IS5 : 2231-0711

Supriya S. Borhade et al | IJCSET(www.ijcset.net) | June 2015 | Vol 5, Issue 6,173-181

Time Efficient Algorithms for Mining Association
Rules

Ms. Supriya S. Borhade', Dr. S. V. Gumaste®

M.E. Student, Computer Engineering Department, SPCOE , Dumberwadi, Pune
Maharashtra, India

2 Professor & Head, Computer Engineering Department, SPCOE , Dumberwadi, Pune
Maharashtra, India

Abstract— The difficulty of discovering association rules
between items in a large database of corporate or retail
organizations sales transactions. In this paper studied and
presented two new algorithms for solving this problem that
are Dbasically different from the known algorithms.
Experiments with mock as well as real-life data show that
these algorithms do better than known algorithms by factors
ranging from three for small problems to more than an order
of magnitude for large problems. Also showing how the best
features of the two proposed algorithms can be combined into
a hybrid algorithm, called Apriori Hybrid. Scale-up
experiments show linear scales that with the number of
transactions using Apriori Hybrid algorithm. Apriori Hybrid
also has outstanding scale-up properties with respect to the
transaction size and the number of items in the database.

Keywords— Apriori, Apriori-Tid, AIS, SETM, Association
rule.

I. INTRODUCTION

Most large retail organizations or corporate are facing
the challenge of database mining, which is motivated by
the decision support [1]. Progress in bar-code technology
has made it possible for retail organizations to collect and
store huge amounts of sales data, referred to as the market
basket data. A record in such data typically consists of the
transaction date and the items brought in the transaction.
Most successful organizations view such databases as vital
pieces of the marketing strategies [2]. Miners are interested
in formulating information-driven marketing processes,
managed by database technology, that enable marketers to
develop and implement customized marketing programs
and strategies [3]. The problem of mining association rules
over basket data was introduced in [4]. An example of
such a rule might be that 98% of customers who purchase
tires and auto accessories also get automotive services
done. Searching all such rules is valuable for cross-
marketing and attached mailing applications. Other
applications include catalogue design, add-on sales, store
layout, and customer segmentation based on frequent
buying patterns. The databases involved in these
applications are very large. It is crucial, therefore, to have
quick or fast algorithms for data mining task. The
following is a formal statement of the problem [5]:

Letd = fi. .00 650] be a set of literals, called items.
Let 2 be a set of transactions, where each transaction T is

a set of items such that T &= { . Associated with each
transaction is a unique identifier, called its TZZr. Consider
that a transaction T contains X, a set of some items in I, if
A = T.An association rule is an implication of the form
=V, where ¥ =i¥=i and X n¥ = The rule
& =T holds in the transaction set I} with confidence ¢ if
c%% of transactions in D that contain X also contain ¥ . The
rule & = E has support s in the transaction set D if s% of
transactions in I contain U ¥ . Our rules are somewhat
more general than in [4] in that allowed a consequent to
have more than one item. Given a set of transactions 2,
the problem of mining association rules is to generate all
association rules that have support and confidence greater
than the user-specified minimum support (called mmstig)
and minimum confidence (called mineenf ) respectively.
This discussion is neutral with respect to the representation
of D. For example, D could be a data le, a relational table,
or the result of a relational expression. An algorithm for
finding all association rules, henceforth referred to as the
AIS algorithm, was presented in [4]. Another algorithm for
this task, called the SETM algorithm, has been proposed in
[17]. In this paper, present two new algorithms, Apriori
and Apriori-Tid, that differs fundamentally from these
algorithms. The performance gap is shown to increase
with problem size, and ranges from a factor of three for
small problems to more than an order of magnitude for
large problems. Then discussed how the best features of
Apriori and Apriori-Tid can be combined into a hybrid
algorithm, called AprioriHybrid. Experiments show that
the AprioriHybrid has excellent scale-up properties,
opening up the feasibility of mining association rules over
very large databases. The problem of finding association
rules falls within the purview of database mining [5]
[6] ,also called knowledge discovery in databases [10]
[13] . Related, but not directly applicable, work includes
the induction of classification rules [11] [10], discovery of
causal rules [12] [14], learning of logical definitions,
fitting of functions to data , and clustering [9] . The closest
work in the machine learning literature is the KID3
algorithm presented in [18]. If used for finding all
association rules, this algorithm will make as many passes
over the data as the number of combinations of items in the
antecedent, which is exponentially large. Related work in
the database literature is the work on inferring functional

173



Supriya S. Borhade et al | IJCSET(www.ijcset.net) | June 2015 | Vol 5, Issue 6,173-181

dependencies from data [15] [16]. Functional dependencies
are rules requiring strict satisfaction.

Consequently, having determined a dependency & = A,
the algorithms in [15] [16]consider any other dependency
of the form & + ¥ — & redundant and do not generate it.
The association rules considered here are probabilistic in
nature. The presence of a rule & = .2 does not necessarily
mean that X + ¥ — 4 also holds because the latter may
not have minimum support. Similarly, the presence of
rules & = ¥ and ¥ = Z does not necessarily mean that
A = Z holds because the latter may not have minimum
confidence. There has been work on quantifying the
“usefulness" or “interestingness" of a rule [18]. What is
useful or interesting is often application-dependent. The
need for a human in the loop and providing tools to allow
human guidance of the rule discovery process has been
articulated. Do not discuss these issues in this paper,
except to point out that these are necessary features of a
rule discovery system that may use this algorithms as the
engine of the discovery process.

A. Problem Decomposition and Paper Organization

The problem of discovering all association rules can be
decomposed into two sub-problems [4]:
1. Find all sets of items (itemsets) that have transaction
support above minimum support. The support for an
itemset is the number of transactions that contain the
itemset. Itemsets with minimum support are called large
itemsets, and all others small itemsets. In Section Il, give
new algorithms, Apriori and Apriori-Tid, for solving this
problem.
2. Use the large itemsets to generate the desired rules. The
algorithms for this problem are in Section Il1. The general
idea is that if, say, ABCD and AB are large itemsets, then

ITE

the If

canf & mimeany, then the rule holds. (The rule will
surely have minimum support because ABCD is large.)
Unlike [4], where rules were limited to only one item in
the consequent, for this allow multiple items in the
consequent. An example of such a rule might be that in
58% of the cases, a person who orders a comforter also
orders a flat sheet, a fitted sheet, a pillow case, and a rule.
The algorithms in Section Il generate such multi-
consequent rules.

In Section 1V, shown the relative performance of the
proposed Apriori and Apriori-Tid algorithms against the
AIS [4] and SETM [17] algorithms. To make the paper
self-contained, also include an overview of the AIS and
SETM algorithms in this section. Also describes how the
Apriori and Apriori-Tid algorithms can be combined into a
hybrid algorithm, AprioriHybrid, and demonstrate the
scale-up properties of this algorithm. Finally concluded by
pointing some related open problems in Section V.

ratio

computing canf == =

T F

Il. DISCOVERING LARGE ITEMSETS

Algorithms for discovering large itemsets make multiple
passes over the data. In the first pass, count the support of

individual items and determine which of them are large, i.e.
have minimum support. In each subsequent pass, start with
a seed set of itemsets found to be large in the previous pass.
To use this seed set for generating new potentially large
itemsets, called candidate itemsets, and count the actual
support for these candidate itemsets during the pass over the
data. At the end of the pass, determine which of the
candidate itemsets are actually large, and they become the
seed for the next pass. This process continues until no new
large itemsets are found.
The Apriori and Apriori-Tid algorithms proposed differ
fundamentally from the AIS [4] and SETM [17] algorithms
in terms of which candidate itemsets are counted in a pass
and in the way that those candidates are generated. In both
the AIS and SETM algorithms (see Sections L and M for a
review), candidate itemsets are generated on-the-y during
the pass as data is being read. Specifically, after reading a
transaction, it is determined which of the itemsets found
large in the previous pass are present in the transaction.
New candidate itemsets

are generated by extending these large itemsets with
other items in the transaction. However, the disadvantage is
that this results in unnecessarily generating and counting
too many candidate itemsets that turn out to be small. The
Apriori and Apriori-Tid algorithms generate the candidate
itemsets to be counted in a pass by using only the itemsets
found large in the previous pass without considering the
transactions in the database. The basic intuition is that any
subset of a large itemset must be large. Therefore, the
candidate itemsets having k items can be generated by
joining large itemsets having k1 items, and deleting those
that contain any subset that is not large. This procedure
results in generation of a much smaller number of candidate
itemsets. The Apriori-Tid algorithm has the additional
property that the database is not used at all for counting the
support of candidate itemsets after the first pass. Rather, an
encoding of the candidate itemsets used in the previous pass
is employed for this purpose. In later passes, the size of this
encoding can become much smaller than the database, thus
saving much reading effort. Explaining these points in
more detail when describes the algorithms.
Notation , assume that items in each transaction are kept
sorted in their lexicographic order. It is straightforward to
adapt these algorithms to the case where the database D is
kept normalized and each database record is a <TID, item>
pair, where TID is the identifier of the corresponding
transaction.
Call the number of items in an itemset its size, and call an
itemset of size k a k-itemset. Items within an itemset are
kept in lexicographic order. using notation
glL] s¢[&]m 10 €[R] to represent a k-itemset ¢ consisting of
items ¢[1].¢[Z]....c[K]. where ¢[1] <= 2] =...= ]k,
If ¢ = &Y and Y is an m-itemset, also call Y an m-
extension of X. Associated with each itemset is a count field
to store the support for this itemset. The count field is
initialized to zero when the itemset is first created. Also
summarized in Table 1 the notation used in the algorithms.
The set T, is used by Apriori-Tid and will be further
discussed in this algorithm.

174



Supriya S. Borhade et al | IJCSET(www.ijcset.net) | June 2015 | Vol 5, Issue 6,173-181

TABLE I: Notation

k-

. An itemset having k items.
itemset

- Set of large k-itemsets (those with minimum support)
o Each member of this set has two fields :
i) itemset and ii) support count.

Set of candidate k-itemsets (potentially large
Ck itemsets). Each member of this set has two fields :
i) itemset and ii) support count.

Set of candidate k-itemsets when the TIDs of the
Ck generating transactions are kept associated withthe
candidates

B. Algorithm Apriori

Figure 1 gives the Apriori algorithm. The first pass of
the algorithm simply counts item occurrences to determine
the large 1-itemsets. A subsequent pass, say pass Kk,
consists of two phases. First, the large itemsets Z;._, found
in the (&= 171th pass are used to generate the candidate
itemsets < ;, using the apriori-gen function described in
Section C. Next, the database is scanned and the support of
candidates in ¢ ;is counted. For fast counting, need to
efficiently determine the candidates in . that are
contained in a given transaction t. Section E describes the
subset function used for this purpose. Section 2.1.3
discusses buffer management.

/I Apriori Algorithm (Figure 1)

1. Ly = florge 1 — ftemsetsh

2. Far{k = 2 Ly, = G K+ + 7 dobegin
3. £ = apriori — genilz_h

4, For gl tronsoctfons £ € D daobegin
5. €, = subset (€ £

6. Fovall randidates ¢ @ G- da

7. Cooount 4 41

8. end

9. [.={r e Tk le covnt wminsup?
10. end

11. Answer = Uy Lpt

C. Apriori Candidate Generation

The apriori-gen function takes as argument.’;._., the set
of all large (/= 17 — ftemzsetz . It returns a superset of the
set of all large k-itemsets. The function works as follows.

First, in the join step, join L.._, with L;_.:

/I Apriori Candidate Generation Algorithm
1. insertinto C ;.

2. select

ity B TEeMTs e v B EEOTIG L g O TESMT G g

3 from Ly ply g

4, where @ ftere, = g Bty a9 BT o =

LR e P P ey, q.i:ﬁ‘i“ti';_-_;

5. Next, in the prune step, delete all itemsets ¢ & &k
such that some i # = 17 = sudsst of c isnotin L,_.:

6. forall itemsets ¢ 2 &% do

7. forall {%— 17 —subsets s of ¢ do

8. if (5 8 L;_;)then

9. delete c from £ ;;

Example :Let L3 be {{123}, {124},{134}, {135},{234}}.
After the join step, C4 will be {{1234},{1345}}. The prune
step will delete the itemset {1345} because the itemset {1 4
5} is not in L3. Then be left with only {1234} in C4.
contrast this candidate generation with the one used in the
AIS and SETM algorithms. In pass k of these algorithms
(see Section 1V for details), a database transaction t is read
and it is determined which of the large itemsets in L, _, are
present in t. Each of these large itemsets [ is then extended
with all those large items that are present in t and occur later
in the lexicographic ordering than any of the items in [.
Continuing with the previous example, consider a
transaction {12345}, In the fourth pass, AIS and SETM will
generate two candidates, {1234} and {1 235}, by extending
the large itemset {123}. Similarly, an additional three
candidate itemsets will be generated by extending the other
large itemsets in L,, leading to a total of 5 candidates for
consideration in the fourth pass. Apriori, on the other hand,
generates and counts only one itemset, {1345}, because it
concludes a priori that the other combinations cannot
possibly have minimum support.

Correctness —Also need to show that ¢, = L, . Clearly,
any subset of a large itemset must also have minimum
support. Hence, if extended each itemset in L;_, with all
possible items and then deleted all those whose (k-1)-
subsets were not in 4;_;, one would left with a superset of
the itemsets in L; . The join is equivalent to extending L _;
with each item in the database and then deleting those
itemsets for which the (k-1)-itemset obtained by deleting
the (k-1)th item is not in L._, . The condition
poftentz oy @ quitemizo, simply ensures that no
duplicates are generated. Thus, after the join step, £, =2 L.
By similar reasoning, the prune step, delete from ;. all
itemsets whose (k-1)-subsets are not in Ly-;, also does not
delete any itemset that could be in Z..

Variation: Counting Candidates of Multiple Sizes in One
Pass Rather than counting only candidates of size k in the
kth pass, one can also count the candidates C;.:, where
Cz.y IS generated from € ., etc. Note that €;a; = €+l
since £z.;is generated from L . This variation can pay in
the later passes when the cost of counting and keeping in
memory additional C;.; — €., candidates becomes less
than the cost of scanning the database.

Membership Test :The prune step requires testing that all
(k-1)-subsets of a newly generated k-candidate-itemset are
present in L,_;. To make this membership test fast, large
itemsets are stored in a hash table.

175



Supriya S. Borhade et al | IJCSET(www.ijcset.net) | June 2015 | Vol 5, Issue 6,173-181

E. Subset Function

Candidate itemsets < . are stored in a hash-tree. A
node of the hash-tree either contains a list of itemsets (a
leaf node) or a hash table (an interior node). In an interior
node, each bucket of the hash table points to another node.
The root of the hash-tree is defined to be at depth 1. An
interior node at depth d points to nodes at depth d + 1.
Itemsets are stored in the leaves. When miner adds an
itemset ¢, start from the root and go down the tree until to
reach a leaf. At an interior node at depth d, decide which
branch to follow by applying a hash function to the d" item
of the itemset. All nodes are initially created as leaf nodes.
When the number of itemsets in a leaf node exceeds a
specified threshold, the leaf node is converted to an
interior node. Starting from the root node, the subset
function finds all the candidates contained in a transaction
t as follows. If one is at a leaf, find which of the itemsets
in the leaf are contained in t and add references to them to
the answer set. If one is at an interior node and have
reached it by hashing the item i, hash on each item that
comes after i in t and recursively apply this procedure to
the node in the corresponding bucket. For the root node,
hash on every item in t. To see why the subset function
returns the desired set of references, consider what
happens at the root node. For any itemset ¢ contained in
transaction t, the first item of ¢ must be in t. At the root,
by hashing on every item in t, one can ensure that he is the
only ignore itemsets that start with an item not in t. Similar
arguments apply at lower depths. The only additional
factor is that, since the items in any itemset are ordered, if
reach the current node by hashing the item i, only need to
consider the items in t that occur after i. If k is the size of a
candidate itemset in the hash-tree, one can find in O(k)
time whether the itemset is contained in a transaction by
using a temporary bitmap. Each bit of the bitmap
corresponds an item. The bitmap is created once for the
data structure, and reinitialized for each transaction. This
initialization takes O(size(transaction)) time for each
transaction.

F. Buffer Management

In the candidate generation phase of pass k, need storage
for large itemsets L,._; and the candidate itemsets C . In
the counting phase, need storage for £ . and at least one
page to buffer the database transactions. First, assume that
Lz fits in memory but that the set of candidates ¢ ;- does
not. The Apriori-gen function is modified to generate as
many candidates of £ ; as will t in the buffer and the
database is scanned to count the support of these
candidates. Large itemsets resulting from these candidates
are written to disk, while those candidates without
minimum support are deleted. This procedure is repeated
until all of . has been counted. If L,_, does not t in
memory either, externally sort L,_,. It was bring into
memory a block of L;._.in which the first (k-2) items are
the same. Now generate candidates using this block. Keep
reading blocks of L,._, and generating candidates until the
memory fills up, and then make a pass over the data. This
procedure is repeated until all of £ ; has been counted.
Unfortunately, one can no longer prune those candidates

whose subsets are not in L
available in memory.

as the whole of L _, is not

k=1

G. Algorithm Apriori-Tid
The Apriori-Tid algorithm, shown in Figure 2, also uses

the apriori-gen function (given in Section C) to determine
the candidate itemsets before the pass begins. The

interesting feature of this algorithm is that the database D
is not used for counting support after the first pass. Rather,

the set € = is used for this purpose. Each member of the

set C & is of the form™ T4 {43 = where each %= is a
potentially large k-itemset present in the transaction with

identifier TID. For & = LL; corresponds to the database
D, although conceptually each item i is replaced by the
itemset {i}. For k > 1, . is generated by the algorithm
(step 10). The member of z. » corresponding to transaction
tis <t = &TiD.fee Crooontafmed mtl= . If a
transaction does not contain any candidate k-itemset, then
¢ . will not have an entry for this transaction. Thus, the
number of entries in & ; may be smaller than the number
of transactions in the database especially for large values
of k. In addition, for large values of k, each entry may be
smaller than the corresponding transaction because very
few candidates may be contained in the transaction.
However, for small values for k, each entry may be larger
than the corresponding transaction because an entry in £
includes all candidate k-itemsets contained in the
transaction. Further explore this trade-off in Section IV.
Establish the correctness of the algorithm in Section H. In
Section |, given the data structures used to implement the
algorithm, and discussed buffer management in Section J.

/I Apriori-Tid Algorithm (figure 2)

1. L, = jlarge L-—iremsets

2. £ = databaze I

3. ferin =2 Lyo; =0 &+ +7dobegin

4. € = agriert = gemliz_ o

5. Oy =0

6. forall entries & & T . do begin

7. C:={ce Cgl| fo—els]} & tizot —of — Gromsotss

=2k =L € néer—ef —ioemaens]

Forell candidates ¢ € & de

9. S ooul - -t

10. EE0 =3 vhtken Job== nTIDG =
11. end

12. Li=fe & Cplerenmt m minsuy)

13. gnd

14. Amtaweer = Uy L

Example: Consider the database in Figure 3 and assume
that minimum support is 2 transactions. Calling apriori-gen
with L at step 4 gives the candidate itemsets C,. In steps 6
through 10, count the support of candidates in C, by
iterating over the entries in C; and generate C2. The first
entry in &, is { {1}{3} {4} }, corresponding to transaction
100. The C;at step 7 corresponding to this entry t is {{1
3}}, because {1 3}g is a member of C, and both ({1 3} -

176



Supriya S. Borhade et al | IJCSET(www.ijcset.net) | June 2015 | Vol 5, Issue 6,173-181

{1}) and ({1 3} —{3}) are members of t.set-of-itemsets.
Calling apriori-gen with L, gives C;. Making a pass over
the data with C, and C; generates C;. Note that there is no
entry in C; for the transactions with TIDs 100 and 400,
since they do not contain any of the itemsets in Cz. The
candidate {235} in C; turns out to be large and is the only
member of L. after generating C,4 using L, it turns out to
be empty, and terminate.

H. Correctness

Rather than using the database transactions, Apriori-Tid
uses the entries in £, to count the support of candidates in
C

L

TID [ltems TID | Set-of-ltemsets Itemset | Support
100 | 134 100 | {{1L{3L14H 1} 2

200 | 235 200 | {{2H3H5H 2 3

300 [1235 300 | {{1H2{3H5}] =2} 3

400 [25 400 | {215 51 3
Database C, L,

Itemset TID [Set-of-ltemsets Itemset | Support

iz} 100 |{{13} 13} 2

{13} 200 |[4#23H25H35Y {23} 2

115} 300 (412341 3}1 5} {25} 3

{23} {2312 SH3 51} 35 2

{25} 400 |425h

i35}

G Cy Ly
Itemset TID | Set-of-ltemsets Itemset | Support
123 5] 200 ({23 5] 123 5] 2

300 [{235]
Cs [ Ly

Figure. 3

To simplify the proof, it’s assumed that in step 10 of
Apriori-Tid, always add « t.T{2, €. =to C,, rather
than adding an entry only when C, is non-empty. For
correctness, one need to establish that the set C'. generated
in step 7 in the kth pass is the same as the set of candidate
k-itemsets in <, contained in the transaction with
identifier £. TIL. It says that the set (' ,, is complete if
vt €, ,t.5at — of — it@maets includes all large
k-itemsets  contained in  the transaction  with
identifier ©.TID . It says that the set C, is correct
ifYt € C,, t.egt — gf — ftemsalr does not include
any k-itemset not contained in the transaction with
identifier £.TIED. The set L, is correct if it is the same as
the set of all large k-itemsets. It says that the set

L. generated in step 7 in the kth pass is correct if it is the
same as the set of candidate k-itemsets in £’ ,contained in
the transaction with identifier &.TIL.

Lemma 1 :%t = L, if {,_, is correct and complete and

L,_is correct, then the set C. generated in step 7 in the
kth pass is the same as the set of candidate k-itemsets in

£ .. contained in the transaction with identifier t.TID. By

simple rewriting, a candidate itemset
¢ — ¢[1] ¢[2] ww c[k] is present in transaction t.TID
if and only if both

¢! = (o= c[R]) ek ¢t — (¢ —c[k—1]) are
in transaction t.TID. Since (", was obtained by calling
apriori-gen(L ,_,), all subsets of ¢ & £, must be large.
So, ¢ * and ¢ ® must be large itemsets. Thus, if ¢ & € , is
contained in transaction t.TID «<*and =% must be members
of t.set — af — ltemsats since £, , is complete
Hence ¢ will be a member of £, . Since {,._, is correct,
if ¢*( ¢*] is not present in transaction t.TID then &*{
#5) is not contained in &1 &9t — @f — ltgmasts
Hence, if © & £, is not contained in transaction
& TID, ¢ will not be a member of L, .

Lemma 2 : ¥t =1, if L,_, is correct and the set .
generated in step 7 in the kth pass is the same as the set of
candidate k-itemsets in ', contained in the transaction

with identifier t.TID, then the set C, is correct and
complete.

Since the apriori-gen function guarantees that, € , = L ,
the set L. includes all large k-itemsets contained in t.TID.
These are added in step 10 to (,, and hence C,, is complete.
Since C. only includes itemsets contained in the
transaction t.TID, and only itemsets in €, are added to
it follows that £, is correct.

Theorem 1 :# = 1, the set ', generated in step 7 in the
kth pass is the same as the set of candidate k-itemsets in
" , contained in the transaction with identifier . I'{D.

First prove by induction on k that the set L' ,. is correct
and complete and L , correct for all { & 2= L1}. For
k = 1, this is trivially true since £, corresponds to the
database . By definition, L is also correct. Assume this
holds for & = 7. From Lemma 1, the set £, generated in
step 7 in the {72 = 1)th pass will consist of exactly those
itemsets in C,aq contained in the transaction with

identifier &. T ILY,

Since the apriori-gen function guarantees
Coag = Lo and C. is correct, L.y will be
correct. >From Lemma 2, the set <., will be correct and
complete. Since ET;C is correct and complete and 7. ,

correct for all & = 1, the theorem follows directly from
Lemma 1.

|. Data Structures

By assigning each candidate itemset a unique number,
called its ID. Each set of candidate itemsets L' ;. is kept in
an array indexed by the IDs of the itemsets in €', . A

member of C , is now of the form == TED; {i87} =

177



Supriya S. Borhade et al | IJCSET(www.ijcset.net) | June 2015 | Vol 5, Issue 6,173-181

Each € , is stored in a sequential structure. The apriori-
gen function generates a candidate k-itemset ck by joining
two large (k-1)-itemsets. Maintain two additional fields for
each candidate itemset: i) generators and ii) extensions.
The generators field of a candidate itemset £, stores the
IDs of the two large (k-1)-itemsets whose join generated
ck. The extensions field of an itemset L' ,. stores the IDs
of all the (k+1)-candidates that are extensions of L,

Thus, when a candidate <, is generated by joining
i+ andli_, , save the IDs of Ix_, and l3_, in the
generators field for £ .. At the same time, the ID of ck is
added to the extensions field of [:_; .

Now describing how 7 of Figure 2 Step is implemented
using the above data structures. Recall that
the tuset — ¢f — ltemaets field of an entry t in
C"k_i gives the IDs of all (k-1)-candidates contained in
transaction t.TID. For each such candidate € ;_; the
extensions field gives T .., the set of IDs of all the
candidate k-itemsets that are extensions of & ,_y. For
each ' ,in T ., the generators field gives the IDs of the
two itemsets that generated ck. If these itemsets are present
in the entry for .2t — af — lrem#ets , one can

-

conclude that & , is present in transaction t.TID, and add
Cpto O .

For this actually need to store only ti-i in the
generators field, since reached L, starting from the 1D of

It_, in t Omitted this optimization in the above
description to simplify exposition. Given an ID and the
data structures above, one can find the associated
candidate itemset in constant time. One can also find in
constant time whether or not an ID is present in the
t.rat — gf — [temsats field by using a temporary
bitmap. Each bit of the bitmap corresponds to an ID in
C ... This bitmap is created once at the beginning of the

pass and is reinitialized for each entry t of C ,.

J. Buffer Management

In the kth pass, Apriori-Tid needs memory for Ly _,
and C j, during candidate generation. During the counting
phase, it needs memory for £ ._;, C ., and a page each

for € 4_qy and C ;. Note that the entries in € ,_, are
needed sequentially and that the entries in Ck can be
written to disk as they are generated. At the time of
candidate generation, after joining L ,_; with itself, it fill
up roughly half the buffer with candidates. This allows us
to keep the relevant portions of both Ck and €' ;.; in
memory during the counting phase. In addition, its ensure
that all candidates with the same first (k-1) items are
generated at the same time. The computation is now
effectively partitioned because none of the candidates in
memory that turn out to large at the end of the pass will
join with any of the candidates not yet generated to derive
potentially large itemsets. Hence one can assume that the

candidates in memory are the only candidates in C'  and
find all large itemsets that are extensions of candidates in
C ;. by running the algorithm to completion. This may
cause further partitioning of the computation downstream.
Having thus run the algorithm to completion, return
to L,._4, generate some more candidates in £ ., count
them, and so on. Note that the prune step of the apriori-gen
function cannot be applied after partitioning because one
may do not know all the large k-itemsets. When L .. does

not fit in memory, miner need to externally sort L , as in
the buffer management scheme used for Apriori.

I11. DISCOVERING RULES

The association rules that considered here are
somewhat more general than in [4] in that it allow a
consequent to have more than one item; rules in [4] were
limited to single item consequents.  first give a
straightforward generalization of the algorithm in [4] and
then present a faster algorithm. To generate rules, for every
large itemset !, find all non-empty subsets of !. For every
such subset a, output a rule of the form @ = (L — aj if
the ratio of support(!{) to support(c) is at least rrHrcaf .

Consider all subsets of ! to generate rules with multiple
consequents. Since the large itemsets are stored in hash
tables, the support counts for the subset itemsets can be
found efficiently. One can improve the above procedure by
generating the subsets of a large itemset in a recursive
depth-first fashion. For example, given an itemset ABCD,
first consider the subset ABC, then AB, etc. Then if a
subset a of a large itemset ! does not generate a rule, the
subsets of a need not be considered for generating rules
using I. For example, if AFL — E' does not have

enough confidence, need not check whether A& — &0
holds. Do not miss any rules because the support of any
subset ~a of a must be as great as the support of a.
Therefore, the confidence of the rule & =+ (I — ]
cannot be more than the confidence of & — (f— &J.
Hence, if @ did not yield a rule involving all the items in !

with a as the antecedent, neither will &. The following
algorithm embodies these ideas:

/I Simple Algorithm

Forull lerge Lermeete ok 22 de
coall germrulies(l K

The gruwrules gemereces ell valld rales

= ila— Ehiorald crg

precedure gemraleally large & — themzet anh lorge m— themzet’

Lid ={fm—171 —emeeld Qo

Z: favall eyny ® Ade begin

By S fp}!
F1conf = suppert (S

!
LT £ y T e 1
A% &f Crersl _mbneorsf T the » 1w be,
s

E gt
= I i il 3 -

F_[ LUETTND TIE TRE Wy =¥ (i ™= B L

with coodenee = conl and suppert = sugpertlzh

Frif Om— L » Lithen
8t call gerrulesily Baadd
107 cied

11} eud

178



Supriya S. Borhade et al | IJCSET(www.ijcset.net) | June 2015 | Vol 5, Issue 6,173-181

K. A Faster Algorithm

In previous section if &= (= &I does not hold,

neither does &= (i— & 'for any @ ©a By rewriting,
it follows that for arule ¥—¢l= oo hold, all rules of
the form %= & = & must also hold, where € is a non-
empty subset of £. For example, if the rule AB —CD holds,

then the rules #8& = I and #E2 = ¢ must also hold.
Consider the above property that for a given large itemset,
if a rule with consequent ¢ holds then so do rules with
consequents that are subsets of c. This is similar to the
property that if an itemset is large then so is all its subsets.

From a large itemset !, therefore, first generate all rules
with one item in the consequent. Then by using the
consequents of these rules and the function apriori-gen in
Section C to generate all possible consequents with two

items that can appear in a rule generated from ¢, etc. An
algorithm using this idea is given below. The rules having
one-item consequents in step 2 of this algorithm can be
found by using a modified version of the preceding general
rules function in which steps 8 and 9 are deleted to avoid
the recursive call.

I Faster Algorlthm

W5 = f s nasgn
'F,'-mHsey—
<7 amnd
'PWI’.‘E’E!WEES: —SEnr
serof nn  iea

mies( ) large = (cewget. Bl

TS eSS D "S‘
if (e = m+ 1)
G 1l w ggeiam
Ferallh

,n.:- fﬂﬁ-’-\.

ggin
gandinh
+12H, +1do begtn

got dengs = gonf and mppeit = auppert(hy

elae

weluls b & 1 fovmn Hone+ D
crel
park gy = genitleatl,. 5. 1

o

As an example of the advantage of this algorithm,
consider a large itemset 4E&DE . Assume that
ACDE — B and ABCE — 1 are the only one-item
consequent rules derived from this itemset that have the
minimum confidence. If use the simple algorithm, the
recursive call genrules {42£0E, <SDET will test if the
two-item consequent rules &4fD — EE.alE — EC.
eLE — B4, and aiE — ED hold. The first of these rules
cannot hold, because £ = Z&,and ABCD — E does not
have minimum con_dence. The second and third rules
cannot hold for similar reasons. The call
genrules{ 48 £DE, a8 €5 will test if the rules aE& = DE,
ABE = DC. BCE — Daand 40F — ED hold, and will
find that the first three of these rules do not hold. In fact,
the only two-item consequent rule that can possibly hold is
ACE = EI, where B and D are the consequents in the
valid one-item consequent rules. This is the only rule that
will be tested by the faster algorithm.

I\V. PERFORMANCE

To assess the relative performance of the algorithms
for discovering large itemsets, performed several
experiments on an IBM RS/6000 530H workstation with a
CPU clock rate of 33 MHz, MB of main memory, and
running AIX 3.2. The data resided in the AIX file system
and was stored on a 2GB SCSI 3.5" drive, with measured
sequential throughput of about 2 MB/second.

L. The AIS Algorithm

Figure 4 summarizes the essence of the AIS algorithm
(see [4] for further details). Candidate itemsets are
generated and counted on-the-y as the database is scanned.
After reading a transaction, it is determined which of the
itemsets that were found to be large in the previous pass
are contained in this transaction (step 5). New candidate
itemsets are generated by extending these large itemsets
with other items in the transaction (step 7). A large itemset

l is extended with only those items that are large and occur
later in the lexicographic ordering of items than any of the

items in . The candidates generated from a transaction are
added to the set of candidate

itemsets maintained for the pass, or the counts of the
corresponding entries are increased if they were created by
an earlier transaction (step 9).

@i Jf AIS Algorithm (figure 4)

1ik, = i:ﬁﬂ';aé '].—..:.E‘.“".EE..'-‘}I

iferik = 2 Ly, =0 &k ++ T dobegin
T C: =)

It ferell trensactions £ € D de begin

orel camaiintes e € Coae
i T © 5l then
wad L e the comst ef ote correspending b O

glag

R et Cpwitha eourtel L
10T endl
L1t Ly =ir € O | oeount _minsug]
12T emel

187 Adsweor m Wp g

Data Structures: The data structures required for
maintaining large and candidate itemsets were not
specified in [4]. Store the large itemsets in a dynamic
multi-level hash table to make the subset operation in step
5 fast, using the algorithm described in the previous
section. Candidate itemsets are kept in a hash table
associated with the respective large itemsets from which
they originate in order to make the membership test in step
9 fast. Buffer Management When a newly generated
candidate itemset causes the buffer to overflow, discard
from memory the corresponding large itemset and all
candidate itemsets generated from it. This reclamation
procedure is executed as often as necessary during a pass.
The large itemsets discarded in a pass are extended in the
next pass. This technique is a simplified version of the
buffer management scheme presented in [4].

179



Supriya S. Borhade et al | IJCSET(www.ijcset.net) | June 2015 | Vol 5, Issue 6,173-181

M. The SETM Algorithm

The SETM algorithm [17] was motivated by the desire
to use SQL to compute large itemsets. Our description of
this algorithm in Figure 5 uses the same notation as used
for the other algorithms, but is functionally identical to the
SETM algorithm presented in [17]. € ,(L ,) in Figure 5
represents the set of candidate (large) itemsets in which the
TIDs of the generating transactions have been associated
with the itemsets. Each member of these sets is of the
form< TID; itemset >. Like AIS, the SETM algorithm also
generates candidates on-the-y based on transactions read
from the database. It thus generates and counts every
candidate itemset that the AIS algorithm generates.
However, to use the standard SQL join operation for
candidate  generation, SETM separates candidate
generation from counting. It saves a copy of the candidate
itemset together with the TID of the generating transaction
in a sequential structure (step 9). At the end of the pass, the
support count of candidate itemsets is determined by
sorting (step 12) and aggregating this sequential structure
(step 13).

SETM remembers the TIDs of the generating transactions
with the candidate itemsets. To avoid needing a subset
operation, it uses this information to determine the large
itemsets contained in the transaction read (step
6) L, = T, and is obtained by deleting those
candidates that do not have minimum support (step 13).
Assuming that the database is sorted in TID order, SETM
can easily find the large itemsets contained in a transaction
in the next pass by sorting L , .on TID (step 15). In fact, it

needs to visit every member of L , only once in the TID
order, and the candidate generatlon in steps 5 through 11
can be performed using the relational merge-join operation
[17]. The disadvantage of this approach is mainly due to
the size of candidate sets € .. For each candidate itemset,
the candidate set now has as many entries as the number of
transactions in which the candidate itemset is present.
Moreover, ready to count the support for candidate
itemsets at the end of the pass, € , is in the wrong order
and needs to be sorted on itemsets (step 12). After
counting and pruning out small candidate itemsets that do
not have minimum support, the resulting set L . Needs
another sort on TID (step 15) before it can be used for
generating candidates in the next pass.

/ISETM Algorithm (figureb)

1) L. = flarge l—itemaetsh

2) i, = ilarge ;—.:ernse:s:a;s:ﬁ wizh the
TN "U'**rr‘: s aggearForeed on TN
3)for(k=2; T ._, =@; k++) do begin

4) & =0

51 ﬁ:mﬁ‘ traMsactions v € D de begin
6)L.={lel .| hTID = hTES}I

7) forvall farge itemsets [ . € Lo do begin
8) 7. = 1l =sgutensions of [ ,:e“‘r zod e D
9 -:;_+- i« nTIDo = |0 &Cr)

107 end

L1 e

Lot gart O nom tlemasts

137 delete r...': ttemaets ¢ © € g for which © cournt

< minsny gty L g
19tk =42 L bemzeteount ol Linbe» |L E L
18t sore L on TID
LT ewd
Lriduwswer = Up Lp
Buffer Management: The performance of the SETM
algorithm critically depends on the size of the set
 ,relative to the size of memory. If £ . fits in memory,
the two sorting steps can be performed using an in-
memory sort. In [17], £ , was assumed to fit in main
memory and buffer management was not discussed.

If €, is too large to fit in memory, write the entries in
£, to disk in FIFO order when the buffer allocated to the
candidate itemsets fills up, as these entries are not required

until the end of the pass. However, £ , now requires two

external sorts.

o
vl
B

V. CONCLUSIONS AND FUTURE WORK

In this paper presented two algorithms, Apriori and
Apriori-Tid, for discovering all major association rules
between items in a large database of transactions. Here
compared these algorithms to the previously known
algorithms, the AIS [4] and SETM [17] algorithms. Also
presented the proposed algorithms always do better AIS
and SETM. The performance gap increased with the
problem size, and ranged from a factor of three for small
problems to more than an order of magnitude for large
problems. Also studied the best features of the two
proposed algorithms can be combined into a hybrid
algorithm, called Apriori-Hybrid, which then becomes the
algorithm of choice for this problem. Scale-up experiments
showed that Apriori-Hybrid scales linearly with the
number of transactions. In addition, the execution time
decreases a little as the number of items in the database
increases. As the average transaction size increases (while
keeping the database size constant), the execution
time increases only gradually. Feasibility study of using
Apriori-Hybrid in real applications involves very large
databases. The algorithms presented in this paper have
been implemented on several data repositories, including
the AIX file system, DB2/MVS, and DB2/6000. In the
future, plan to extend this study work along the following
dimensions:
1)Multiple taxonomies (is-a hierarchies) over items are
often available. An example of such a hierarchy is that a
dish washer is a kitchen appliance is a heavy electric
appliance, etc. also would like to be able to find
association rules that use such hierarchies.

2) For this study work did not considered the quantities of
the items bought in a transaction, which are useful for
some applications. Finding such rules needs further work.

The work reported in this paper has been done in the
context of the Quest project at the IBM Almaden Research
Center. Explore the various aspects of the database mining
problem. Besides the problem of discovering association
rules, some other problems that looked into include the
improvement of the database capability with classification
queries [8] and similarity queries over time sequences [7].
Believe that database mining is an important new

180



Supriya S. Borhade et al | IJCSET(www.ijcset.net) | June 2015 | Vol 5, Issue 6,173-181

application area for databases, combining commercial
interest with interesting research questions.

[
[2]
(3]
[4]

(5]

(6]

(7]

REFERENCES

M. Stonebraker et al. The DBMS research at crossroads. In Proc. of
the VLDB Conference, Dublin, August 1993.

Direct Marketing Association. Managing database marketing
technology for success, 1992.

David Shepard Associates. The new direct marketing. Business One
Irwin, Illinois,1990.

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining
association rules between sets of items in large databases. In Proc.
of the ACM SIGMOD Conference on Management of Data, pages
207-216, Washington, D.C., May 1993.

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Database
mining: A performance perspective. IEEE Transactions on
Knowledge and Data Engineering, 5(6):914-925, December 1993.
Special Issue on Learning and Discovery in Knowledge-Based
Databases.

Tarek M. Anwar, Howard W. Beck, and Shamkant B. Navathe.
Knowledge mining by imprecise querying: A classi_cation-based
approach. In IEEE 8th Int'l Conf. on Data Engineering, Phoenix,
Arizona, February 1992.

Rakesh Agrawal, Christos Faloutsos, and Arun Swami. E_cient
similarity search in sequence databases. In Proc. of the Fourth
International Conference on Foundations of Data Organization and
Algorithms, Chicago, October 1993. Also in Lecture Notes in
Computer Science 730, Springer Verlag, 1993, 69-84.

(8]

(9]

[10]

[11]
[12]

[13]

[14]
[15]

[16]

[17]

181

Rakesh Agrawal, Sakti Ghosh, Tomasz Imielinski, Bala lyer, and
Arun Swami, An interval classifier for database mining applications.
In Proc. of the VLDB Conference,pages 560-573, Vancouver,
British Columbia, Canada, August 1992.

Tarek M. Anwar, Shamkant B. Navathe, and Howard W. Beck.,
Knowledge mining in databases: A unified approach through
conceptual clustering. Technical report, Georgialnstitute of
Technology, May 1992.

Jiawei Han, Yandong Cai, and Nick Cercone, Knowledge discovery
in databases: An attribute oriented approach. In Proc. of the VLDB
Conference, pages 547{559, Vancouver, British Columbia, Canada,
1992.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees. Wadsworth, Belmont, 1984.

G. Cooper and E. Herskovits, A Bayesian method for the induction
of probabilistic networks from data. Machine Learning, 1992.

David J. Lubinsky, Discovery from databases: A review of Al and
statistical techniques.In  1JCAI-89 Workshop on Knowledge
Discovery in Databases, pages 204-218, Detroit,August 1989.

J. Pearl, Probabilistic reasoning in intelligent systems: Networks of
plausible inference,1992.

D. Bitton, Bridging the gap between database theory and practice,
1992.

Heikki Mannila and Kari-Jouku Raiha, Dependency inference. In
Proc. of the VLDB Conference, pages 155-158, Brighton, England,
1987.

Maurice Houtsma and Arun Swami. Set-oriented mining of
association rules. Research Report RJ 9567, IBM Almaden
Research Center, San Jose, California, October 1993.





