shetty Institute of Technology,

Karnataka, Bangalore 098

Abstract— Of the many methods that can be used to download
or upload a text or binary file to the internet, the method of
Segmented File Transfer is one that is the lest applied even
though the advantages of implementing the concept has a lot
of advantages. This paper presents the advantages of using the
concept of segmented file transfer while showing the necessary
implementation details that are required to implement this
concept for a download manager.

Keywords— Segmented File Download, Byte Serving,
Segmented File Upload

I. INTRODUCTION

There is an increase in the number of active internet
users by around 50% and there is an increase in the number
of active desktop and laptop users by 64%. Even with this
massive rise in the number of internet users, the average
speed of these connections is 5.6 Mbps characterized with
poor Quality of Service, that is, frequent disconnections
resulting in data being lost or left corrupted.

Segmented file-transfer (also known as multisource file-
transfer or swarming file-transfer) is defined as the
coordinated transmission of a computer file sourced from
multiple servers to a single destination. It can be applied as
well when downloading the same file from the same server
in various parts. A computer program downloads (retrieves)
different portions of the file from various sources
simultaneously, and assembles the file on the destination
computer data storage device.

II. RELATED WORK

The File Transfer Protocol (FTP) is a standard network
protocol used to transfer computer files between a client
and server on a computer network. This protocol is built on
a client server model and it uses a separate control and data
connections between the client and the server [1]. Most web
browsers today can retrieve files that are hosted on an FTP
server.

When FTP was designed, it was not designed to be a
secure protocol, and hence it has many security weaknesses
[2]. In 1999, the authors of RFC 2577 stated that FTP was
vulnerable to the following kinds of attacks:

 Brute force attack
 FTP bounce attack
 Packet capture
 Port stealing
 Spoofing attack
 Username enumeration

It is also known that FTP does not encrypt the traffic and
all transmission are in clear text and therefore a file
containing sensitive information such as passwords can be

read by anyone who is performing sniffing on the network
[3].
A. Hyper Text Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is an
application protocol for distributed, collaborative,
hypermedia information systems [4]. Hypertext is
structured text that uses logical links (hyperlinks) between
nodes containing text. HTTP is the protocol to exchange or
transfer hypertext.

HTTP defines verbs that are used to indicate the desired
action to be performed on a resource. The resource is
usually a file that is residing on the web server. The may
also correspond to the output of an executable file that is
present on the web server. The HTTP/1.0 specification [5]
defined the GET, POST and HEAD methods. The
OPTIONS, PUT, DELETE, TRACE and CONNECT were
added later in the HTTP/1.1 specification.

HTTP fixed most of the vulnerabilities that were present
in FTP but, it still leaves room for some optimization. Some
of the major drawbacks of HTTP when downloading a file
over the internet include:

 Prolonged HTTP downloads results in wastage of
megabytes in the form of lost or redundant bytes.

 The maximum download speed that a user can
achieve can be easily limited / shaped by the web
servers

B. BitTorrent
The major protocol that uses concepts of segmented file

transfer is BitTorrent. BitTorrent is a communications
protocol of peer-to-peer file sharing ("P2P") which is used
to distribute data and electronic files over the Internet. The
protocol was designed by Programmer Bram Cohen, a
former University at Buffalo student in April 2001 and he
released the first available version on 2 July 2001, the most
recent release being in 2013. As of 2013, BitTorrent is has
15 - 27 million concurrent users at any given point in time
[6] and it was also responsible for 3.25\% of all worldwide
bandwidth, which is more than half of the total 6\% of the
bandwidth dedicated to file sharing [7].

Even though, BitTorrent has a large user base some of
the major disadvantages include:

 Files can be downloaded using BitTorrent only if
sufficient seeders are available to "seed" the file

 Even though BitTorrent is a collaborative
distributed platform for content sharing, many
users do not "seed" the files that they have
downloaded, thereby making it difficult for other
users to download the file.

 A study [8] claims that 18% of all executable
programs available for download contained
malware.

Lalit Adithya et al | IJCSET(www.ijcset.net) | December 2016 | Vol 6, Issue 12, 401-405

401

 Another study [9] claims that as much as 14.5% of
BitTorrent downloads contain zero-day malware,
and that the protocol was used for distribution of
47% of all zero-day malware that has been found.

It is now safe to conclude that the existing technology is
either extremely vulnerable to attacks or it wastes a lot data
and thus resulting in wasted data in the user side or it
doesn't allow a user to use his/her internet connection to its
full potential.

III. BYTE SERVING

Byte serving is the process of sending only a portion of
an HTTP/1.1 message from a server to a client.
A. Working Principle

Byte serving begins when an HTTP server advertises its
willingness to serve partial requests using the Accept-
Ranges response header. A client then requests a specific
part of a file from the server using the Range request header.
If the range is valid, the server sends it to the client with a
206 Partial Content status code and a Content-Range header
listing the range sent. If the range is invalid, the server
responds with a 416 Requested Range Not Satisfiable status
code.
B. Applications

In the HTTP/1.0 standard, clients were only able to
request an entire document. By allowing byte-serving,
clients may choose to request any portion of the resource.
Thus, byte serving can be considered as a method of
bandwidth optimization.

Fig. 1 Byte serving aids segmented file transfer

Byte serving is essential when a server is serving video
files, if the server lacks this feature, then the video file may
not be playable until the complete video file has been
downloaded by the client, and seeking may be disabled.
This technology can also be used to request for specific
pages from a document in PDF from a server that is serving
documents properly formatted in accordance with PDF.

Byte serving can also be used by multihomed clients to
simultaneously download a resource over multiple network
interfaces. To achieve this, multiple HTTP sessions are
established and different segments of the same file is
downloaded via the available network interfaces and the
segments are then reassembled at the client. (refer figure 1)

IV. IMPLEMENTATION

Fig. 2 UML sequence diagram for successful transmission with two

segments

In order to implement segmented file transfer, the
following steps must be carried out.

A. Number of Segments

Segment here indicates a portion of a file. Number of
segments here indicates, the number of parts into which the
file must divided into.

There are two ways of doing this, namely:
 All the files are split into the same number of

segments
 The number of segments are decided dynamically,

that is, the number of segments are decided based
on speed of the connection, size of file etc.

Once the number of segments have been chosen, as
many threads as the number of segments must be created.
Each thread will download the segment of the file that has
been allocated to it.

B. Data Structure

The data structure that is mainly required is a buffer. One
buffer is required for every segment of the file that is being
downloaded simultaneously.

A buffer is required to store the data that has been
received from the sever. Once the buffer is full, the contents
of the buffer are written to a temporary file that is stored on
the disk. Once the download is complete, the contents of all
the temporary files are merged.

Lalit Adithya et al | IJCSET(www.ijcset.net) | December 2016 | Vol 6, Issue 12, 401-405

402

Some of the types of software buffers that can be used
include:

1) Linear Buffer: A liner buffer is defined as a region
of physical memory that is used to store data
temporarily. In this, the buffer is used to the data
that is received from the server. The buffer is
implemented using first in first out (FIFO) strategy.
One of the major disadvantage of this type of
buffer is that the contents of the buffer cannot be
cleared, until the pointer to the front of the buffer
passes the pointer pointing to the rear of the buffer.

2) Concurrent Circular Buffer: A circular buffer,
circular queue, cyclic buffer or ring buffer is a data
structure that uses a single, fixed-size buffer as if it
were connected end-to-end. This structure lends
itself easily to buffering data streams. This buffer
has a first in first out data characteristic. Ring
buffers are quite common and are found in many
embedded systems. A circular buffer has two
indices to the elements within the buffer. The
distance between the indices can range from zero
(0) to the total number of elements within the
buffer. The use of the dual indices means the
queue length can shrink to zero, to the total
number of elements. One of the major advantages
of this type of a buffer is that all operations on the
buffer is of constant time, i.e., no looping
constructs are required to access or consume the
elements in the buffer. The other benefit of a
circular buffer is, that you don't need infinite
amounts of memory, since older entries get
overridden automatically. A concurrent ring buffer
is a variation on the basic ring buffer. In this buffer,
the two different indices that are user are updated
by different threads. This means that one thread
will continuously write into the buffer by taking
control of the input stream and the front index. The
other thread will take control of the output stream
and the read buffer. This ensures maximum
efficiency in buffering the data. The processor will
be continuously writing as well as reading and
there will be no need for the processor to wait for
either of the operations to finish.

Once the concurrent data structure for each thread's
buffer has been decided upon, the synchronization
mechanism must be decided.

C. Synchronization Mechanism

When segmented file transfer is implemented, each
segment of the file is downloaded on a separate thread and
moreover, each thread will have a concurrent buffer, that is
two threads will be continuously updating the buffer. One
thread will be filling the buffer (adding the data that has
been received from the server to the buffer) and the other
will be emptying the buffer (this is, writing the contents of
the buffer on to the disk).

In the first case, (each thread downloading a separate
segment of the file) no explicit synchronization mechanism
is required as each thread will establish a separate
connection to the server (the connection that one thread

establishes, will be independent of the other threads) and
each thread will empty its buffer on to a separate file (the
file that one thread writes into will be different from the
other thread).

Synchronization will be mainly required at the data
structure level, as two threads needs access to a common
data structure, that is, the software buffer. The major
reasons why synchronization is required are:

 To ensure that the rear index does not go ahead of
the front index

 To ensure that the same data is not read from the
buffer more than once

 To ensure that data is not overwritten before it is
read exactly once

This problem is exactly the same as the bounded buffer
problem describes two processes, the producer and the
consumer, who share a common, fixed-size buffer used as a
queue. The producer's job is to generate data, put it into the
buffer, and start again. At the same time, the consumer is
consuming the data (i.e., removing it from the buffer), one
piece at a time. The problem is to make sure that the
producer won't try to add data into the buffer if it's full and
that the consumer won't try to remove data from an empty
buffer.

This problem can be solved using semaphores as
illustrated by the pseudo code below:

mutex buffer_mutex;
semaphore fillCount = 0;
semaphore emptyCount = BUFFER_SIZE;

procedure producer ()
{
 while (true)
 {
 item = produceItem ();
 wait(emptyCount);
 wait(buffer_mutex);
 putItemIntoBuffer(item);
 signal(buffer_mutex);
 signal(fillCount);
 }
}

procedure consumer ()
{
 while (true)
 {
 wait(fillCount);
 wait(buffer_mutex);
 item = removeItemFromBuffer ();
 signal(buffer_mutex);
 signal(emptyCount);
 consumeItem(item);
 }
}
Notice that the order in which different semaphores are

incremented or decremented is essential: changing the order
might result in a deadlock. It is important to note here that
though mutex seems to work as a semaphore with value of
1 (binary semaphore), but there is difference in the fact that

Lalit Adithya et al | IJCSET(www.ijcset.net) | December 2016 | Vol 6, Issue 12, 401-405

403

mutex has ownership concept. Ownership means that mutex
can only be "incremented" back (set to 1) by the same
process that "decremented" it (set to 0), and all others tasks
wait until mutex is available for decrement (effectively
meaning that resource is available), which ensures mutual
exclusivity and avoids deadlock. Thus, using mutexes
inadequately can stall many processes when exclusive
access is not required, but mutex is used instead of
semaphore.

This problem can also be solved using monitors as
illustrated by the pseudo code below:

monitor ProducerConsumer
{
 int itemCount;
 condition full;
 condition empty;

 procedure add(item)
 {
 while (itemCount == BUFFER_SIZE)
 {
 wait(full);
 }
 putItemIntoBuffer(item);
 itemCount = itemCount + 1;
 if (itemCount == 1)
 {
 notify(empty);
 }
 }

 procedure remove ()
 {
 while (itemCount == 0)
 {
 wait(empty);
 }
 item = removeItemFromBuffer ();
 itemCount = itemCount - 1;
 if (itemCount == BUFFER_SIZE - 1)
 {
 notify(full);
 }
 return item;
 }
}

procedure producer ()
{
 while (true)
 {
 item = produceItem ();
 ProducerConsumer.add(item);
 }
}

procedure consumer ()
{
 while (true)

 {
 item = ProducerConsumer.remove();
 consumeItem(item);
 }
}
Since mutual exclusion is implicit with monitors, no

extra effort is necessary to protect the critical section. It is
also noteworthy that using monitors makes race conditions
much less likely than when using semaphores. Note the use
of while statements in the above code, both when testing if
the buffer is full or empty. With multiple consumers, there
is a race condition where one consumer gets notified that an
item has been put into the buffer but another consumer is
already waiting on the monitor so removes it from the
buffer instead. If the while was instead an if, too many
items might be put into the buffer or a remove might be
attempted on an empty buffer.

Once the threads have been properly synchronized, the
next step is to decide on method to verify data integrity.

Fig. 3 Threads

D. Verify Data Integrity

Once the various temporary files that were created in the
process of downloading have been merged, the next major
aspect is to verify data integrity by using the checksum or
hash that the server provided.

Usually MD5, SHA-1 or CRC-64-ECMA hashes are
preferred due to the ease of implementation and fast
computation on most systems that do not have much
computation power. But MD5 and SHA-1 are considered to
be cryptographically weak with respect to protecting data
integrity and hence layered hashes and checksums like
WHIRLPOOL, SHA-256, SHA-512 and CRC-64-ECMA
must be preferred.

Lalit Adithya et al | IJCSET(www.ijcset.net) | December 2016 | Vol 6, Issue 12, 401-405

404

V. ADVANTAGES

Some of the advantages of Segmented File Transfer
include the following:

 It saves some transmission capacity, as the number
of lost or redundant megabytes is minimal
compared to losing a prolonged HTTP or FTP
download.

 Large files can be made available efficiently to
many other users by someone who does not have
large upload bandwidth. (Segmented Upload)

 Routes to the more obscure parts of the Internet
can assert themselves across most of the Internet
— this is especially true for dial-up users.
(Segmented file transfer over a peer to peer
network)

VI. LIMITATIONS

One of the major limitations of segmented file transfer
is data integrity. Most naive implementations of segmented
file transfer result in varying levels of file corruption.
A. Overcoming the limitations

Most software that implement segmented file transfer
use a checksum or a hashing function to verify the data
integrity. Layered hashes like SHA-256, SHA-512, CRC-
64-ECMA (for individual segments) are used to guarantee
data integrity.

VII. RESULTS

A software that implemented was made. The software
always used 4 segments to download files and the buffer
that was chosen was a concurrent circular buffer. Monitors
were used to ensure proper synchronization.

Files of various sizes ranging from 250 MB to 1 GB
were chosen and were downloaded multiple times and the
average time taken to download the file was calculated
accurate to the nearest second. The internet connection had
a constant bandwidth of 50 Mbps. The test PC was
connected via Ethernet and no other software that access the
internet was running and the files were downloaded. The
results obtained are as follows.

TABLE I

DOWNLOAD TIME USING SERVER I
File Size (GB) Without

Segmented File
Transfer (s)

With Segmented
File Transfer (s)

0.25 47 42
0.50 95 85
0.75 143 100
1.00 190 150

TABLE II

DOWNLOAD TIME USING SERVER II
File Size (GB) Without

Segmented File
Transfer (s)

With Segmented
File Transfer (s)

0.25 70 45
0.50 122 89
0.75 195 109
1.00 223 157

From the two tables and the two graphs, we can infer that
the time taken to download the files from server 1 with and
without segmented file transfer are more or less the same
mostly because the server was idle and hence it did not
matter if the file was downloaded at one stretch or using
multiple segments.

But, there is a lot of variation in the download time for
server 2, this is because the sever was likely loaded and
sever would have opted to cap the maximum bandwidth
that was allocated to a particular session and hence using
multiple sessions decreased the download time by a huge
extent.

Server 2 is considered to be a more realistic scenario.
Hence, we can conclude that by using the concept of
Segmented File Transfer, the download time can be reduced
by a huge extent.

VIII. CONCLUSION

This paper presented a method of implemented an
application that uses the concept of segment file transfer to
overcome most of the disadvantages of the currently used
technology.

This concept can also be extended such that if multiple
users are connected to the same network and if one or more
of them require the file, then each host can download a
portion of the file that has been allocated to it and once the
download has been completed, all the partial files can be
sent to a common host for merging. Once the file has been
merged, it can be sent to all the other nodes in the network
that need have requested for the file.

The major advantage of using the concept of segmented
file transfer (both upload and download) files over the
internet is that the user will be able to utilize his or her
internet connection to the maximum as the amount of data
that is wasted will be reduced as well as the amount of time
needed to transfer the file will also reduce without
compromising on the security of the data.

REFERENCES
[1] Forouzan, B.A. TCP/IP: Protocol Suite (1st ed.), New Delhi, India:

Tata McGraw-Hill Publishing Company Limited, 2000.
[2] nurdletech. Securing FTP using SSH.
[3] Kozierok, Charles M. The TCP/IP Guide v3.0, 2005.
[4] Fielding, Roy T.; Gettys, James; Mogul, Jeffrey C.; Nielsen, Henrik

Frystyk; Masinter, Larry; Leach, Paul J.; Berners-Lee, Tim.
Hypertext Transfer Protocol -- HTTP/1.1. IETF. RFC 2616, June
1999.

[5] Berners-Lee, Tim; Fielding, Roy T.; Nielsen, Henrik Frystyk.
"Method Definitions". Hypertext Transfer Protocol -- HTTP/1.0.

[6] Wang, Liang and Kangasharju, J. Measuring large-scale distributed
systems: Case of Bit Torrent Mainline DHT, 7 January 2016.

[7] Palo Alto Networks. Application Usage & Threat Report, 7 April
2013.

[8] Berns, Andrew D.; Jung, Eunjin (EJ). Searching for Malware in Bit
Torrent, 24 April 2008.

[9] Vegge, Havard; Halvorsen, Finn Michael; Nergård, Rune Walsø.
Where Only Fools Dare to Tread: An Empirical Study on the
Prevalence of Zero-Day Malware, 2009.

Lalit Adithya et al | IJCSET(www.ijcset.net) | December 2016 | Vol 6, Issue 12, 401-405

405

