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Abstract— The difficulty of discovering association rules 
between items in a large database of corporate or retail 
organizations sales transactions. In this paper studied and 
presented two new algorithms for solving this problem that 
are basically different from the known algorithms. 
Experiments with mock as well as real-life data show that 
these algorithms do better than known algorithms by factors 
ranging from three for small problems to more than an order 
of magnitude for large problems.  Also showing how the best 
features of the two proposed algorithms can be combined into 
a hybrid algorithm, called Apriori Hybrid. Scale-up 
experiments show linear scales that with the number of 
transactions using Apriori Hybrid algorithm. Apriori Hybrid 
also has outstanding scale-up properties with respect to the 
transaction size and the number of items in the database. 

Keywords— Apriori, Apriori-Tid,  AIS,  SETM,  Association 
rule. 

I. INTRODUCTION 

Most large retail organizations or corporate are facing 
the challenge of database mining, which is motivated by 
the decision support [1]. Progress in bar-code technology 
has made it possible for retail organizations to collect and 
store huge amounts of sales data, referred to as the market 
basket data. A record in such data typically consists of the 
transaction date and the items brought in the transaction. 
Most successful organizations view such databases as vital 
pieces of the marketing strategies [2]. Miners are interested 
in formulating information-driven marketing processes, 
managed by database technology, that enable marketers to 
develop and implement customized marketing programs 
and strategies [3]. The problem of mining association rules 
over basket data was introduced in [4]. An example of 
such a rule might be that 98% of customers who purchase 
tires and auto accessories also get automotive services 
done. Searching all such rules is valuable for cross-
marketing and attached mailing applications. Other 
applications include catalogue design, add-on sales, store 
layout, and customer segmentation based on frequent 
buying patterns. The databases involved in these 
applications are very large. It is crucial, therefore, to have 
quick or fast algorithms for data mining task. The 
following is a formal statement of the problem [5]: 

Let  be a set of literals, called items. 
Let  be a set of transactions, where each transaction  is 

a set of items such that . Associated with each 
transaction is a unique identifier, called its . Consider 
that a transaction  contains , a set of some items in , if 

 . An association rule is an implication of the form 
 , where  and  The rule 

 holds in the transaction set  with confidence  if 
 of transactions in  that contain  also contain  . The 

rule  has support s in the transaction set  if s% of 
transactions in  contain  . Our rules are somewhat 
more general than in [4] in that allowed a consequent to 
have more than one item.  Given a set of transactions , 
the problem of mining association rules is to generate all 
association rules that have support and confidence greater 
than the user-specified minimum support (called ) 
and minimum confidence (called  ) respectively. 
This discussion is neutral with respect to the representation 
of D. For example, D could be a data le, a relational table, 
or the result of a relational expression. An algorithm for 
finding all association rules, henceforth referred to as the 
AIS algorithm, was presented in [4]. Another algorithm for 
this task, called the SETM algorithm, has been proposed in 
[17]. In this paper, present two new algorithms, Apriori 
and Apriori-Tid, that differs fundamentally from these 
algorithms.  The performance gap is shown to increase 
with problem size, and ranges from a factor of three for 
small problems to more than an order of magnitude for 
large problems.  Then discussed how the best features of 
Apriori  and Apriori-Tid can be combined into a hybrid 
algorithm, called AprioriHybrid. Experiments show that 
the AprioriHybrid has excellent scale-up properties, 
opening up the feasibility of mining association rules over 
very large databases. The problem of finding association 
rules falls within the purview of database mining [5] 
[6] ,also called knowledge discovery in databases [10] 
[13] . Related, but not directly applicable, work includes 
the induction of classification rules [11] [10], discovery of 
causal rules [12] [14], learning of logical definitions, 
fitting of functions to data , and clustering [9] . The closest 
work in the machine learning literature is the KID3 
algorithm presented in [18]. If used for finding all 
association rules, this algorithm will make as many passes 
over the data as the number of combinations of items in the 
antecedent, which is exponentially large. Related work in 
the database literature is the work on inferring functional 
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dependencies from data [15] [16]. Functional dependencies 
are rules requiring strict satisfaction. 
Consequently, having determined a dependency , 
the algorithms in [15] [16]consider any other dependency 
of the form  redundant and do not generate it. 
The association rules considered here are probabilistic in 
nature. The presence of a rule  does not necessarily 
mean that  also holds because the latter may 
not have minimum support. Similarly, the presence of 
rules  and  does not necessarily mean that 

 holds because the latter may not have minimum 
confidence. There has been work on quantifying the 
``usefulness" or ``interestingness" of a rule [18]. What is 
useful or interesting is often application-dependent. The 
need for a human in the loop and providing tools to allow 
human guidance of the rule discovery process has been 
articulated. Do not discuss these issues in this paper, 
except to point out that these are necessary features of a 
rule discovery system that may use this algorithms as the 
engine of the discovery process. 

A. Problem Decomposition and Paper Organization  

The problem of discovering all association rules can be 
decomposed into two sub-problems [4]:  
1. Find all sets of items (itemsets) that have transaction 
support above minimum support. The support for an 
itemset is the number of transactions that contain the 
itemset. Itemsets with minimum support are called large 
itemsets, and all others small itemsets. In Section II, give 
new algorithms, Apriori and Apriori-Tid, for solving this 
problem.  
2. Use the large itemsets to generate the desired rules.  The 
algorithms for this problem are in Section III. The general 
idea is that if, say, ABCD and AB are large itemsets, then 
one can determine if the rule  holds by 

computing the ratio  If 

, then the rule holds. (The rule will 
surely have minimum support because ABCD is large.) 
Unlike [4], where rules were limited to only one item in 
the consequent,  for this allow multiple items in the 
consequent. An example of such a rule might be that in 
58% of the cases, a person who orders a comforter also 
orders a flat sheet, a fitted sheet, a pillow case, and a rule. 
The algorithms in Section III generate such multi-
consequent rules. 
In Section IV, shown the relative performance of the 
proposed Apriori and Apriori-Tid algorithms against the 
AIS [4] and SETM [17] algorithms. To make the paper 
self-contained, also include an overview of the AIS and 
SETM algorithms in this section.  Also describes how the 
Apriori and Apriori-Tid algorithms can be combined into a 
hybrid algorithm, AprioriHybrid, and demonstrate the 
scale-up properties of this algorithm.  Finally concluded by 
pointing some related open problems in Section V. 
 

II. DISCOVERING LARGE ITEMSETS 

Algorithms for discovering large itemsets make multiple 
passes over the data. In the first pass, count the support of 

individual items and determine which of them are large, i.e. 
have minimum support. In each subsequent pass, start with 
a seed set of itemsets found to be large in the previous pass. 
To use this seed set for generating new potentially large 
itemsets, called candidate itemsets, and count the actual 
support for these candidate itemsets during the pass over the 
data. At the end of the pass, determine which of the 
candidate itemsets are actually large, and they become the 
seed for the next pass. This process continues until no new 
large itemsets are found. 
The Apriori and Apriori-Tid algorithms proposed differ 
fundamentally from the AIS [4] and SETM [17] algorithms 
in terms of which candidate itemsets are counted in a pass 
and in the way that those candidates are generated. In both 
the AIS and SETM algorithms (see Sections L and M for a 
review), candidate itemsets are generated on-the-y during 
the pass as data is being read. Specifically, after reading a 
transaction, it is determined which of the itemsets found 
large in the previous pass are present in the transaction. 
New candidate itemsets 

are generated by extending these large itemsets with 
other items in the transaction. However, the disadvantage is 
that this results in unnecessarily generating and counting 
too many candidate itemsets that turn out to be small. The 
Apriori and Apriori-Tid algorithms generate the candidate 
itemsets to be counted in a pass by using only the itemsets 
found large in the previous pass without considering the 
transactions in the database. The basic intuition is that any 
subset of a large itemset must be large. Therefore, the 
candidate itemsets having k items can be generated by 
joining large itemsets having k1 items, and deleting those 
that contain any subset that is not large. This procedure 
results in generation of a much smaller number of candidate 
itemsets. The Apriori-Tid algorithm has the additional 
property that the database is not used at all for counting the 
support of candidate itemsets after the first pass. Rather, an 
encoding of the candidate itemsets used in the previous pass 
is employed for this purpose. In later passes, the size of this 
encoding can become much smaller than the database, thus 
saving much reading effort.  Explaining these points in 
more detail when describes the algorithms. 
Notation ,  assume that items in each transaction are kept 
sorted in their lexicographic order. It is straightforward to 
adapt these algorithms to the case where the database D is 
kept normalized and each database record is a <TID, item> 
pair, where TID is the identifier of the corresponding 
transaction. 
Call the number of items in an itemset its size, and call an 
itemset of size k a k-itemset. Items within an itemset are 
kept in lexicographic order. using  notation 

 to represent a k-itemset  consisting of 
items  where  
If  and Y is an m-itemset, also call Y an m-
extension of X. Associated with each itemset is a count field 
to store the support for this itemset. The count field is 
initialized to zero when the itemset is first created.  Also 
summarized in Table 1 the notation used in the algorithms. 
The set  is used by Apriori-Tid and will be further 
discussed in this algorithm. 
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TABLE I: Notation 

k-
itemset 

An itemset having k items.  

  

Set of large k-itemsets (those with minimum support) 
Each member of this set has two fields :  
i) itemset and ii) support count. 

Ck 
 Set of candidate k-itemsets (potentially large 
itemsets). Each member of this set has two fields : 
 i) itemset and ii) support count.  

Ck 
Set of candidate k-itemsets when the TIDs of the 
generating transactions are kept associated withthe 
candidates 

 

B. Algorithm Apriori 

 Figure 1 gives the Apriori algorithm. The first pass of 
the algorithm simply counts item occurrences to determine 
the large 1-itemsets. A subsequent pass, say pass k, 
consists of two phases. First, the large itemsets  found 
in the th pass are used to generate the candidate 
itemsets , using the apriori-gen function described in 
Section C. Next, the database is scanned and the support of 
candidates in is counted. For fast counting, need to 
efficiently determine the candidates in   that are 
contained in a given transaction t. Section E describes the 
subset function used for this purpose. Section 2.1.3 
discusses buffer management. 
// Apriori Algorithm (Figure 1) 
1.  

2.  

3.  

4.  

5.  

6.  

7.  

8.  

9.  

10.  

11.  
 

C. Apriori Candidate Generation  

The apriori-gen function takes as argument , the set 
of all large . It returns a superset of the 
set of all large k-itemsets. The function works as follows.  
First, in the join step, join  with : 
 
// Apriori Candidate Generation Algorithm  
1. insert into   

2. select 
 

3.  

4. where  

 
 

D.         ; 

5. Next, in the prune step, delete all itemsets  

         such that some  of  is not in : 

6. forall itemsets  do  

7. forall subsets s of c do 

8. if  ) then  

9. delete c from ; 

Example :Let L3 be {{123}, {124},{134}, {135},{234}}. 
After the join step, C4 will be {{1234},{1345}}. The prune 
step will delete the itemset {1345} because the itemset {1 4 
5} is not in L3.  Then be left with only {1234} in C4.  
contrast this candidate generation with the one used in the 
AIS and SETM algorithms. In pass k of these algorithms 
(see Section IV for details), a database transaction t is read 
and it is determined which of the large itemsets in  are 
present in t. Each of these large itemsets  is then extended 
with all those large items that are present in t and occur later 
in the lexicographic ordering than any of the items in . 
Continuing with the previous example, consider a 
transaction {12345}. In the fourth pass, AIS and SETM will 
generate two candidates, {1234} and {1 235}, by extending 
the large itemset {123}. Similarly, an additional three 
candidate itemsets will be generated by extending the other 
large itemsets in , leading to a total of 5 candidates for 
consideration in the fourth pass. Apriori, on the other hand, 
generates and counts only one itemset, {1345}, because it 
concludes a priori that the other combinations cannot 
possibly have minimum support. 
Correctness –Also need to show that    . Clearly, 
any subset of a large itemset must also have minimum 
support. Hence, if extended each itemset in with all 
possible items and then deleted all those whose (k-1)-
subsets were not in , one would left with a superset of 
the itemsets in  . The join is equivalent to extending  
with each item in the database and then deleting those 
itemsets for which the (k-1)-itemset obtained by deleting 
the (k-1)th item is not in . The condition 

 simply ensures that no  
duplicates are generated. Thus, after the join step,   . 
By similar reasoning, the prune step,  delete from  all 
itemsets whose (k-1)-subsets are not in , also does not 
delete any itemset that could be in . 
Variation: Counting Candidates of Multiple Sizes in One 
Pass Rather than counting only candidates of size k in the 
kth pass, one can also count the candidates , where  

 is generated from  , etc. Note that  +1 
since is generated from  . This variation can pay  in 
the later passes when the cost of counting and keeping in 
memory additional candidates becomes less 
than the cost of scanning the database.  
Membership Test :The prune step requires testing that all    
(k-1)-subsets of a newly generated k-candidate-itemset are 
present in . To make this membership test fast, large 
itemsets are stored in a hash table. 
 
 

Supriya S. Borhade et al |  IJCSET(www.ijcset.net) | June 2015 | Vol 5, Issue 6,173-181

175



E. Subset Function 

Candidate itemsets  are stored in a hash-tree. A 
node of the hash-tree either contains a list of itemsets (a 
leaf node) or a hash table (an interior node). In an interior 
node, each bucket of the hash table points to another node. 
The root of the hash-tree is defined to be at depth 1. An 
interior node at depth d points to nodes at depth d + 1. 
Itemsets are stored in the leaves. When miner adds an 
itemset c,  start from the root and go down the tree until to 
reach a leaf. At an interior node at depth d, decide which 
branch to follow by applying a hash function to the dth item 
of the itemset. All nodes are initially created as leaf nodes. 
When the number of itemsets in a leaf node exceeds a 
specified threshold, the leaf node is converted to an 
interior node. Starting from the root node, the subset 
function finds all the candidates contained in a transaction 
t as follows. If one is  at a leaf,  find which of the itemsets 
in the leaf are contained in t and add references to them to 
the answer set. If one is at an interior node and  have 
reached it by hashing the item i, hash on each item that 
comes after i in t and recursively apply this procedure to 
the node in the corresponding bucket. For the root node, 
hash on every item in t. To see why the subset function 
returns the desired set of references, consider what 
happens at the root node. For any itemset c contained in 
transaction t, the first item of c must be in t. At  the root, 
by hashing on every item in t,  one can ensure that he is the 
only ignore itemsets that start with an item not in t. Similar 
arguments apply at lower depths. The only additional 
factor is that, since the items in any itemset are ordered, if 
reach the current node by hashing the item i, only need to 
consider the items in t that occur after i. If k is the size of a 
candidate itemset in the hash-tree, one can find in O(k) 
time whether the itemset is contained in a transaction by 
using a temporary bitmap. Each bit of the bitmap 
corresponds an item. The bitmap is created once for the 
data structure, and reinitialized for each transaction. This 
initialization takes O(size(transaction)) time for each 
transaction. 

F. Buffer Management  

    In the candidate generation phase of pass k, need storage 
for large itemsets  and the candidate itemsets . In 
the counting phase, need storage for  and at least one 
page to buffer the database transactions. First, assume that 

 fits in memory but that the set of candidates  does 
not. The Apriori-gen function is  modified to generate as 
many candidates of  as will t in the buffer and the 
database is scanned to count the support of these 
candidates. Large itemsets resulting from these candidates 
are written to disk, while those candidates without 
minimum support are deleted. This procedure is repeated 
until all of has been counted. If  does not t in 
memory either, externally sort .  It was bring into 
memory a block of in which the first (k-2) items are 
the same. Now generate candidates using this block. Keep 
reading blocks of  and generating candidates until the 
memory fills up, and then make a pass over the data. This 
procedure is repeated until all of has been counted. 
Unfortunately, one can no longer prune those candidates 

whose subsets are not in , as the whole of  is not 
available in memory. 

G. Algorithm Apriori-Tid 

     The Apriori-Tid algorithm, shown in Figure 2, also uses 
the apriori-gen function (given in Section C) to determine 
the candidate itemsets before the pass begins. The 

interesting feature of this algorithm is that the database  
is not used for counting support after the first pass. Rather, 

the set  is used for this purpose. Each member of the 

set  is of the form , where each  is a 
potentially large k-itemset present in the transaction with 

identifier TID. For  corresponds to the database 
D, although conceptually each item i is replaced by the 
itemset {i}. For k > 1,  is generated by the algorithm 
(step 10). The member of corresponding to transaction 
t is <t . If a 
transaction does not contain any candidate k-itemset, then 

will not have an entry for this transaction. Thus, the 
number of entries in  may be smaller than the number 
of transactions in the database, especially for large values 
of k. In addition, for large values of k, each entry may be 
smaller than the corresponding transaction because very 
few candidates may be contained in the transaction. 
However, for small values for k, each entry may be larger 
than the corresponding transaction because an entry in  
includes all candidate k-itemsets contained in the 
transaction.  Further explore this trade-off  in Section IV. 
Establish the correctness of the algorithm in Section H. In 
Section I ,  given the data structures used to implement the 
algorithm, and  discussed buffer  management in Section J. 
 
// Apriori-Tid  Algorithm (figure 2) 
1. 	
2.   	
3. do begin  

4.  =   

5.   =  ; 

6.  forall entries   do begin  

7.    = {c  |  	
                   	
8.   

9.   

10.  

11. end  
12.   

13.  

14. 	

 
Example: Consider the database in Figure 3 and assume 
that minimum support is 2 transactions. Calling apriori-gen 
with  at step 4 gives the candidate itemsets C2. In steps 6 
through 10, count the support of candidates in C2 by 
iterating over the entries in C1 and generate C2. The first 
entry in  is { {1}{3} {4} }, corresponding to transaction 
100. The Ct at step 7 corresponding to this entry t is {{1 
3}}, because {1 3}g is a member of C2 and both ({1 3} – 
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{1}) and ({1 3} –{3}) are members of t.set-of-itemsets. 
Calling apriori-gen with L2 gives C3. Making a pass over 
the data with C2 and C3 generates C3. Note that there is no 
entry in C3 for the transactions with TIDs 100 and 400, 
since they do not contain any of the itemsets in C3. The 
candidate {235} in C3 turns out to be large and is the only 
member of L3. after generating C4 using L3, it turns out to 
be empty, and terminate. 

H.  Correctness 

 Rather than using the database transactions, Apriori-Tid 
uses the entries in  to count the support of candidates in 

.  
 

 
 

Figure. 3 
 

     To simplify the proof, it’s assumed that in step 10 of 
Apriori-Tid, always add to , rather 

than adding an entry only when  is non-empty. For 

correctness, one need to establish that the set  generated 
in step 7 in the kth pass is the same as the set of candidate 
k-itemsets in  contained in the transaction with 

identifier . It says that the set  is complete if  

,  includes all large 
k-itemsets contained in the transaction with 
identifier . It says that the set  is correct 

if ,  does not include 
any k-itemset not contained in the transaction with 
identifier . The set  is correct if it is the same as 
the set of all large k-itemsets. It says that the set 

generated in step 7 in the kth pass is correct if it is the 

same as the set of candidate k-itemsets in contained in 

the transaction with identifier .  

Lemma 1 :  , if  is correct and complete and 

is correct, then the set   generated in step 7 in the 
kth pass is the same as the set of candidate k-itemsets in 

 contained in the transaction with identifier t.TID. By 
simple rewriting, a candidate itemset 

is present in transaction t.TID 
if and only if both 

 are 

in transaction t.TID. Since  was obtained by calling 

apriori-gen( ), all subsets of  must be large. 

So, c 1 and c 2 must be large itemsets. Thus, if is 

contained in transaction t.TID and  must be members 

of  since  is complete 

Hence c will be a member of   . Since  is correct, 

if    is not present in transaction t.TID then  

   is not contained in . 

Hence, if  is not contained in transaction 

 will not be a member of   .  
 

Lemma 2 : , if  is correct and the set  
generated in step 7 in the kth pass is the same as the set of 
candidate k-itemsets in  contained in the transaction 

with identifier t.TID, then the set  is correct and 
complete. 

 

Since the apriori-gen function guarantees that,   

the set   includes all large k-itemsets contained in t.TID. 

These are added in step 10 to  and hence is complete. 

Since    only includes itemsets contained in the 

transaction t.TID, and only itemsets in    are added to , 

it follows that  is correct. 

Theorem 1 : , the set  generated in step 7 in the 
kth pass is the same as the set of candidate k-itemsets in 

 contained in the transaction with identifier . 

First prove by induction on k that the set   is correct 

and complete and   correct for all  For 

, this is trivially true since  corresponds to the 

database . By definition,  is also correct. Assume this 

holds for . From Lemma 1, the set  generated in 

step 7 in the th pass will consist of exactly those 

itemsets in  contained in the transaction with 

identifier .  
Since the apriori-gen function guarantees  

 and is correct,  will be 

correct. >From Lemma 2, the set will be correct and 

complete. Since   is correct and complete and   

correct for all , the theorem follows directly from 
Lemma 1. 

I. Data Structures 

   By assigning each candidate itemset a unique number, 
called its ID. Each set of candidate itemsets   is kept in 

an array indexed by the IDs of the itemsets in   . A 

member of   is now of the form . 
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Each   is stored in a sequential structure. The apriori-
gen function generates a candidate k-itemset ck by joining 
two large (k-1)-itemsets. Maintain two additional fields for 
each candidate itemset: i) generators and ii) extensions. 
The generators field of a candidate itemset    stores the 
IDs of the two large (k-1)-itemsets whose join generated 
ck. The extensions field of an itemset  stores the IDs 

of all the (k+1)-candidates that are extensions of   . 

Thus, when a candidate    is generated by joining 

and  , save the IDs of  and  in the 

generators field for . At the same time, the ID of ck is 

added to the extensions field of . 
 Now describing how 7 of Figure 2 Step is implemented 
using the above data structures. Recall that 

 field of an entry t in 

  gives the IDs of all (k-1)-candidates contained in 

transaction t.TID. For each such candidate  the 

extensions field gives , the set of IDs of all the 

candidate k-itemsets that are extensions of . For 

each  in , the generators  field gives the IDs of the 
two itemsets that generated ck. If these itemsets are present 
in the entry for , one can 

conclude that is present in transaction t.TID, and add 

 to . 

For this actually need to store only  in the 

generators field, since reached  starting from the ID of 

 in t. Omitted this optimization in the above 
description to simplify exposition. Given an ID and the 
data structures above, one can find the associated 
candidate itemset in constant time.  One can also find in 
constant time whether or not an ID is present in the 

  field by using a temporary 
bitmap. Each bit of the bitmap corresponds to an ID in 

. This bitmap is created once at the beginning of the 

pass and is reinitialized for each entry t of . 

J. Buffer Management 

       In the kth pass, Apriori-Tid needs memory for  

and  during candidate generation. During the counting 

phase, it needs memory for , , and a page each 

for  and . Note that the entries in  are 
needed sequentially and that the entries in Ck can be 
written to disk as they are generated. At the time of 
candidate generation, after joining   with itself, it fill 
up roughly half the buffer with candidates. This allows us 
to keep the relevant portions of both Ck and  in 
memory during the counting phase. In addition, its ensure 
that all candidates with the same first (k-1) items are 
generated at the same time. The computation is now 
effectively partitioned because none of the candidates in 
memory that turn out to large at the end of the pass will 
join with any of the candidates not yet generated to derive 
potentially large itemsets. Hence one can assume that the 

candidates in memory are the only candidates in  and 
find all large itemsets that are extensions of candidates in 

 by running the algorithm to completion. This may 
cause further partitioning of the computation downstream. 
Having thus run the algorithm to completion, return 
to , generate some more candidates in , count 
them, and so on. Note that the prune step of the apriori-gen 
function cannot be applied after partitioning because one 
may do not know all the large k-itemsets.  When  does 

not fit in memory, miner need to externally sort  as in 
the buffer management scheme used for Apriori. 

III. DISCOVERING RULES 

     The association rules that considered here are 
somewhat more general than in [4] in that it allow a 
consequent to have more than one item; rules in [4] were 
limited to single item consequents.  first give a 
straightforward generalization of the algorithm in [4] and 
then present a faster algorithm. To generate rules, for every 
large itemset ,  find all non-empty subsets of . For every 

such subset a, output a rule of the form  if 

the ratio of support( ) to support( ) is at least . 

Consider all subsets of  to generate rules with multiple 
consequents. Since the large itemsets are stored in hash 
tables, the support counts for the subset itemsets can be 
found efficiently. One can improve the above procedure by 
generating the subsets of a large itemset in a recursive 
depth-first fashion. For example, given an itemset ABCD, 
first consider the subset ABC, then AB, etc. Then if a 
subset a of a large itemset  does not generate a rule, the 
subsets of a need not be considered for generating rules 
using . For example, if  does not have 

enough confidence,  need not check whether  
holds. Do not miss any rules because the support of any 
subset ~a of a must be as great as the support of a. 
Therefore, the  confidence of the rule  

cannot be more than the confidence of . 

Hence, if  did not yield a rule involving all the items in  

with a as the antecedent, neither will . The following  
algorithm embodies these ideas: 
 
// Simple Algorithm  

	
	

 
	

	
	

	
	

	
 

	
	

	
	
	

Supriya S. Borhade et al |  IJCSET(www.ijcset.net) | June 2015 | Vol 5, Issue 6,173-181

178



K. A Faster Algorithm 

In previous section  if does not hold, 

neither does  for any   . By rewriting, 

it follows that for a rule  to hold, all rules of 

the form must also hold, where  is a non-

empty subset of . For example, if the rule AB CD holds, 

then the rules  and  C must also hold. 
Consider the above property that for a given large itemset, 
if a rule with consequent c holds then so do rules with 
consequents that are subsets of c. This is similar to the 
property that if an itemset is large then so is all its subsets. 

From a large itemset , therefore,  first generate all rules 
with one item in the consequent. Then by using the 
consequents of these rules and the function apriori-gen in 
Section C to generate all possible consequents with two 

items that can appear in a rule generated from , etc. An 
algorithm using this idea is given below. The rules having 
one-item consequents in step 2 of this algorithm can be 
found by using a modified version of the preceding general 
rules function in which steps 8 and 9 are deleted to avoid 
the recursive call. 

 
// Faster Algorithm 
1) 	

	
	

	
  

	
    	

	
	

	
                    

 
	

	
	

       	
	

 
 
    As an example of the advantage of this algorithm, 
consider a large itemset . Assume  that  

and are the only one-item 
consequent rules derived from this itemset that have the 
minimum confidence. If  use the simple algorithm, the 
recursive call genrules will test if the 
two-item consequent rules  

, and hold. The first of these rules 
cannot hold, because  and ABCD  E does not 
have minimum con_dence. The second and third rules 
cannot hold for similar reasons. The call 
genrules will test if the rules ,  

and hold, and will 
find that the first three of these rules do not hold. In fact, 
the only two-item consequent rule that can possibly hold is 

, where B and D are the consequents in the 
valid one-item consequent rules. This is the only rule that 
will be tested by the faster algorithm. 

IV. PERFORMANCE 

To assess the relative performance of the algorithms 
for discovering large itemsets, performed several 
experiments on an IBM RS/6000 530H workstation with a 
CPU clock rate of 33 MHz,  MB of main memory, and 
running AIX 3.2. The data resided in the AIX file system 
and was stored on a 2GB SCSI 3.5" drive, with measured 
sequential throughput of about 2 MB/second. 

L. The AIS Algorithm 

Figure 4 summarizes the essence of the AIS algorithm 
(see [4] for further details). Candidate itemsets are 
generated and counted on-the-y as the database is scanned. 
After reading a transaction, it is determined which of the 
itemsets that were found to be large in the previous pass 
are contained in this transaction (step 5). New candidate 
itemsets are generated by extending these large itemsets 
with other items in the transaction (step 7). A large itemset 

 is extended with only those items that are large and occur 
later in the lexicographic ordering of items than any of the 

items in . The candidates generated from a transaction are 
added to the set of candidate 
itemsets maintained for the pass, or the counts of the 
corresponding entries are increased if they were created by 
an earlier transaction (step 9). 
// AIS Algorithm (figure 4) 

	
do begin  

	
	

	
	

	
	

	
	

 
	

	
	

	
 

 
Data Structures: The data structures required for 
maintaining large and candidate itemsets were not 
specified in [4]. Store the large itemsets in a dynamic 
multi-level hash table to make the subset operation in step 
5 fast, using the algorithm described in the previous 
section. Candidate itemsets are kept in a hash table 
associated with the respective large itemsets from which 
they originate in order to make the membership test in step 
9 fast. Buffer Management When a newly generated 
candidate itemset causes the buffer to overflow, discard 
from memory the corresponding large itemset and all 
candidate itemsets generated from it. This reclamation 
procedure is executed as often as necessary during a pass. 
The large itemsets discarded in a pass are extended in the 
next pass. This technique is a simplified version of the 
buffer management scheme presented in [4]. 
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M. The SETM Algorithm 

    The SETM algorithm [17] was motivated by the desire 
to use SQL to compute large itemsets. Our description of 
this algorithm in Figure 5 uses the same notation as used 
for the other algorithms, but is functionally identical to the 
SETM algorithm presented in [17]. ( ) in Figure 5 
represents the set of candidate (large) itemsets in which the 
TIDs of the generating transactions have been associated 
with the itemsets. Each member of these sets is of the 
form< TID; itemset >. Like AIS, the SETM algorithm also 
generates candidates on-the-y based on transactions read 
from the database. It thus generates and counts every 
candidate itemset that the AIS algorithm generates. 
However, to use the standard SQL join operation for 
candidate generation, SETM separates candidate 
generation from counting. It saves a copy of the candidate 
itemset together with the TID of the generating transaction 
in a sequential structure (step 9). At the end of the pass, the 
support count of candidate itemsets is determined by 
sorting (step 12) and aggregating this sequential structure 
(step 13). 
SETM remembers the TIDs of the generating transactions 
with the candidate itemsets. To avoid needing a subset 
operation, it uses this information to determine the large 
itemsets contained in the transaction read (step 
6).  and is obtained by deleting those 
candidates that do not have minimum support (step 13). 
Assuming that the database is sorted in TID order, SETM 
can easily find the large itemsets contained in a transaction 
in the next pass by sorting on TID (step 15). In fact, it 

needs to visit every member of  only once in the TID 
order, and the candidate generation in steps 5 through 11 
can be performed using the relational merge-join operation 
[17]. The disadvantage of this approach is mainly due to 
the size of candidate sets . For each candidate itemset, 
the candidate set now has as many entries as the number of 
transactions in which the candidate itemset is present. 
Moreover, ready to count the support for candidate 
itemsets at the end of the pass,  is in the wrong order 
and needs to be sorted on itemsets (step 12). After 
counting and pruning out small candidate itemsets that do 
not have minimum support, the resulting set   needs 
another sort on TID (step 15) before it can be used for 
generating candidates in the next pass. 
//SETM Algorithm (figure5) 
1)  
2)  

 
3) for ( k = 2;    ; k++ ) do begin 
4)  = ;  

	
6)  = {    | 	
7)  
8) 	
9 	
10  

	
	

 

	
	

	
	

 
Buffer Management: The performance of the SETM 
algorithm critically depends on the size of the set 

relative to the size of memory. If  fits in memory, 
the two sorting steps can be performed using an in-
memory sort. In [17],  was assumed to fit in main 
memory and buffer management was not discussed. 
If  is too large to fit in memory, write the entries in 

 to disk in FIFO order when the buffer allocated to the 
candidate itemsets fills up, as these entries are not required 
until the end of the pass. However,  now requires two 
external sorts. 

V. CONCLUSIONS AND FUTURE WORK 

      In this paper presented two algorithms, Apriori and 
Apriori-Tid, for discovering all major association rules 
between items in a large database of transactions. Here 
compared these algorithms to the previously known 
algorithms, the AIS [4] and SETM [17] algorithms. Also 
presented the proposed algorithms always do better AIS 
and SETM. The performance gap increased with the 
problem size, and ranged from a factor of three for small 
problems to more than an order of magnitude for large 
problems. Also studied the best features of the two 
proposed algorithms can be combined into a hybrid 
algorithm, called Apriori-Hybrid, which then becomes the 
algorithm of choice for this problem. Scale-up experiments 
showed that Apriori-Hybrid scales linearly with the 
number of transactions. In addition, the execution time 
decreases a little as the number of items in the database 
increases. As the average transaction size increases (while 
keeping the database size constant), the execution 
time increases only gradually.  Feasibility study of using 
Apriori-Hybrid in real applications involves very large 
databases. The algorithms presented in this paper have 
been implemented on several data repositories, including 
the AIX file system, DB2/MVS, and DB2/6000. In the 
future, plan to extend this study work along the following 
dimensions: 
1)Multiple taxonomies (is-a hierarchies) over items are 
often available. An example of such a hierarchy is that a 
dish washer is a kitchen appliance is a heavy electric 
appliance, etc. also would like to be able to find 
association rules that use such hierarchies. 
2) For this study work did not considered the quantities of 
the items bought in a transaction, which are useful for 
some applications. Finding such rules needs further work. 
The work reported in this paper has been done in the 
context of the Quest project at the IBM Almaden Research 
Center.  Explore the various aspects of the database mining 
problem. Besides the problem of discovering association 
rules, some other problems that looked into include the 
improvement of the database capability with classification 
queries [8] and similarity queries over time sequences [7]. 
Believe that database mining is an important new 
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application area for databases, combining commercial 
interest with interesting research questions. 
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