
Distributed Real-Time Database System Model
and Performance Metrics Based on QoS

Chirra Priyanka1, K Praveen Kumar 2

1,2Department of Computer Science and Engineering,
Chaithanya Institute of Technology and Science, warangal, INDIA

Abstract: In Distributed algorithm an algorithm for
anonymous distributing of private facts and figures among
parties is evolved. This method is utilised iteratively to
accredit these nodes ID figures extending from 1 to N . This
assignment is anonymous in that the identities received are
unknown to the other constituents of the group. This
allotment of successive numbers permits more complex facts
and figures to be distributed and has submissions to other
difficulties in privacy preserving data excavation, collision
avoidance in communications and circulated database access.
The needed computations are circulated without utilising a
trusted central authority. The QOS such as end-to-end hold
up, collision avoidance, Best-effort service and traffic shaping
is achieved in circulated system.

 Keywords: Quality of Service(Qos), Distributed system, Data
sharing.

I. INTRODUCTION
 Distributed System is a assemblage of autonomous
computers linked by a mesh utilising programs to produce
an integrated computing facility. The circulated scheme is
decentralized one. The services of distributed scheme are
•Eposted letters-Electronic posted letters
•Netnews –group discussion on lone subject
•Multimedia teleconferencing over mesh
• WWW-World wide web

1.1 Service model of Distributed System
 Computers can perform diverse purposes and each unit
in a circulated scheme may be to blame for only a set
number of purposes in an organization. We address the
concept of service models as taxonomy of scheme
configurations.
1.2 Centralized model of Distributed system
 A centralized form is one in which there is no
networking. All facets of the submission are hosted on one
appliance and users exactly attach to that appliance. This is
epitomized by the classic mainframe time-sharing system.
The computer may comprise one or more CPUs and users
communicate with it by terminals that have a direct (e.g.,
serial) connection to it.The main difficulty with the
centralized form is that it is not effortlessly scalable. There
is a limit to the number of CPUs in a scheme and
eventually the entire scheme desires to be upgraded or
restored. A centralized scheme has a problem of multiple
entities arguing for the identical asset.
1.3 Client-server model
 The client-servermodel is a popular networked model
consisting of three components. A serviceis the task that a

particular machine can perform. For example, offering files
over a network, the ability to execute certain commands, or
routing data to a printer. A serveris the machine that
performs the task (the machine that hosts the service). A
machine that is primarily recognized for the service it
provides is often referred to as a print server, file server, et
al. The clientis a machine that is requesting the service. The
labels clientand serverare within the context of a particular
service; a client can also be a server. A particular case of
the client-server model is the workstation model, where
clients are generally computers that are used by one user at
a time (e.g. a PC on a network).
1.4 Focus of Resource Sharing
 Users are so used to the advantages of asset sharing that
They may effortlessly overlook their significance. We
regularly share hardware assets such as printers, facts and
figures assets such as files, and resources with more exact
functionality such as seek engines. Looked at from the
point of view of hardware provision, we share equipment
such as printers and computer disks to reduce charges. But
of far larger implication to users is the distributing of the
higher-level assets that play a part in their submissions and
in their everyday work and communal activities. For
example, users are concerned with distributing data in the
form of a distributed database or a set of web pages – not
the disks and processors on which they are applied
likewise, users believe in periods of shared resources such
as a seek motor or a currency converter, without consider
for the server or servers that supply these. In practice,
patterns of asset distributing vary broadly in their scope and
in how closely users work simultaneously. At one extreme,
a seek engine on the world wide web presents a facility to
users all through the world, users who need not ever come
into contact with one another exactly. At the other farthest,
in computer-supported cooperative working (CSCW), a
assembly of users who help exactly share assets such as
articles in a small, closed assembly. The pattern of
distributing and the geographic circulation of particular
user’s works out what mechanisms the scheme must
provide to coordinate users’ actions.We use the period
service for a distinct part of a computer scheme that
organises a collection of associated resources and presents
their functionality to users and submissions. For example,
we get get access to to shared documents through a
document service; we send articles to printers through a
printing service; we purchase goods through an electrical
devices payment service. The only get access to we have to
the service is by the set of procedures that it trade goods.

Chirra Priyanka et al | IJCSET(www.ijcset.net) | July 2015 | Vol 5, Issue 7,264-266

264

For demonstration, a document service presents read, write
and delete procedures on files.The detail that services
constraint asset access to a well-defined set of procedures is
in part standard software engineering perform. But it
furthermore reflects the physical organization of circulated
schemes. Assets in a circulated system are physically
encapsulated inside computers and can only be accessed
from other computers by means of communication. For
productive sharing, each resource must be organised by a
program that boasts a communication interface endowing
the asset to be accessed and revised reliably and
consistently. The period server’s likely familiar to most
readers. It mentions to a running program (a process) on a
networked computer that accepts demands from programs
running on other computers to present a service and
answers appropriately. The requesting processes are
mentioned to as clients, and the overall approach is
renowned as client-server computing. In this approach,
demands are sent in notes from purchasers to a server and
answers are dispatched in notes from the server to the
purchasers. When the client drives a demand for an
operation to be carried out, we say that the purchaser
invokes an operation upon the server. A entire interaction
between a client and a server, from the issue when the
client drives its request to when it receives the server’s
response, is called a remote invocation.The identical
method may be both a purchaser and a server, since servers
occasionallyinvoke procedures on other servers. The terms
‘client’ and ‘server’ request only to the roles performed in a
single demand. purchasers are active (making requests) and
servers are passive (only waking up when they receive
requests); servers run relentlessly, while purchasers last
only as long as the applications of which they pattern a
part.Note that while by default the terms ‘client’ and
‘server’ refer to processes rather than the computers that
they execute upon, in everyday parlance those periods also
mention to the computers themselves.

II QUALITY OF SERVICE (QOS)
 Quality of Service (QoS) refers to the capability of a
network to provide better service to selected network traffic
over various technologies, including Frame Relay,
Asynchronous Transfer Mode (ATM), Ethernet and 802.1
networks, SONET, and IP-routed networks that may use
any or all of these underlying technologies. The primary
goal of QoS is to provide priority including dedicated
bandwidth, controlled jitter and latency (required by some
real-time and interactive traffic), and improved loss
characteristics. Also important is making sure that
providing priority for one or more flows does not make
other flows fail. QoS technologies provide the elemental
building blocks that will be used for future business
applications in campus, WAN, and service provider
networks.
 Fundamentally, QoS enables you to provide better
service to certain flows. This is done by either raising the
priority of a flow or limiting the priority of another flow.
When using congestion-management tools, you try to raise
the priority of a flow by queuing and servicing queues in
different ways. The queue management tool used for

congestion avoidance raises priority by dropping lower-
priority flows before higher-priority flows. Policing and
shaping provide priority to a flow by limiting the
throughput of other flows. Link efficiency tools limit large
flows to show a preference for small flows.
 A tool box, and many tools can accomplish the same
result. A simple analogy comes from the need to tighten a
bolt: You can tighten a bolt with pliers or with a wrench.
Both are equally effective, but these are different tools.
This is the same with QoS tools. You will find that results
can be accomplished using different QoS tools. Which one
to use depends on the traffic. You wouldn't pick a tool
without knowing what you were trying to do, would you? If
the job is to drive a nail, you do not bring a screwdriver.
 QoS tools can help alleviate most congestion problems.
However, many times there is just too much traffic for the
bandwidth supplied. In such cases, QoS is merely a
bandage. A simple analogy comes from pouring syrup into
a bottle. Syrup can be poured from one container into
another container at or below the size of the spout. If the
amount poured is greater than the size of the spout, syrup is
wasted. However, you can use a funnel to catch syrup
pouring at a rate greater than the size of the spout. This
allows you to pour more than what the spout can take,
while still not wasting the syrup. However, consistent
overpouring will eventually fill and overflow the funnel.

Fig.1.A basic QoS Architectutre

A. Basic QoS Architecture
 The basic architecture introduces the three fundamental
pieces for QoS implementation
QoS identification and marking techniques for coordinating
QoS from end to end between network elements
QoS within a single network element (for example,
queuing, scheduling, and traffic-shaping tools)
QoS policy, management, and accounting functions to
control and administer end-to-end traffic across a network

III. REAL-TIME DATABASE MODEL AND PERFORMANCE

METRICS
 Before we present our QoS algorithm, we first introduce
the distributed real-time database system model and the
performance metrics considered in this paper.

Chirra Priyanka et al | IJCSET(www.ijcset.net) | July 2015 | Vol 5, Issue 7,264-266

265

A. Real-time Database Model
 In this paper, we consider a distributed real-time
database system which consists of a group of main memory
real-time database systems connected by a Local Area
Network(LAN). For the high performance of main memory
accesses and the decreasing main memory cost, main
memory databases have been increasingly used for data
management real-time applications. We focus our study on
medium scale distributed databases (in the range of 5 to 10
sites), since the load balancers need full information from
every sites to make accurate decisions. Several applications
that require distributed real-time data services fall in that
range. For example, a ship-board control system which
controls navigation and surveillance consists of 6
distributed control units and to general control consoles
located throughout the platform and linked together via a
ship-wide redundant Ethernet to share distributed real-time
data and coordinate the activities. We leave it as the future
work to make our solution applicable to large scale
distributed real-time applications with 100s sites involved,
using only a partial information from a subset of sites.
 In this paper, we apply firm deadline semantics in
which transactions add value to the application only if they
finish within their deadlines. Hence, tardy transactions
(transactions that have missed their deadlines) are aborted
upon their deadline miss. Firm deadline semantics are
common in several real-time database applications. A late
commit of a real-time transaction may incur the loss of
profit or control quality, resulting in wasted system
resources, due to possible changes in the market or control
status. Our objective is to provide QoS guarantees for real-
time data services in those applications.

B. Data Composition
 In our system model, data objects are divided into two
types, namely, temporal data and nontemporal data.
Temporal data are the sensor data from physical world. In
ship-board control application, they could be ship
maneuvering data such as position, speed and power; in
stock trading, they could be real-time stock prices. Each
temporal data object has a validity interval and is updated
by periodic sensor update transactions. Non-temporal data
objects do not have validity intervals and therefore there
are no periodic system updates associated with them. Non-
temporal data do not change dynamically with time.
 In our distributed real-time database system model, a
local site is called a node. Each node hosts a set of temporal
data objects and non-temporal objects. The node is called
the primary node for those data objects. Each node also
maintains a set of replicas of temporal data objects hosted
by other nodes. The fresh value of temporal data objects are
periodically submitted from outside to their primary nodes
and propagated to the replicas. In our replication model,
temporal data objects are fully replicated and the replicas
are updated as soon as the fresher data are available. Non-
temporal data objects are not replicated because replicating
non-temporal data objects will not improve the system
performance when the read/write ratio is not high. For
instance, replicating real-time stock quotes would be

appropriate in stock trading, since a significant portion of
user transactions only read the data.

C. Transaction Model
 In our system, transactions are divided into two types,
system update transactions and user transactions. System
update transactions are temporal data (sensor data) update
transactions and temporal data replica update transactions.
User transactions are queries or updates from applications.
User transactions are divided to different service classes,
e.g., class 0, 1 and 2. The lower the service class number,
the higher the priority the transaction has during the
execution. Class 0 is the service class that has the best
quality of service guarantee.
 Transactions are represented as a sequence of
operations on data objects. The operation of system update
transaction is always write. For user transaction, the
operation on non-temporal data objects could be read or
write while operation on temporal data could only be read.
There is certain execution time associated with each
operation and the execution time of a transaction is the sum
of the execution time of all its operations. Operations of
one transaction is executed in sequential fashion. One
operation can not be executed unless all previous
operations are finished.

IV. CONCLUSION
 The Distributed scheme is a decentralized one .The
security is one of the handicaps of Distributed scheme. In
this paper mainly concentrated on supplying security in
circulated system. The user authentication is accomplished
by utilising AIDA algorithm and note authentication is
accomplished by Hash cipher algorithms. If the user wants
to get access to the circulated system the first the user
authentication is performed afterwards client get access to
the distributed server. The circulated server provides the
service to the authorized user. The service is supplied based
assets, time slot etc. By this we achieve the quality of
service such End-to-end delay, traffic shaping, congestion
avoidance.

REFERENCES
[1] G. Sindhu,”Distributed System: Privacy Data Sharing And

Achieving Qos”, IJREAT International Journal of Research in
Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov,
2013.

[2] D. Jana, A. Chaudhuri, and B. B. Bhaumik, “Privacy and
anonymityprotection in computational grid services,” Int. J. Comput.
Sci. Applicat., vol. 6, no. 1, pp. 98–107, Jan. 2009

[3] Karr, “Secure statistical analysis of distributed databases,
emphasizing what we don’t know,” J. Privacy Confidentiality, vol. 1,
no. 2, pp. 197–211, 2009.

[4] J.W. Yoon and H. Kim, “A perfect collision-free pseudonym
system,” IEEE Commun. Lett., vol. 15, no. 6, pp. 686–688, Jun.
2011

[5] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu,
“Toolsfor privacy preserving distributed data mining,” ACM
SIGKDD Explorations

[6] Newsletter, vol. 4, no. 2, pp. 28–34, Dec. 2002. J. Wang, T.
Fukasama, S. Urabe, and T. Takata, “A collusionresistantapproach to
privacy-preserving distributed data mining,” IEICE Trans.Inf. Syst.
(Inst. Electron. Inf. Commun. Eng.), vol. E89-D, no. 11, pp. 2739–
2747, 2006

Chirra Priyanka et al | IJCSET(www.ijcset.net) | July 2015 | Vol 5, Issue 7,264-266

266

