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Abstract – A simple and novel hyper linked data structure, H-
struct, and a new frequent pattern mining algorithm, H-mine, 
which takes advantage of H-struct data structure and 
dynamically adjusts links in the mining process. H-mine has high 
performance, is scalable in all kinds of data, with very limited and 
predictable space overhead, and outperforms the previously 
developed algorithms with various settings. First, a major 
distinction of H-mine from the previously proposed methods is 
that H-mine re-adjusts the links when mining different 
“projected” databases and has very small space overhead, even 
counting temporary working space; whereas candidate generation 
and test has to generate and test a large number of candidate 
itemsets, and FP growth has to generate a good number of 
conditional (projected) databases and FP trees. The structure and 
space preserving philosophy of H-mine promotes the sharing of 
the existing structures in mining, reduces the cost of copying a 
large amount of data and building new data structures on such 
data, and reduces the cost of updating and checking such data 
structures as well. 

Keywords:  Hyper Structure mining, Frequent Pattern Mining, 
FP Tree, H-MINE. 

1. INTRODUCTION

H-mine(Mem) (memory based hyper structure mining
of frequent patterns) is the method which is extended to 
handle large and/or dense databases. 
General idea of H-mine(Mem) 

Our general idea of H-mine(Mem) is illustrated in the 
following example. Let the first two columns of Table-1 be 
our running transaction database TDB. Let the minimum 
support threshold be min-sup = 2. 

Transaction ID Items 
Frequent Item 

projection 
100 c,d,e,f,g,i c,d,e,g 
200 a,c,d,e,m a,c,d,e 
300 a,b,d,e,g,k a,d,e,g, 
400 a,c,d,h a,c,d 

Table-1: The transaction database TDB. 

Figure-1: Divide and conquer tree for frequent patterns. 

Following the Apriori property, only frequent items 
play roles in frequent patterns. By scanning TDB once, the 
complete set of frequent items {a : 3; c : 3; d : 4;      e : 3; g 
: 2} can be found and output, where the notation a : 3 
means item a’s support (occurrence frequency) is 3. Let 
freq(X) (the frequent-item projection of X) be the set of 
frequent items in item set X. For the ease of explanation, 
the frequent item projections of all the transactions of 
Table-1 are shown in the third column of the table. 
Following the alphabetical order of frequent items1 (called 
F-list): a-c-d-e-g, the complete set of frequent patterns can
be partitioned into 5 subsets as follows: (1) those
containing item a; (2) those containing item c but no item a;
(3) those containing item d but no item a  nor c; (4) those
containing item e but no item a nor c nor d; and (5) those
containing only item g, as shown in Figure-1.

Figure-2: H-struct, the hyper structure for storing frequent 
item projections. 

If the frequent item projections of transactions in the 
database can be held in main memory, they can be 
organized as shown in Figure-2. All items in frequent item 
projections are sorted according to the F-list. For example, 
the frequent item projection of transaction 100 is listed as 
cdeg. Every occurrence of a frequent item is stored in an 
entry with two fields: an item-id and a hyper-link. A header 
table H is created, where each frequent item entry has three 
fields: an item-id, a support count, and a hyper-link. When 
the frequent-item projections are loaded into memory, those 
with the same first item (in the order of F-list) are linked 
together by the hyper-links as a queue, and the entries in 
header table H act as the heads of the queues. For example, 
the entry of item a in the header table H is the head of a-
queue, which links frequent-item projections of 
transactions 200, 300, and 400. These three projections all 
have item a as their first frequent item (in the order of F-
list). Similarly, frequent item projection of transaction 100 
is linked as c-queue, headed by item c in H. The d, e and g-
queues are empty since there is no frequent item projection 
that begins with any of these items. Clearly, it takes one 
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scan (the second scan) of the transaction database TDB to 
build such a memory structure (called H-struct). Then the 
remaining of the mining can be performed on the H-struct 
only, without referencing any information in the original 
database. After that, the five subsets of frequent patterns 
can be mined one by one as follows.  

 
Figure-3: Header table Ha and ac-queue. 

 
First, let us consider how to find the set of frequent 

patterns in the first subset, i.e., all the frequent patterns 
containing item a. This requires to search all the frequent-
item projections containing item a, i.e., the a-projected 
database denoted as TDB|a. Interestingly, the frequent item 
projections in the a-projected database are already linked in 
the a-queue, which can be traversed efficiently. To mine 
the a-projected database,       a-header table Ha is created, as 
shown in Figure-3. In Ha, every frequent item except for a 
itself has an entry with the same three fields as H, i.e., item-
id, support count and hyper-link. The support count in Ha 
records the support of the corresponding item in the a-
projected database. For example, item c appears twice in a-
projected database (i.e., frequent item projections in the a-
queue), thus the support count in the entry c of Ha is 2. 

By traversing the a-queue once, the set of locally 
frequent items, i.e., the items appearing at least twice, in 
the a-projected database is found, which is {c : 2, d : 3, e : 
2} (Note: g : 1 is not locally frequent and thus will not be 
considered further.) This scan outputs frequent patterns {ac 
: 2, ad : 3, ae : 2} and builds up links for Ha header as 
shown in Figure 4.3. Thus the set of frequent patterns 
containing item a can be further partitioned into four 
subsets: (1) the pattern a itself; (2) those containing a and c; 
(3) those containing a and d but no c; and (4) those 
containing a and e but no c nor d, i.e., pattern ae. The 
divide and conquer tree for frequent patterns is shown in 
Figure-1. These four subsets are mined as follows. 

 
Figure-4: Header table Hac. 

1. The first subset contains only frequent pattern a. 
2. The a-queue is traversed recursively to find frequent 
patterns containing a and c. First, the frequent item 
projections whose first local frequent item is a are linked 
together by the hyper-links as a queue, and the entries in 
the header table Ha act as the heads of the queues. Here, 
frequent item projections of transactions 200 and 400 are 
added to the ac-queue in any order. Transaction 300 is 
added to the ad-queue. At this moment, the ae-queue is 
empty. This situation is shown in Figure-3. The process 
continues recursively for the ac-projected database by 
examining the c-queue in Ha. This process creates the ac-
header table Hac, as shown in Figure-4.  Since only item d : 
2 is a locally frequent item in the ac-projected database, 
only acd : 2 is output, and the search along this path is 
completed. 
 

 
Figure-5: Header table Ha and ad-queue. 

 
3. The recursion backtracks to find frequent patterns 
containing a and d but not c. Since the queue started from d 
in the header table Ha, i.e., the ad-queue, links all frequent 
item projections containing items a and d (but excluding 
item c in the projection), one can get the complete ad-
projected database by inserting frequent item projections 
having item d in the ac-queue into the ad-queue. This 
involves one more traversal of the ac-queue. Each frequent 
item projection in the ac-queue is appended to the queue of 
the next frequent item in the projection according to F-list. 
Since all the frequent item projections in the ac-queue have 
item d, they are all inserted into the ad-queue, as shown in 
Figure-5. It can be seen that, after the adjustment, the ad-
queue collects the complete set of frequent item projections 
containing items a and d. Thus, the set of frequent patterns 
containing items a and d can be mined recursively. Please 
note that, even though item c appears in frequent-item 
projections of ad-projected database, we do not consider it 
as a locally frequent item in any recursive projected 
database since it has been considered in the mining of the 
ac-queue. This mining generates only one pattern ade : 2. 
Notice also the third level header table Had can use the 
table Hac since the search for Hac was done in the previous 
round. Thus we only need one header table at the third 
level. Later we can see that only one header table is needed 
for each level in the whole mining process. 
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4. Since there is no transaction in the ae-projected database, 
the only frequent pattern in this projected database is ae 
itself. The search terminates. 
 

 
Figure-6: Adjusted hyper-links after mining a-projected 

database. 
 

After the frequent patterns containing item a are found, 
the transactions in the a-projected database, i.e., a-queue, 
should be further projected to other projected databases. 
Since the c-queue includes all frequent-item projections 
containing item c except for those projections containing 
both items a and c, which are in the a-queue. To mine all 
the frequent patterns containing item c but no a, and other 
subsets of frequent patterns, we need to insert all the 
projections in the a-queue into the proper queues. We 
traverse the a-queue once more. Each frequent item 
projection in the queue is appended to the queue of the next 
item in the projection following a in the F-list, as shown in 
Figure-6. For example, frequent item projection acde is 
inserted into c-queue and adeg is inserted into d-queue. By 
mining the c-projected database recursively (with shared 
header table at each level), we can find the set of frequent 
patterns containing item c but no a. Notice item a will not 
be included in the c-projected database since all the 
frequent patterns having a have already  been found. 
Similarly, the mining goes on.  

 
2. H-MINE ALGORITHM 

Given a transaction database TDB and a support 
threshold min sup, let L be the set of frequent items. F-list, 
a list of frequent items, is a global order over L. Let x and y 
(x   y) be two frequent items. We denote x    y if and 
only if x is before y according to the F-list. For example, 
based on the F-list in Example, we have a   c   d   e 
  g. Frequent item projections of transactions in TDB are 
organized in an H-struct defined below. 
1. An H-struct contains the set of frequent item projections 
of a transaction database. Each item in a frequent-item 
projection is represented by an entry with two fields: item-
id and hyper-link. 
2. An H-struct has a header table. The header table is an 
array of frequent items in the order of F-list. A support 
count and a hyper-link are attached to each item in the 
header table. 

3. When the H-struct is created, items in the header table 
are the heads of queues of frequent-item projections linked 
by hyper-links.  

 
Algorithm - (H-mine(Mem)) (Main) memory based 

hyper structure mining of Frequent Patterns. 
Input: A transaction database TDB and a support threshold 
min-sup. 
Output: The complete set of frequent patterns. 
Method: 
Step-1: scan TDB once, find and output L, the set of 

frequent items.                                       
             Let F-list: “x1, . . . ,xn” (n = |L|) be a list of frequent 

items. 
Step-2: scan TDB again, construct H-struct, with header 

table H, and with each xi-queue  
             linked to the corresponding entry in H. 
Step-3: for i = 1 to n do 
             (a) call H-mine(xi, H, F-list) 
             (b) traverse the xi-queue in the header table H, for 

each frequent-item Projection X, link X to the xj-
queue in the header table H, where xj is the item in 
X following xi immediately. 

 
Algorithm H-mine(P, H, F-list) 

Step-1: traverse P-queue once, find and output its locally 
frequent items and derive F-listP : “xj1 ,…, xjn

1 ”. 
Step-2: construct header table HP, scan the P-projected 

database, and for each frequent               item 
projection X in the projected database, use the 

hyper-link of xji 
1(1 i n )  in X to link X to the 

Pxji-queue in the header table HP, where xji is the 
first  locally frequent item in X according to the F-
listP . 

Step-3: for i = 1 to n1 do 

             (a) call ji P PH min e(P  {x }, H , F-list ).    

             (b) traverse Pxji-queue in the header table HP, for 
each frequent-item projection X, link X to the xjk-

queue 1(i k n )   in the header table HP , where 

xjk is the  item in X following xji immediately 
according to F-list. 

 
3. H-MINE: MINING FREQUENT PATTERNS IN LARGE 

DATABASES 
H-mine(Mem) is efficient when the frequent item 

projections of a transaction database plus a set of header 
tables can fit in main memory. However, we cannot expect 
this is always the case. When they cannot fit in memory, a 
database partitioning technique can be developed as 
follows. 
 

Let TDB be the transaction database with n 
transactions and min-sup be the support threshold. By 
scanning TDB once, one can find L, the set of frequent 
items. Then, TDB can be partitioned into k parts, TDB1, . . . 
, TDBk, such that, for each TDBi (1 i k)  , the frequent 

item projections of transactions in TDBi can be held in 
main memory, where TDBi has ni transactions, and 
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k

i
i 1

n n.


 We can apply H-mine(Mem) to TDBi to find 

frequent patterns in TDBi with the minimum support 

threshold i
i

n
min sup [min sup  x ]

n
    (i.e., each 

partitioned database keeps the same relative minimum 

support as the global database). Let iF (1 i k)  be the set 

of (locally) frequent patterns in TDBi. Based on the 
property of partition based mining, P cannot be a (globally) 
frequent pattern in TDB with respect to the support 
threshold min sup if there exists no i (1 i k)  such that 

P is in Fi. Therefore, after mining frequent patterns in 
TDBi’s, we can gather the patterns in Fi’s and collect their 
(global) support in TDB by scanning the transaction 
database TDB one more time. Based on the above 
observation, we can extend H-mine(Mem) to H-mine as 
follows. 
 

Algorithm (H-mine): Hyper-structure mining of 
frequent patterns in large Databases. 

Input: A transaction database TDB and a support threshold 
min-sup. 
Output: The complete set of frequent patterns. 
Method: 
Step-1: Scan transaction database TDB once to find L, the 
complete set of frequent items. 
Step-2: Partition TDB into k parts, TDB1, . . . , TDBk, such 
that, for each TDBi (1 i k)  ,  the frequent-item 

projections in TDBi can be held in main memory. 
Step-3: For i = 1 to k, use H-mine(Mem) to mine frequent 
patterns in TDBi with respectto the minimum support 
threshold 

 i
i

n
min sup  = [min-sup x ]

n
 , where n and ni  

are the numbers of transactions in TDB and TDBi, 
respectively. Let Fi be the set of frequent patterns in TDBi. 

Step-4: Let 
k

i
i 1

F F.


  Scan TDB one more time, collect 

support for patterns in F. 
Output those patterns which pass the minimum support 

threshold min-sup. The only space cost of H-mine(Mem) 
incurred by the header tables. The maximal number of 
header tables as well as their space requirement is 
predictable (usually very small in comparison with the size 
of frequent-item projections). Therefore, after reserving 
space for header tables, the remaining main memory can be 
used to build an H-struct that covers as many transactions 
as possible. In practice, it is good to first estimate the size 
of available main memory for mining and the size of the 
overall frequent item projected database (in the scale of the 
sum of support counts of frequent items), and then partition 
the database relatively even to avoid the generation of 
skewed partitions.  

A large transaction database TDB is partitioned into 
four parts, P1, P2, P3 and P4. Let the support threshold be 
100. The four parts are mined respectively using H-

mine(Mem). The locally frequent patterns as well as the 
partition-ids where they are frequent are shown in Table-2. 
The accumulated support count for a pattern is the sum of 
support counts from partitions where the pattern is locally 
frequent. 
 

Local frequent 
pattern 

Partitions 
Accumulated support 

count 
ab P1, P2, P3, P4 280 
ac P1, P2, P3, P4 320 
ad P1, P2, P3, P4 260 
abc P1, P3, P4 120 

abcd P1, P4 40 
Table-2: Local frequent patterns in partitions. 

 
1.  Pattern ab is frequent in all the partitions. Therefore, it 

is globally frequent. Its global support count is its 
accumulated support count, i.e., 280. So do patterns ac 
and ad.  

2.  Pattern abc is frequent in all partitions except in P2. 
The accumulated support count of abc covers the 
occurrences of the pattern in partitions P1, P3 and P4. 
Thus, the pattern should be checked only in P2. The 
global support count of abc is its accumulated count 
plus its support count in P2. Similarly, pattern abcd 
need to be checked in only partitions P2 and P3. 

3.  In the third scan of H-mine, after scanning partition P2, 
suppose the support count of pattern abcd in partition 
P2 is 20. Since abcd is not frequent in partition P3, its 
support count in P3 must be less than the local support 
threshold. If the local support threshold is 30, we do 
not need to check pattern abcd in partition P3, since 
abcd has no hope to be globally frequent. 
As can be seen from the example, we have the 

following optimization methods on consolidating globally 
frequent patterns. 
1.  Accumulate the global support count from local ones 

for the patterns frequent in every partition. 
2.  Only check the patterns against those partitions where 

they are infrequent. 
3.  Use local support thresholds to derive the upper 

bounds for the global support counts of locally 
frequent patterns. Only check those patterns whose 
upper bound pass the global support threshold. 
With the above optimization, the number of patterns to 

be consolidated can be reduced dramatically. As shown in 
our experiments, when the data set is relatively evenly 
distributed, only up to 20% of locally frequent patterns 
have to be checked in the third scan of H-mine. In general, 
the following factors contribute to the scalability and 
efficiency of H-mine.   
 H-mine(Mem) has small space overhead and is 

efficient in mining partitions which can be held in 
main memory. With the current memory technology, it 
is likely that many medium sized databases can be 
mined efficiently by this memory based frequent 
pattern mining mechanism. 

 No matter how large the database is, it can be mined 
by at most three scans of the database: the first scan 
finds globally frequent items; the second mines 
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partitioned database using H-mine(Mem); and the third 
verifies globally frequent patterns. Since every 
partition is mined efficiently using H-mine(Mem), the 
mining of the whole database is highly scalable. 

 One may wonder that, since the partitioned Apriori 
takes two scans of TDB, whereas H-mine takes three 
scans. Notice that the major cost in this process is the 
mining of each partitioned database. The last scan of 
TDB for collecting supports and generating globally 
frequent patterns is fast because the set of locally 
frequent patterns can be inserted into one compact 
structure, such as a hashing tree. Since H-mine 
generates less partitions and mines each partition very 
fast, it has better overall performance than the Apriori 
based partition mining algorithm.   
 

4. HANDLING DENSE DATA SETS: DYNAMIC 

INTEGRATION OF H-STRUCT AND FP TREE BASED 

MINING 
As indicated in several studies, finding frequent 

patterns in dense databases is a challenging task since it 
may generate dense and long patterns which may lead to 
the generation of very large (and even exponential) number 
of candidate sets if an Apriori-like algorithm is used. The 
FP growth method proposed in our recent study works well 
in dense databases with a large number of long patterns due 
to the effective compression of shared prefix paths in 
mining. In comparison with FP growth, H-mine does not 
generate physical projected databases and conditional FP 
trees and thus saves space as well as time in many cases. 
However, FP tree based mining has its advantages over 
mining on H-struct since FP tree shares common prefix 
paths among different transactions, which may lead to 
space and time savings as well. As one may expect, the 
situation under which one method outperforms the other 
depends on the characteristics of the data sets: if data 
sharing is rare such as in sparse databases, the compression 
factor could be small and FP tree may not outperform 
mining on H-struct. On the other hand, there are many 
dense data sets in practice. Even though the data sets might 
not be dense originally, as mining progresses, the projected 
databases become smaller, and data often becomes denser 
as the relative support goes up when the number of 
transactions in a projected database reduces substantially. 
In such cases, it is beneficial to swap the data structure 
from H-struct to FP tree since FP tree’s compression by 
common prefix path sharing and then mining on the 
compressed structures will overweigh the benefits brought 
by H-struct. The question becomes what should be the 
appropriate situations that one structure is more preferable 
over the other and how to determine when such a 
structure/algorithm swapping should happen. A dynamic 
pattern density analysis technique is suggested as follows. 

In the context of frequent pattern mining, a (projected) 
database is dense if the frequent items in it have high 
relative support. The relative support can be computed as 
follows: 

absolute support
relative support = 

# of tran (or freq-item projections) in the (projected) database  

When the relative support is high, such as 10% or over, i.e., 
the projected database is dense, and the number of (locally) 
frequent items is not large (so that the resulting FP tree is 
not bushy), then FP tree should be constructed to explore 
the sharing of common prefix paths and database 
compression. On the other hand, when the relative support 
of frequent items is low, such as far below 1%, it is sparse, 
and H-struct should be constructed for efficient H-mine. 
However, for relative support values in between, it is not 
clear which method would be more efficient. 
 

5.  PERFORMANCE ANALYSIS 
To evaluate the efficiency and scalability of H-mine, 

we have performed an extensive performance study.  
Mining transaction databases in main memory 

We report results on mining transaction databases 
which can be held in main memory. For FP growth, the FP 
trees can be held in main memory in the tests reported 
below. Data set Gazelle is a sparse data set. It is a web store 
visit (click stream) data set from Gazelle.com. It contains 
59, 602 transactions, while there are up to 267 item per 
transaction. Figure-7 shows the run time of H-mine, Apriori 
and FP-growth on this data set. Clearly, H-mine wins the 
other two algorithms, and the gaps (in term of seconds) 
become larger as the support threshold goes lower. Apriori 
works well in such sparse data sets since most of the 
candidates that Apriori generates turn out to be frequent 
patterns. However, it has to construct a hashing tree for the 
candidates and match them in the tree and update their 
counts each time when scanning a transaction that contains 
the candidates. That is the major cost for Apriori. FP 
growth has a similar performance as Apriori and sometime 
is even slightly worse. This is because when the database is 
sparse, FP tree cannot compress data as effectively as what 
it does on a dense data set. Constructing FP trees over 
sparse data sets recursively has its overhead. 

 
Figure-7: Runtime on data set Gazelle. 

 
Figure-8 plots the high water mark of space usage of 

H-mine, Apriori and FP growth in the mining procedure. 
To make the comparison clear, the space usage (axis Y) is 
in logarithmic scale. From the figure, we can see that H-
mine and FP-growth use similar space and are very scalable 
in term of space usage with respect to support threshold. 
Even when the support threshold reduces to very low, the 
memory usage is still stable and moderate. The memory 
usage of Apriori does not scale well as the support 
threshold goes down. Apriori has to store level wise 
frequent patterns and generate next level candidates. When 
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the support threshold is low, the number of frequent 
patterns as well as that of candidates is non-trivial. In 
contrast, pattern growth methods, including H-mine and FP 
growth, do not need to store any frequent patterns or 
candidates. Once a pattern is found, it is output 
immediately and never read back. We use the synthetic data 
set generator to generate a data set T25I15D10k. The data 
set generator has been used in many studies on frequent 
pattern mining. Data set T25I15D10k contains 10, 000 
transactions and each transaction has up to 25 items. There 
are 1,000 items in the data set and the average longest 
potentially frequent itemset is with 15 items. It is a 
relatively dense data set. 

 
Figure-8: Space usage on data set Gazelle. 

 
Figure-9 shows the runtime of the three algorithms on 

this data set. When the support threshold is high, most 
patterns are of short lengths, Apriori and FP growth have 
similar performance. When the support threshold becomes 
low, most items (more than 90%) are frequent. Then, FP-
growth is much faster than Apriori. In all cases, H-mine is 
the fastest one. It is more than 10 times faster than Apriori 
and 4-5 times faster than FP-growth. Figure-10 shows the 
high water mark of space usage of the three algorithms in 
mining this data set. Again, the space usage is drawn in 
logarithmic scale. As the number of patterns goes up 
dramatically as support threshold goes down, Apriori 
requires an exponential amount of space. H-mine and FP 
growth use stable amount of space. In dense data set, an FP 
tree is smaller than the set of all frequent-item projections 
of the data set. However, long patterns mean more 
recursions and more recursive FP trees. That makes FP 
growth require more space than H-mine in this case. On the 
other hand, since the number of frequent items is large in 
this data set, an FP tree, though compressing the database, 
still has many branches in various levels and becomes 
bushy. That also introduces non-trivial tree browsing cost. 

 
Figure-9: Runtime on data set T25I15D10k. 

Figure-11 and Figure-12 explore the runtime per 
frequent pattern on data sets Gazelle and T25I15D10k, 
respectively. As the support threshold goes down, the 
number of frequent patterns goes up. As can be seen from 
the figures, the runtime per pattern of the three algorithms 
keeps going down. That explains the scalability of the three 
algorithms. Among the three algorithms, H-mine has the 
least runtime per pattern and thus has the best performance, 
especially when support threshold is low. The figures also 
illustrate that H-mine is scalable with respect to the number 
of frequent patterns. 

 
Figure-10: Space usage on data set T25I15D10k. 

 

 
Figure-11: Runtime per pattern on data set Gazelle. 

 
Figure-12: Runtime per pattern on data set T25I15D10k. 
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6. CONCLUSION

H-mine absorbs the nice features of FP growth. It is
essentially a frequent pattern growth approach since it 
partitions its search space according to both patterns and 
data based on a divide-and-conquer methodology, without 
generating and testing candidate patterns. However, unlike 
FP growth, H-mine does not create any physical projected 
databases nor constructing conditional (local) FP trees. 
Instead, it builds and adjusts links dynamically among 
frequent items during mining to achieve the same effect as 
construction of physical projected databases. It avoids 
paying the cost of space and time for the (projected) 
database re-construction, and thus has better performance 
than FP growth. H-mine is not confined itself to H-struct 
only. Instead, it watches carefully the changes of data 
characteristics during mining and dynamically switches its 
data structure from H-struct to FP tree and its mining 
algorithm from mining on H-struct to FP growth when the 
data set becomes dense and the number of frequent items 
becomes small. This absorbs the benefits of FP growth 
which explores data compression and prefix path shared 
mining. Since mining on H-struct and mining on FP tree 
are built based on the same frequent pattern growth 
methodology, such a dynamic algorithm swapping can be 
performed naturally and easily. 

REFERENCES 
1. R. Agrawal, and R. Srikant, 1995. “Mining Sequential Patterns”,

Proc. of the Int'l Conference on Data Engineering (ICDE), Taipei,
Taiwan.

2. R. Srikant , and R. Agrawal,1996. “Mining Sequential Patterns:
Generalizations and performance improvements”, In Proc. 5th
Int'l Conference Extending Database Technology (EDBT),
Avignon, France. 

3. W. Li, 2001. “Classification Based on Multiple Association
Rules”. M.Sc. Thesis, Simon Fraser University.

4. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M.-C. Hsu, 2001. “PrefixSpan: Mining Sequential Patterns

Efficiently by Prefix-Projected Pattern Growth”, Proc. 2001 Int. 
Conf. on Data Engineering (ICDE'01), Heidelberg, Germany.  

5. J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C.
Hsu, 2000. “FreeSpan: Frequent Pattern-Projected Sequential
Pattern Mining”, Proc. 2000 Int. Conf. Knowledge Discovery and
Data Mining (KDD'00), Boston, MA.

6. M. J. Zaki, 2001. “SPADE: An Efficient Algorithm for Mining
Frequent Sequences”, in Machine Learning Journal, special issue
on Unsupervised Learning (Doug Fisher, ed.), pages 31-60, Vol.
42 Nos. 1/2. 

7. R. Agrawal, T. Imielinski, and A. Swami, 1993. “Mining
association rules between sets of items in large databases.”, Proc.
of the ACM SIGMOD Conference on Management of Data,
pages 207-216, Washington, D.C., May 1993. 

8. M. J. Zaki, and C. Hsiao, 1999. “CHARM: An Efficient
Algorithm for Closed Association Rule Mining”, in Technical
Report 99-10, Computer Science, Rensselaer Polytechnic
Institute.

9. J. Pei, J. Han, and R. Mao, 2000. “CLOSET: An Efficient
Algorithm for Mining Frequent Closed Itemsets.”, ACM
SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery 2000, pages 21-30, Dallas, TX, 2000. 

10. Bjorn Bringmann,2009. “Mining Patterns in Structured data”.
PhD thesis, Katholieke University Leuven, Belgium.

11. Wei Wang and Jiong Yang, 2005. “Mining high-dimensional
data”. In Oded Maimon and Lior Rokach, editors, Data Mining
and Knowledge Discovery Handbook, pages 793–799. Springer,
2005. 

12. Marisa Thoma, Hong Cheng, Arthur Gretton, Jiawei Han, Hans
Peter Kriegel, Alex Smola, Le Song, Philip S. Yu, Xifeng Yan,
and Karsten Borgwardt, 2009. “Near optimal supervised feature
selection among frequent sub graphs. In Proceedings of the 9th
SIAM International Conference on Data Mining, pages 1075–
1086. 

13. Diane J. Cook and Lawrence B. Holder,1994. “Substructure
discovery using minimum description length and background
knowledge”. Journal of Artificial Intelligence Research, 1:231–
255. 

14. Christian Borgelt, 2002.  “Mining molecular fragments: Finding
relevant substructures of molecules”. In Proceedings of the 2002
IEEE International Conference on Data Mining (ICDM), pages
51–58. IEEE Press, 2002. 

15. Tias Guns, Siegfried Nijssen, and Luc De Raedt, 2011. “Itemset
mining: A constraint programming perspective”. Artif. Intell.,
175(12-13):1951–1983, 2011. 

P.Siva et al | IJCSET(www.ijcset.net) | October 2016 | Vol 6, Issue 10, 349-355

355




