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Abstract-The objective of the research explored the 
development of Fuzzy Systems and Applications Evolutionary 
Genetic algorithms in the Aviation Industry, and their 
demonstrated capability of solving different sets of problem 
emanating from a wide range of application domains affecting 
the aviation industry. The research problem statement 
develop investigated the limitations of approximate reasoning 
use in cascaded genetic algorithms for automatically generate 
high performance fuzzy systems used in automated aviation 
flight control in hazardous flight conditions with  using 
minimal fuzzy sets and rules. The research methodology 
consisted of qualitative and quantitative research designs 
through analysis of systematic peer reviewed scholarly 
journals in the field of Fuzzy Systems and Applications 
Evolutionary Genetic algorithms in the Aviation Industry, as 
well as an analysis a sample of relevant case studies. The 
researcher found out that Fuzzy Systems and Applications 
Evolutionary Genetic algorithms in the Aviation Industry can 
be design in a varied number of ways depending on the 
required shape of the membership functions and appropriate 
degrees of affinity, and a major limitation of fuzzy inference 
systems included the limitations concerning the balance 
between accuracy and interpretability.  Therefore, 
Evolutionary neuro fuzzy inference systems and applications 
hybridize the approximate reasoning with learning 
capabilities of evolutionary algorithms and neural networks, 
which promotes aviation safety personnel capabilities, and 
aircraft performance. Future research should be devoted in 
real time planning, and therefore developments should 
consider more research into delays on airports, weather 
conditions, and other aviation events that compromise safety 
and performance such as aviation accidents and attacks. 

Keywords- Approximate Reasoning, Aviation Industry, 
Evolutionary Genetic Algorithms, Fuzzy Rule Sets, Fuzzy 
Systems, Hybridization, Membership Functions, Neuro Fuzzy 
Inference Systems, Safety Procedures 

I. INTRODUCTION 
Fuzzy logic is a concept introduced by Lofti Zadeh in the 
1960s, while John Holland introduced genetic algorithms in 
early 1970s. During the recent past these two fields have 
experienced enormous rapid growth in academic research 
and industrial world, by being very effective in finding 
solutions to real world problems [1].  In conjunction with 
neurocomputing methodologies have enabled soft 
computing technologies to be used in intelligent systems 
that produce human centered fuzzy logic and genetic 
algorithms. This implies that the modern intelligent systems 
require the traditional mathematics based, as well as the 
new computational methodologies that are neural, fuzzy, 
and genetic algorithm based. Fuzzy systems in automated 
applications are often made using uncertain ideas, and 
online human support such as experience and intelligence 

often absent implies that definable notions of uncertainty 
are made so that the automated applications can act like 
human beings. However, the rules governing the evolution 
introduce some level of subjectivity in reference to the 
capability of choosing the attributes of the automated 
applications and systems [1].   Therefore, fuzzy systems 
and applications evolutionary genetic algorithms essentially 
represent the process of linguistic information, as well as 
the mechanisms and methodologies of dealing with 
uncertainty coupled with imprecision modeled alongside a 
concise mathematical model that describes the linguistic 
rules [4]. 

A. Background Information 
Genetic algorithms for identifying fuzzy systems depends 
on the high level of non-linearity of the fuzzy systems 
outputs, and therefore traditional linear optimization 
techniques bear a number of limitations. It is imperative to 
note that genetic applications have shown that they are very 
powerful and robust in performing tasks like generating 
fuzzy rule bases, membership functions, optimizing fuzzy 
rule bases, and tuning member functions [3]. This implies 
that all tasks are optimized through search processes 
occurring in large solution spaces. 
Genetic programming on the fuzzy system identification 
uses genetic algorithms that are powerful in identifying 
fuzzy member functions using predefined rule bases. They 
also display a number of their limitations when applied in 
identifying both input and output variables of fuzzy system 
occurring within a given data set. Therefore, genetic 
programming used in input variables identification applies 
rule bases involving membership functions of the fuzzy 
model [10]. 
Over the last ten years, multi objective genetic fuzzy 
systems have applied rule based systems in the 
optimization, and therefore have gathered immense 
interests among the artificial intelligence community and 
fuzzy systems practitioners. The rule systems apply 
stochastic algorithms in multi objective optimization while 
searching for paretto efficiency. Therefore, objectives are 
optimized simultaneously thus making them highly 
accurate and complex, as well as accurate and interpretable 
[4]. 
Fuzzy systems therefore, are applied in situations where 
conventional techniques are not successful or require too 
much time for the development. Non-linear models, time 
variable parameters, as well as places where pertinent 
mathematical models are unknown. This implies that fuzzy 
systems play a great role in pattern recognition, decision 
support systems, plant control, solving electromagnetic 

Afreen Bhumgara |  IJCSET(www.ijcset.net) | November 2015 | Vol 5, Issue 11,355-373

355



field problems, aviation flight control, genetic learning of 
databases, telecommunications, and many other 
applications [5]. 
 

B. Research Aims and Objectives 
The aim of the research is to explore the development of 
Fuzzy Systems and Applications Evolutionary Genetic 
algorithms in the Aviation Industry, and their demonstrated 
capability of solving different sets of problem emanating 
from a wide range of application domains affecting the 
aviation industry. In recent years the application of 
approximate reasoning  have continued to evolve, and there 
are a number of inherent limitations that still faces the 
utilization of Fuzzy Systems and Applications Evolutionary 
Genetic algorithms methodologies  in the Aviation Industry 
during hazardous airspace conditions. Therefore, the paper 
aims to analyze the performance and optimization of 
population based methods, and nature inspired algorithms. 
The researcher developed the following objectives in 
investigating the limitations of Fuzzy Systems and 
Applications Evolutionary Genetic algorithms in the 
Aviation Industry: 

1. Provide account for Fuzzy Systems and 
Applications Evolutionary Genetic algorithms in 
the Aviation Industry with special focus of genetic 
fuzzy rule based structures 

2. Provide account for soft computing paradigms of 
fuzzy systems with the use of evolutionary 
algorithms with learning data and adaptive 
capabilities 

3. To analyze the interpretability accuracy trade of 
multiobjective based fuzzy systems for 
multidimensional learning data problems 

4. To discover the problems and issues in the 
hybridization between genetic algorithms and 
fuzzy logic with special attention to extracting 
interesting useful patterns in data 

5. To understand the application of evolutionary 
genetic fuzzy system in aviation aircraft control in 
hazardous conditions. 
 

C. The Problem Statement 
The problem is to investigate the limitations of approximate 
reasoning use in cascaded genetic algorithms  for 
automatically generate high performance fuzzy systems 
used in automated aviation flight control in hazardous flight 
conditions with  using minimal fuzzy sets and rules. Such 
cascaded genetic algorithms should be valuable within 
complex systems that cannot be either designed or 
optimized manually both for commercial and military 
aviation flight systems with aims of eliminating the role of 
pilots from the aircrafts.  
Helicopters have applied fixed wing drone for many years 
particularly in the military Fuzzy systems and applications 
Evolutionary Algorithms Genetic algorithms aircraft 
designs.  In many cases military aviation applications are 
instances of maneuvering tight positions, as well as 
required to consistently maintain certain positions over 
longer periods of time. It is important to note that 

helicopters are more complex to control as compared to the 
fixed winged aircrafts. 
The complexity and difficulties of developing controllers 
for non-fixed wing aircraft emanates from the inherently 
high levels of instability, as well as high degrees of 
coupling. This implies that it is less difficult and complex 
for pilots to releases fixed winged aviation aircraft into 
steady flight conditions, which is a contradiction to 
helicopters that requires constant and consistent corrective 
control inputs. It is important to note that coupling in non-
fixed wing aviation aircraft requires flight dynamic that 
vary with type of aircraft, flight region, and the level of 
gyroscopic moments coming from the main rotor. 
 

D. Research Questions 
The researcher developing the following research questions 
to help in achieving the aims and objectives of the study, as 
well as to develop the research hypothesis.  

1. What are the limitations of fuzzy systems in 
finding optimal solutions for aircraft control in 
hazardous conditions? 

2. What are the benefits of genetic fuzzy systems in 
relation to the rule based system? 

3. Which are the most appropriate designs of 
population based search algorithms used in 
conducting the fuzzy controllers and trajectory 
tracking in adverse flight conditions? 

4. What are the performance approaches for airflow 
stabilization systems of genetic algorithm in 
finding premise for constructing rule base? 

5. What are the benefits of Multiobjective identifying 
fuzzy inference systems in space search 
algorithm? 

6. What are the accuracy and interpretability 
tradeoffs of fuzzy rule structures in the utilization 
of Multiobjective Genetic Algorithms? 

7. How can novel interpretability index be exploited 
in learning concurrently data in fuzzy rule based 
systems? 

8. What are the design factors in applying 
Multiobjective evolutionary algorithms in fuzzy 
autopilots? 

9. What is the future research direction for the 
application of Fuzzy Systems and Applications 
Evolutionary Genetic algorithms in the Aviation 
Industry 
 

E. Research Methodology and Design 
The researcher applied qualitative and research methods to 
examine the limitations of by analyzing most recent peered 
reviewed scholarly journals. The researcher performed 
literature review from existing online libraries to select the 
latest journals in the topic under study. Furthermore, a case 
study analysis approach was employed in investing the 
performance factors for optimization of fuzzy systems in 
aircraft control. Sampling for the case studies considered a 
selection of five samples against a population of 10,000 
cases internationally, sampling being done by objective 
sampling. Data analysis consisted of functions affecting 
performance of fuzzy systems in the aviation industry 
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through stochastic processes in order to draw mathematical 
equations and variables for performance measurements. 
Analysis of the literature review provides the past, current, 
and emerging trends in Fuzzy Systems and Applications 
Evolutionary Genetic algorithms in the Aviation Industry, 
and therefore is significant for provoking further research. 
 
 

II. LITERATURE REVIEW 
A. Membership Functions and Fuzzy Sets 

According to classical set theory considers universal 
discourse Χ having a subset Ą with arbitrary element x ε Χ 
mutually belonging to either Ą or not Ą, which implies that 
x ε Ąc [10]. 
 
That is to say the classical concept is represented by 

 
Fig 1: Fuzzy Classical Set Concept 

 

Then assigning a characteristic function K a : Χ→ {0,1}, 
which can only assume two crisp numerical values 0 or 1 

 
It can be seen that K AC = 1 - kA since KA is an ambiguous 
characteristic function that identifies elements of A from 
the rest of Χ (AC = X\A). 
Therefore, A is distinguished from the rest using the pair 
(X,KA) that forms the human reasoning of uncertain 
linguistic operations that A ↔ (X,KA). 
It is important that an aviation flight conditions such as 
temperature will be viewed subjectively by different 
people. For instance, a temperature of 9 can be seen as 
cold, comfortable, cool, hot, or warm, and therefore a 
temperature of 9 does not precisely mean the same since its 
interpretation comes in a subjective manner [7]. 
It is imperative that in automated systems such uncertain 
linguistic expressions should define inferences that apply 
such uncertain ideas on both intelligence and experience of 
human online support that is absent, should make a useful 
case for defining notions of uncertainty. Therefore, rules of 
operations are required to be worked out that manipulates 
uncertain definitions in order to make the automated 
systems operates similar to human beings [13]. 
The notion of the fuzzy set makes it possible to define ideas 
of uncertainty by offering rules to be chosen from in order 
to obtain subjective attributes of development of automated 
systems used in defining aviation industry metrological 
factors such as temperature, turbulence, convention, 
humidity, latitude, and so on [7]. 

Therefore, by describing the uncertain linguistic ideas of 
the fuzzy set used in automated aviation aircraft systems, 
such as attaching a temperature interval of [-10oC, + 10oC] 
to a linguistic variable comfortable. It is apparent that at the 
middle of the interval that is possibly surely (comfortable at 
1), which implies that the likelihood of comfortable 
gradually reduces towards the interval boundaries.  That is 
from 1 and slowly towards 0, and hence as the temperature 
gradually approaches to the center of the interval’s 
boundary  means that it is most likely not comfortable 
outside the interval (comfortable at 0). It is imperative that 
the fuzzy set is hence attached to comfortable linguistic 
variable that is defined by µcomfortable: [-10oC, + 10oC] 
→ [0,1] that refers to the membership function of the 
temperature fuzzy set [7]. 
Given that Χ refers to the universe of discourse, implies 
that A defines a fuzzy set on X, therefore the level to which 
elements that belong to X, that is x ε X belonging to A. this 
implies that it is defined by µA(x) ε [0,1. Therefore, µA is a 
fuzzy membership function that replaces KA, which is a 
crisp characteristic of the temperature interval function. 
This implies that the fuzzy set A is then identified by the 
pair        (X, µA), and hence the fuzzy set A ↔ (X, µA) [6]. 
Approximate reasoning is represented by the primary 
knowledge of the idea of linguistic variable of temperature 
comfortable. Therefore, it is important to note that the 
linguistic variable is identified by values of intrinsic words, 
phrases, and sentences that are either applied in a natural or 
artificial language. Hence, the fuzzy set is not represented 
by numerical values but are of linguistic nature, and is 
usually associated with 5-tuplen idea of linguistic variable 
(x, LX, ĹX’, X, Mx) [7]. 
 
Using a temperature of: 
X = 9 
LX = {Xcold,Xcool,Xcomfortable,Xwarm, Xhot} = 
{cold,cool,comfortable,warm,hot} 
ĹX’ = {X’cold, X’cool, X’comfortable, X’warm, X’hot} 
X = [-10oC, + 25oC] 
Mx = {Xcold→ X’cold,, X’cool → X’cool……. X’hot → Xhot}
   
Therefore, assigned fuzzy set and linguistic variable is not 
distinguished such as comfortable ↔ (X, µcomfortable} fuzzy 
sets can either be discrete or continuous such as  

 
Or 

 
Discrete membership functions are defined by symbolic 
sum, while continuous membership functions are defined 
by scalar variable. Therefore, considering a piecewise 
linear function or a Gaussian distribution curve are 
described by the typical membership functions below. 

(1)

(2)

(3)
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Fig 2: Fuzzy Discrete and Continuous Membership Functions 
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Therefore, the fuzzy set is normalized by a physical 
value in order to distinguish the linguistic variables 
using (p = positive, N = negative), while magnitude uses 
(B = big, M = medium, S = small, Z = zero), which gives 
the equipartition regions at 7 levels is represented by 

 
Fig 3: Equipartition Regions at 7 Levels 

Equipartition regions at 13 levels is represented by 

 
Fig 4: Equipartion Regions at 13 Levels 

Non uniform partition regions at 5 levels is given by  

 
Fig 5: Non Uniform Partition Regions at 5 Levels 

Non uniform partition regions at 7 levels is given by 
 
Fig 6: Non Uniform Partition Regions at 7 Levels 

Non uniform partition regions at 13 levels is given by  

 
Fig 7: Non Uniform Partition Regions at 13 Levels 
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Bell type and Gaussian shaped membership functions are 
typical in describing the fuzzy set linguistic values in a 
continuous manner, and therefore  

 
 
 

B. Fuzzy Logic Control Optimization Architecture 
The fuzzy logic control optimization architecture is 
developed in order to obtain an aggressively effective, 
easily adaptable, and computational efficient cascaded 
genetic algorithms using minimal fuzzy sets and 
operational rules. Considering the hazardous flight 
conditions, the automated high performance fuzzy systems 
for both helicopters and fixed winged aircrafts should have 
controllers that are able to easily adapt faster to various 
linguistic variable conditions, as well as smoothly moving 
the aircraft from one steady flight condition to another. 
Therefore, the fuzzy logic controller should effectively 
perform several sets of maneuvers such as stable velocity, 
acceleration, steady turns, and steady decelerations 
depending on the linguistic variables. The Fuzzy systems 
and applications Evolutionary Algorithms Genetic 
algorithms should be able accomplish required tasks in a 
desirable manner making the controller of the aircraft as 
independent as possible [20]. 
 
Fuzzy systems and applications Evolutionary Algorithms 
Genetic algorithms control optimization should address the 
concerns of a specific architecture in achieving the 
desirable goals. The architecture’s main function is to 
determine the state of flow of information that can easily be 
manipulated in order to take advantage of the artificial 
intelligence of the fuzzy system. This implies that fuzzy 
controller logic specializes for specific parts of the system 
through which the information flows, and therefore every 
section copes with addressing the linguistic variables of the 
state of the air flight air space [14]. 

 
Fig 8: The Fuzzy Controller Blocks 

The fuzzy controller then consists of blocks where input of 
each flight state variables, as well as output of every 
control section. Such architecture takes care of the related 
inputs using rules found in the operational rules base. For 
larger problems the classical approach for developing the 
fuzzy controller systems appears impractical, and therefore 
the distributed architecture becomes a better option since 
the number of rules in the former increases exponentially 
[13]. 
However, it is important to note that selecting a suitable 
architecture is often complex and difficult, which implies 
that explicit knowledge of the specific dynamics of the 
fuzzy system is required in diving control tasks that 
requires minimal operational rules. However, a lot of care 
is needed in preserving the pertinent relationships between 
all air space state variables by making an informed balance 
between having fewer rules, as well as accurate 
representation of coupling [13]. 
The fuzzy blocks controls the cyclic  longitudinal motion 
by inferring the changing latitude, and hence the switches 
determines the control strategies depending on the two 
error forward velocity as compared to the goal; velocity. 
The acceleration block determines the error pitch that infers 
the pitch angle.  The architecture simulates a real pilot by 
longitudinal hold bold analyzing the desired pitch angle. 
However, the collective control for all linguistic variables 
the fuzzy switches should determine the simplest and most 
effective fuzzy logic control optimization architecture [13]. 
Fuzzy systems and applications Evolutionary Algorithms 
Genetic algorithms search implementation uses genetic 
algorithm to arrange rule bases for the aviation aircraft 
fuzzy logic controller that applies classic genetic operation 
consisting of mutation, reproduction, and crossover. 
Therefore, the fuzzy logic system addresses the coding 
parameters and development of goodness of fit functions.  
The minimum and maximum values correspond to units of 
integrated weighted sums of desired set states and summed 
errors over a simulation course [14]. 
 

III. CASE STUDIES 
Aircraft control systems applying fuzzy logic case studies 
compares several fuzzy inference systems through the 
demonstration of rule bases and fuzzy methods used. The 
case studies also aim at investigating the contributions of 
fuzzy logic in industrial applications, and examine the 
methodologies related to the purposes of this research 
paper. 
 

(4)
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Case Study 1: Robot Head Visual Tracking 
The case study displays how human faces are tracked 
through the application of fuzzy proportional derivative 
referred to as fuzzy condensed algorithm. The system 
applies fuzzy proportional derivatives in controlling the 
robot head movement that automatically tracks human 
faces.  The system used software items such as vision and 
control programs written in C++ and Mathworks’ 
Simulink, as well as hardware items such as USB Webcam 
and Robot head [16].The fuzzy proportional derivative 
inference system is represented by: 
 
Fig 9: Robot Head Visual Tracking 
Where Ge, Gr, and Gu are determined through tuning their 
corresponding error, error rate gains, and output gains, and 
U* represents the defuzzifeid output. The four fuzzy rues 
bases for the fuzzification are given by:  

 
Therefore, the defuzzification focuses upon the 
gravitational center in getting the crisp value of µ, which 
the fuzzy input system requires to drive the fuzzy system. 
The case study used output membership functions zero, 
positive, and negative in determining the axis of the graph 
for linguistic variables [16]. 

 

 
Fig 10: Membership Function Graph 

µ represents the membership function that cannot be 
represented on a graph, but through formulae’s such as  
 

 
 
This gives a total of twenty possible input conditions 
through the application of rule 1 though to rule 4. This 
implies that through the evaluation of the fuzzy rules, 
defuzzification formulae, and the parameters of the axis 
provides 9 equations that drives the fuzzification process. 
Matlab’s Simulink is applied in implementing the fuzzy 
system once the design is complete [16]. 
 
The membership functions are defined by the fuzzification 
inputs that are represented graphically as trapezoidal. A 
convoluted defuzszification process is exposited, which 
makes it difficult to mine or pull out the essence. The 
defuzzification methodology applied is primarily the center 
of gravity technique, which mirrors the shape and location 
of the fuzzy sets in a concurrent manner. This case study 
therefore, demonstrates the fuzzy proportional derivative 
inference system implementation through Matlab in a 
Simulink simulation situation. Therefore, the fuzzy system 
enables users to get graphical interface that makes it 
possible to draw the schematic processes of running the 
simulations [16]. 
 
Essentially, the design of the fuzzy logic toolkit works 
seamlessly together with Simulink , where the fuzzy input 
system is designed using a fuzzy logic set that is directly 
linked to the Simulink program. Therefore, the fuzzy 
proportional derivative is very useful for error correction 
and detection, and is very valuable to experiments 
concerning multiple sessions that have errors accumulating 
very fast [16]. 
 
 
Case Study 2: Motion Tracking and prediction 
The fuzzy system for planar motion tracking and prediction 
uses a bright colored object against a dark background. The 
case study describes image acquisition together with 
corresponding processing steps before fuzzification is 
undertaken. Therefore, fuzzy logic uses the following 
hardware for motion tracking and prediction: Toy vehicle, 
banding filter frequency, USB webcam, and a Pentium 4, as 
well as the corresponding software being Creative Webcam 
Pro, Labview 7.1, Ni-IMAQ Vision 7.1, NI-USB, PID 
Control Toolset [22]. 
 
The case study considers exploration of image acquisition 
and its corresponding processes, while critically examining 
the application of fuzzy algorithms.  The tracking algorithm 
consists of three major components namely image 
acquisition, processing, and analysis as described by the 
following flow chart. 

(5)

(6)
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Fig 11: Motion Tracking and Prediction 

The image acquisition component of the system is 
accomplished using a USB webcam, which consistently 
and continuously gathers images using the highest frame 
rates. Image processing on the other hand comprises of four 
sub-components that works on the collected images. The 
first part focuses on converting the collected images from 
RGB to grayscale, while the second part corrects the spatial 
distortion found on the grayscale images. Part three of the 
image processing is concerned with thresholding, in which 
pixels below a certain limit are set to zero, or otherwise set 
to one, and hence the forth part deals with morphological 
filtering in order to filter out noise through the process of 
image erosion [22].  The structuring element used is a 3 by 
3 matrix consisting of I’s and 0’s, and is translated in all 
rows making up the target image, a single pixel each time. 
Therefore, the structuring matrix provides a decision point 
whether a particular pixel is low energy by taking an 
examination of the neighbors. In cases where a particular 
pixel neighbors are high, then that pixel is considered to be 
high energy, and therefore assigned the bit value 1, or 
otherwise assigned the bit value 0 [22]. 
Image analysis component applies the real world 
coordinates of the assigned objects, and is calculated using 
the center mass of filtered images comprising of two 
cascaded fuzzy logic controllers. This means that image 
analysis process is divided into two parts namely coarse 
motion prediction and fine motion prediction, and each part 
has its own fuzzification system. However, both 
fuzzification systems are ‘Mamdani’ type, and apply 
equated located triangular membership functions, as well as 
weighted rule bases, and the fuzzy inference method being 
Min-Max [22]. 
When executing the tracking algorithm, a data log is 
created where data is stored in a temporary array before 

being written in a text file once the tracking algorithm has 
been executed. Throughout the process of the tracking 
algorithm, the x and y coordinates found in the real world 
of the objects, the predicted coordinates, as well as the 
timing of very frame are all logged for purposes of 
evaluating the fuzzy system performance [22]. 
The setup of the case study provides useful insights into the 
application of bright objects against darker backgrounds, as 
well as the use of cheaper USB webcams. The fuzzy logic 
systems allows for a wider choice of software, such as the 
Matlab fuzzy logic toolkit that enables users to easily 
customize the fuzzy inference system. The software acts as 
a graphical tool that is designed for both programmers and 
non programmers [22]. 
The case study computes the location of objects using 
center of mass of each object, which also enables tracking 
of multiple of objects using complex identification patterns. 
The weighted averages calculated from the fuzzy logic 
system helps in determining both the identity and the 
direction the object is facing, which makes the design of 
the process simple since it is divided down into manageable 
components [22]. 
Case study 3: Fuzzy Control in Aviation Technology 
Fuzzy control algorithm is appropriate for linear and non 
linear operations alike, and the case study considers a rough 
fuzzy controller found in in-house applications. The model 
Predictive Controller (MPC)  processes applies 
mathematical models in determining the actions the next 
controller should perform using linear processes, known as 
a PID controller that is easily implementable.  The aviation 
control areas and variables include velocity, takeoff and 
landing, turbulence correction, external aerodynamics, yaw 
or impulse correction, and ABS [26]. 
The difficulties found in the system include aircraft 
dynamics that are non linear, uncertain, as well as time 
varying. Specific aircraft flight condition fuzzy control 
algorithm are linearized resulting into several algorithms 
serving specific purposes, while aerodynamically effects on 
aviation aircraft are difficult to estimate and model since 
variable such as turbulence fluctuates in unpredictable 
manner. Safety is of great concern and very important for 
aircraft within the airspaces, and therefore an effective 
control algorithm is required in order to ensure safety. This 
means that the fuzzy logic controller must be thoroughly 
tested before being implemented [26]. 
The case study considers several phases of aircraft flight as 
managed by air traffic controllers sending information to 
pilots from the ground. In vast air traffic, artificial neural 
network method is applied in intelligent decision making  
system working in parallel with the air traffic controllers, 
and more specifically controlling velocity at both take off 
and landing [26]. 
The velocity reduction and increase should be smooth and 
gradual, as well as should not go beyond the specific 
aircraft’s physical limits. Therefore, pertinent aircraft 
velocity variable include section length, section velocity 
limits, and aircraft velocity limits, which are fuzzified into 
the corresponding linguistic terms combined into 
appropriate sets of fuzzy rules [26]. 
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Fig 12: Fuzzy Control in Aviation Technology 

 

 
Fig 13: Velocity Standards at Guarulho's Airport in Sao 

Paulo, Brazil 
The interviews with specialists revealed the fuzzy decision 
making considered the following set of fuzzy rules and 
membership functions. 

 
Fig 14: Membership Function Output Variables 

 

 
Fig 15: Fuzzy Rules 

 

The results of the fuzzy decision making using the set of 
fuzzy rules and membership functions from the simulation 
were minimum and maximum velocities the airplane may 
attain, such as a maximum of 800 kt, and a minimum of 80 
kt.  The maximum allowable velocities at entrance is 250kt, 
and at the end is 210 kt, while starting velocities varied 
between 150 kt and 290 kt. Gradual smoother results 
obtained for varying membership functions using the 
Gaussian initially to Bell functions in providing 
optimization performance measurements [26]. Therefore, 
the fuzzy logic system displayed an inherent ability to cope 
with imprecision and uncertainties. 
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Fig 16: Fuzzy velocity Function 

 

 
Fig 17: Membership Functions crossover Analysis 
 

Case Study 4: Small Engine Control 
The case study describes the development of a fuzzy 
control system that is cost effective in controlling the 
aircraft’s small engine fuel injector drive pulse width 
(FPW). The fuzzy inference system uses the engine control 
unit in getting information concerning the non linear 
behavior of the aircraft’s engine. The fuzzy inference 
system applies parameters intuitively to the user making 
tuning and calibration easier [21]. The case study 

demonstrates the required tuning in order to obtain the 
desired levels of emissions, efficiency, and power of the 
engine, and therefore the fuzzy inference system is able to 
maintain an optimal air to fuel ratio (AFR) averaging 0.9. 
The fuzzy inference system applies the manifold air 
pressure (MAP) and maximum power as input values, and 
hence produces crisp output values for the fuel pulse width 
[21]. 

 
Fig 18: Fuzzy logic Control Scheme 
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The hardware components include an optical sensor 
working to determine the aircraft’s engine speed, Horiba 
lambda Checker )HLC) applied in monitoring the air to fuel 
ratio, and a pressure sensor working in taking 
measurements for the manifold air pressure. The software 
components on the other hand, include windows based 
operating system consisting of fuzzy rule editor and fuzzy 
set editor, and fuzzy development environment.  
Parameters sourced from the fuzzy development 
environment are transferred to the C+++ programmed 
fuzzy inference kernel module, which is then compiled to a 
object format in order to be embedded within the engine 
control unit [21]. 
The fuzzification process transforms the input linguistic 
variables having linguistic values corresponding to the 
membership functions. Therefore, linguistic variables such 
as speed and vacuum posses’ linguistic values such as low, 
medium, and high, which composes at least three 
trapezoidal functions that display the degrees of 
membership of input values to a specific linguistic value. 
This implies that input membership functions can be altered 
in very process of calibration [21]. 

 
Fig 19: Fuzzy Input Linguistic variable 

 
Fig 20: Fuzzy Input Linguistic variable 

 

The fuzzy rule base is defined by  
 

 
Fig 21: Fuzzy Rule base 

 

A singleton defuzzification output membership function is 
applied for the valid ranges of output values, especially 
when these values are discontinuous. However, straight 
lines represents these function in four possible output 
options, with a combination of a varied degrees of 
membership in producing outputs such as 142, 143, 143.3, 
143.4, and 144. 
 

 
Fig 22: Defuzzification Output Membership Function 
 

The membership functions in this fuzzification case study 
considers trapezoidal shaped input values, and ensures that 
only a single value attains the highest degree of affinity a 
the fuzzy sets. This implies that degrees of affinity of the 
membership functions are assigned between zero and one. 
The fuzzy inference system determines the orientation of 
the object in terms of its density and patterns by using a 
ranking system [21].The three derived membership 
functions referred to as high rank, medium rank, and low 
rank, and given that the highest rank is assigned 1 and 
lowest rank assigned 0, imply that the strength of the fuzzy 
inference system emanates from its capacity in error 
tolerance.  The Bell shaped or trapezoidal shaped 
membership functions are of Sugeno type used in linear 
systems having consistent outputs [21]. 
 
Case study 5: Air Engine Diagnosis 
Collecting sensor data is essential in remotely monitoring 
the engine during several flight regimes, which is 
ultimately transmitted to ground based system for fault 
diagnosis and anomaly detection. Therefore, timely and 
prompt accurate diagnosis is pertinent to problem 
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resolution, and fuzzy computing models provides leverages 
in using engineering knowledge to accurately capture 
engine failure root cause analysis. The fuzzy inference 
system in the case study captures multi parameter 
movements from flight snapshot data that are mapped 
against the fuzzy rule set related to the engineering 
knowledge of the patterns of failure signatures [25]. 
 
Shift detection measures and detects outliers, parameter 
shifts, as well as correlates parameter shifts in order to 
decide on a specific event start time, while the fuzzy 
knowledge model represents the engineering expertise 
concerning failure root cause and its corresponding 
symptoms.  Fuzzy T integration is concerned with the 
probability of having a match between an anomaly for a 
specific pattern and engine sensor shift in getting the 
required fuzzy score rule for the three parameters defined. 
Hence, the result scores for each fuzzy rule gives the root 
cause that has the highest score of 0.726 having failure 
cause 18 [25]. 

 
Fig 23: Fuzzy Knowledge Model 

 
Therefore, the fuzzy knowledge model is created offline 
using engineering knowledge and leveraging historical 
diagnostic experience. When online, engine flight operation 
data is processed for pattern and trend analysis, as well as 
shift detection for which the diagnostic result captures the 
variance of the fuzzy rule engine. The non calculus genetic 
algorithm approach applies natural selection for the search 
algorithm, as well as evolutionary theorems in choosing the 
optimal performance for multi generation of possible 
solutions [25]. 
The genetic algorithm learning technique successfully uses 
fuzzy model tuning thus enabling quick convergence to 
almost optimal state using huge search space having a 
minimal set of operations. The root cause analyzer 
diagnostic process is optimized through fuzzy knowledge 
module and data analysis module, which collects 
engineering knowledge for failure signatures [25]. 

 
Fig 24: Fuzzy Root Cause Analyzer Model 
The goals of the case database is to optimize the maximum 
accuracy for the diagnostic model by using the historical 
cases set, and therefore the case base collects and records 
negative and positive events , which are used for validation 
and model tuning. Therefore, positive events are useful for 
known engine anomalies cases of specified types, while 
negative events represents events or engine cases that have 
unknown anomalies, and hence represents events that helps 
in adjusting normal engine behaviors and fault detection 
sensitivities [25]. 
The model optimizer initiates, controls, and configures the 
genetic algorithm tuning process by using a set of 
constraints, which are set up for a viable range of tunable 
fuzzy variable.  The module further specifies the genetic 
algorithm parameters that control the reproduction process 
and the population alike. Adjustable quick convergence at 
the localized maxima is needed for maintaining candidate 
diversity, and large population’s sizes. The reproduction 
control parameters such as mutation rate, crossover rate, 
and replace rate are set by the fuzzy inference system so 
that the output is optimized by adjusting the parameters 
[25]. 
The diagnostic model structure is unchanged during the 
tuning process in order to decrease the complexity problem, 
and also to provide maintenance to the engineering 
knowledge. However, learning is restricted to the existing 
fuzzy rules thus limiting generation of new terms related to 
experience data. Therefore, the limitation is encountered by 
gathering signatures for the unknown failure modes, which 
also uses the cost functions within the fuzzy model 
optimization process [25]. 
 
Case Study 6: Fly by Wire 
Fuzzy logic fly by wire uses control systems that can be 
implemented in a variety of aircraft, such as military F-16 
fighter, and other commercial aircraft such as Boeing 777 
and Airbus A320. The control inputs for fly by wire fuzzy 
logic from the pilot are transmitted electronically through 
wires to the hydraulic servo surfaces. Inputs from the pilot 
are processed with other flight data displayed on-board 
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computers, thus [providing the flight maneuver desired 
[28]. 
Fuzzy logic fly by wire essentially refers to added safety 
through programming routines that helps in the prevention 
of stalls, uncontrolled flight, and over speeds, as well as 
other features that compensates for engine failure and 
enhanced stability in adverse weather conditions 
automatically to extremely low probabilities [28].  The 
fuzzy logic control air vehicle uses genetic algorithms in 
aircraft control applications, such as provided by Sugeno 
for controlling unmanned helicopters.  Sugeno fuzzy 
inference systems apply techniques and knowledge of 
experienced pilots, and hence the on-board fuzzy logic 
controller is implemented in order to attain intelligent 
control, which can also be tele-controlled using verbal 
commands from the ground [28]. Therefore, the 
autonomous fuzzy control performs and stabilizes the 
helicopter for maneuvers such as landings. 
The Jetliner that was modified by NASA to imitate the 
Shuttle Spacecraft’s response applied the fuzzy flight 
control fly by wire system, where pilots inputs were 
transmitted to fuzzy logic processor in order to settle on 
control surface deflections assimilate the space Shuttle. 
Matlab and Simulink were used to develop the flying robot, 
where flight characteristics are modified the simulator 
program, hence giving a close equivalent to the actual RC 
model. The case study continued to refine the membership 
functions and fuzzy rules throughout the project life cycle, 
with keen emphasis being placed on the importance of 
coupling in relation to the rotational axis and translational 
axis [28]. 
The case study addresses the issue of coupling for very 
extreme circumstances, such as the effect of adverse yaw in 
a turn, and therefore compensation is enhanced by 
prevention of uncontrolled flight conditions.  This means 
that yaw rate sensor data for gyro is transmitted to the roll 
controller and the yaw controller, which consequently gives 
users help in stability maintenance even in cases of 
secondary coupling effects [28]. An altimeter is added in 
order to provide take off and landing data, and is used to 
prevent the aircraft from wandering out of range. The 
accuracy of the fuzzy inference system for the fly by wire 
stands at ± 5 meters, which is adequate but not good 
enough. A global positioning application system is applied 
by the Sugeno to make the fuzzy inference system more 
accurate, as well as help in not exceeding budgetary 
factors. Therefore, the case study concluded that it is 
important to consolidate hardware boards and membership 
functions in order to have a more compact and portable 
efficient unit [28]. 
 

IV. RESULTS AND ANALYSIS 
A. Account For Fuzzy Systems and Applications 

Evolutionary Genetic Algorithms 
Learning from previous research and insights provided by 
the case studies, it is clear that different paths can be taken 
into the design and implementation of fuzzy inference 
systems for the aviation industry. Research literature and 
the case studies reveal several membership function shapes 
such as triangular, trapezoidal, and Gaussian  with a wide 

range of appropriate degrees of affinity. It is important to 
note that triangular and Gaussian shapes are appropriate if 
only a single maximum degree of affinity is required, while 
trapezoidal or bell shaped membership function can be 
replaced by any other function provided it plateaus. 
Different rule bases are used for specific problem situation 
in the development of fuzzy controllers in consideration 
with the linguistic variables, so that the inputs are fuzzified 
in order to obtain the most optimal output [19]. 
Making a choice between Sugeno and Mamdani type fuzzy 
inference systems depends upon the type of inputs, and it 
appears that Sugeno fuzzy inference types are best suited 
for linear inputs, while Mamadani works well with human 
inputs that are intuitive. It is apparent that the Sugeno fuzzy 
inference systems comes as superior in terms of 
computational efficient systems that applies adaptive 
models, as well as being compact that lends more 
constraints on the fuzzy inference system [18]. 
The present state of research does not emphasize direct 
control of aviation aircraft but only pursues to help the 
pilots by provision of advice and monitoring capabilities. 
Therefore, there is not much to be leant concerning fuzzy 
rule base drafting, given that the appearance of bright 
objects against dark backgrounds is modeled through the 
knowledge of the real world system depending on the 
degrees of distortion and orientations. Therefore, in most 
cases the fuzzy inference system architecture selected 
applies the encoded knowledge, and hence acts as an 
assisting pilot using expert rule systems and fuzzy logic in 
relation to navigation, safety, and all aircraft performance 
issues [14]. 
The overlap that occurs between modes mirrors the 
uncertainty levels that exists in defining aircraft flight 
modes and transitions from one mode to another is gradual 
rather than discrete. There are numerous sources of 
uncertainty and includes the differences in different pilots 
flying techniques over varying flight conditions from one 
day to another. Therefore, the uncertainties present actually 
prompts and motivate the development of fuzzy solutions 
for the optimization of flight problem in terms of mode 
interpretation. However, discrete and crisp limits or 
boundaries cannot be specifically drawn between different 
flight modes [32]. 
Fuzzy inference systems are fundamentally valuable for 
engineering and provide a means of encoding human 
knowledge and transforming it into expert systems. This 
implies that fuzzy logic provides automation of human 
decision processes using decision rules that can be 
referenced in terms of IF/THEN fuzzy base rules. 
Therefore, fuzzy logic is important for allowing uncertainty 
to be present in decision maki8ng processes. However, past 
fuzzy logic control applications were successful for fuzzy 
inference systems that had relatively lesser measured states 
and control rules, while recent rush forward of fuzzy logic 
applications have the same amount of strength, as well as 
revealed a number of limitations and weaknesses [29]. 
One major limitation of the present fuzzy inference systems 
is the complexity of interpretability of multivariate flight 
modes, and therefore multidimensional fuzzy membership 
functions enables a method of partitioning multivariate 

Afreen Bhumgara |  IJCSET(www.ijcset.net) | November 2015 | Vol 5, Issue 11,355-373

367



state spaces into fuzzy component regions. It is apparent 
that complex aviation decision and control problems having 
several inputs will require enormous rule bases for the 
fuzzy systems, and therefore rule bases increases 
exponentially in relation to the amount of required inputs. 
Large fuzzy rule bases on the other hand, appear to be 
difficult to encode and very complex to validate [36]. 
 It is also very important to note that by shifting from one 
dimensional fuzzy inference system to multidimensional 
fuzzy inference systems drastically reduces the number of 
rules required, which essentially reduces the degree of 
complexity. Another essential limitation of the present state 
of the art fuzzy inference systems in aviation industry is the 
inconsistent and cumbersome nature of correlating between 
the input variables in the fuzzy models, for instance in 
terms of interpretability of flight modes finds a correlation 
existing between the input variables in the definition of the 
flight modes, and therefore it is important to note that 
multidimensional fuzzy membership functions effectively 
addresses the issues of fuzzy rule base sizes and correlation 
[36]. 
 

B. Interpretability Accuracy 
The impact of the fuzzy rule base sizes on generated fuzzy 
inference systems in aviation technology in terms of 
predictive accuracy are modeled in order to develop effort 
and detect proneness, as well as estimated product size. It is 
imperative that Fuzzy Systems and Applications 
Evolutionary Genetic algorithms in the Aviation Industry 
are specifically designed to manage uncertainty well, and 
therefore aviation industry managers need excellent 
understanding concerning the nature of risks. This implies 
that identification of risks that may adversely affect a flight 
in terms of quality, safety, budget, and other aircraft control 
factors must be determined in setting priorities for the 
fuzzy models [11]. 
Flight conditions must prioritize the risk factors that can 
enhance reliability of success are identified and arranged in 
a hierarchical nature, which must be founded on knowledge 
obtained from an adaptive fuzzy inference system that is 
designed to evaluate such risks. Fuzzy inference systems 
models for the aviation industry display more satisfactory 
appraisal of aviation aircraft safety and control risks.  
The systematic assessment and evaluation of the effect of 
aviation safety parameters, and analysis of empirical 
outcomes of the Fuzzy Systems and Applications 
Evolutionary Genetic algorithms in the Aviation Industry 
must consider the effect of the rule set size, membership 
function shapes, and the fuzzification process [11].  
However, a trade off must be made in having smaller rule 
base against the degree of predictive accuracy of the 
decisions made with respect to obtaining the optimal 
solution. The empirical findings reveal that the aspects of 
rule set  membership functions influences the sensitivity of 
the implemented fuzzy inference system, as well as the 
impact of analysis of outcomes [11].  
The superior performance of fuzzy inference systems 
appears to be based on a combination of artificial 
intelligence methods, and therefore the path which fuzzy 
inputs convey the sample coordinates of input membership 

functions changes as it goes through the available rules. 
Therefore, the category of the fuzzy inputs is determined by 
the value of the fuzzy rules set for the out characteristics. It 
is imperative that the output membership functions are 
mapped to a single valued output which refers to the 
decision associated with the desired output. From the 
foregoing, Gaussian and Bell shaped uses rules based on 
the fuzzy logic model and linguistic variables that depends 
on error methods and user experience [16].Additionally, the 
shape of the membership functions has a significant effect 
on the parameters, and therefore altering these parameters 
changes the shape of the membership functions. Therefore, 
the limitations of Fuzzy Systems and Applications 
Evolutionary Genetic algorithms in the Aviation Industry 
are evident in neural fuzzy applications  since they are 
chosen through trial and error method, as well as being 
dependent upon the user experience [21]. 
The most advantages of the Fuzzy Systems and 
Applications Evolutionary Genetic algorithms in the 
Aviation Industry are their ability in learning, as well as its 
power in performing high numerical computations. This 
implies that flight safety concerns associated with the 
determination of the location and shape of the membership 
functions for each fuzzy variable included with the fuzzy 
inference systems, optimization efficiency depends on the 
premise of the estimated parameters and their consequent 
components, and therefore factors such as learning rates are 
important for solving problems associated with trial and 
error methods [21]. 
 

C. Multiobjective Based Fuzzy Systems for 
Multidimensional Learning Data Problems 

Multiobjective based fuzzy inference systems generates 
interpretable fuzzy models using experimental data, and are 
therefore desirable for human users in understanding 
complex systems.  The accuracy and interpretability 
tradeoffs between fuzzy rule set classifiers are implemented 
in the framework of evolutionary multiobjective, where 
each fuzzy rule is an antecedent of fuzzy sets represented as 
an integer string comprising of a fixed length 
[27].Therefore, fuzzy rule based classifiers are modeled as 
concatenated integer strings having varying lengths. 
Therefore, Multiobjective Based Fuzzy Systems for 
Multidimensional Learning Data Problems at the same time 
minimizes complexity of fuzzy rule sets, while maximizing 
their accuracy. Given that complexity refers to the number 
of antecedent conditions of fuzzy rule sets , and the, while 
accuracy is measured in terms of the number of correctly 
classified patterns of training, implies that the accuracy and 
interpretability trade off for every learning pattern applies 
computational experiments in setting benchmarks for the 
data sets [27]. 
Optimal tradeoff structure is implemented and visualized 
for every data set, and therefore examines and evaluates the 
accuracy and interpretability trade off using the test 
patterns. The multiobjective evolutionary algorithm that is 
driven by Mamdani fuzzy rule based set systems have 
varied alternative tradeoffs between accuracy and 
complexity. However, the fuzzy inference system is driven 
by an algorithm that is not only rule based, but also 
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granularity is present in uniform partitions that are defined 
by the concurrently learned input and output variables [34]. 
Multiobjective Based Fuzzy Systems for Multidimensional 
Learning Data Problems codifies partition granularity 
variables and virtual rule bas, where genetic operators 
manage these virtual bases. This implies that evaluation of 
fitness primarily depend on an efficient mapping strategy 
between concrete rule bases and virtual rule bases, 
especially for regression problems [34]. The main 
advantage of the fuzzy rule based design evolutionary 
multiobjective systems over non linear models lies in the 
neural networks, which have high degrees of 
interpretability in a linguistic approach. Interpretable 
Multiobjective Based Fuzzy Systems for Multidimensional 
Learning Data Problems are very desirable for pilots and 
other aviation industry personnel, since they are driven by 
optimization tools that generate fuzzy rule based systems 
that have varied trade offs for accuracy and interpretability. 
This is possible because the computational cost and search 
space size of fitness evaluation relies on the instances and 
number of input variables [34]. 
The applications for learning concurrently the rule bases 
that are Mamdani database driven fuzzy rule based systems 
tackles the problem of exploitation of the synergy found 
between at least more than two competing techniques.  
However, initial technique would be based on reducing 
search space through learning rule bases from heuristically 
generated fuzzy rule base [32].The succeeding techniques 
would involve carries out instance selection through the 
exploitation of the co-evolutionary approach that cyclically 
evolves the genetic algorithm to reduce the learning set. 
Therefore, Multiobjective Based Fuzzy Systems for 
Multidimensional Learning Data Problems generates fuzzy 
rule systems, exploits more than one technique, and copes 
with large regression and high dimensional data sets aimed 
at fitness evaluation time and the reduction of the search 
space [32]. 
 

 
Fig 25: Genetic Fuzzy Rule Based systems 

 

D. Problems in the Hybridization between Genetic 
Algorithms and Fuzzy Logic 

There are two common methods of integrating genetic and 
fuzzy logic algorithms, where the first instance involves 
applying fuzzy logic based approaches for modeling 
adapting genetic controller parameters and a number of 
varied genetic algorithm elements with the aim of 
enhancing performance. The second instance involves the 
use of search problems concerning fuzzy systems and 
applying genetic algorithms for optimization problem 
solving.  In essence genetic algorithms make possible the 
hybridization of local search methodologies in obtaining 
the optimal solution, and therefore genetic algorithm and 
local search are two complementing solutions [37]. 
Genetic algorithms work well with finding global searches 
with the capability of finding promising regions faster, 
however are quite slow in finding the optimal solution in 
these regions. Local search on the other hand find local 
optimal solution faster with high level of accuracy but is 
limited with the problems of foot hills. Therefore, a perfect 
intermingling of genetic algorithm having local search 
capabilities aids in exploiting optimization and search 
algorithms. It is obvious that the performance of genetic 
algorithm relies with the methods of balancing the 
conflicting objectives of exploitation and exploration, 
where exploitation refers to exploiting the available best 
solutions and exploration refers to the search space for 
other promising solutions [36]. 
The complimentary view of the hybrid genetic algorithms 
involving local search and genetic algorithm methods are 
used for capability enhancement and optimization of the 
control parameters. There are several ways of optimizing 
the by and large local search methods in combination with 
genetic algorithm, which improves performance by 
enabling feasible solutions production with highly 
constrained problems [36]. 
A number of issues and problems arise with the 
Hybridization between Genetic Algorithms and Fuzzy 
Logic. One of the major issues with hybridization involves 
the adaption of genetic algorithm control parameters, given 
those fuzzy logic controllers when applied dynamically 
with the use of knowledge and experience induces suitable 
exploration and exploitation relationship throughout the 
execution of the fuzzy inference system, but introduces the 
problem of premature convergence. The other major issue 
involves crossover operators, where triangular probability 
distributions and fuzzy connectives are considered in the 
design of powerful crossover operators establishes 
sufficient population diversity levels, and therefore makes 
the fuzzy inference system vulnerable to attacks of 
premature convergence [28]. 
The problem of classical binary representation that uses the 
genes 0 and 1 are generalized fuzzy genes, and therefore it 
is better to have more complex genotypes as opposed to 
phenotype relationships found in real life. Uncertainty and 
belief measures introduces the problem of stopping criteria, 
which must be taken into account when handling predictive 
solutions to enable enforcement of the genetic algorithm in 
finding optimal solutions using user defined accuracy. 
Because of the likelihood of premature convergence, 
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genetic algorithms do not warrant the finding of an optimal 
solution [39]. 
The problem of balancing between local and global search 
for optimization problem can be dealt with applying a 
mutating operator that improves the exploring ability for 
genetic algorithm by directing the search to the highest 
promising regions within the search space. Therefore, the 
aim of hybridization is satisfied by the cooperation between 
the local search and genetic algorithm. However, crossover 
and mutation operators may distort good thus wasting 
algorithm resources hence the production of inefficient 
search. Furthermore, the improper application of hybrid 
algorithm using expensive local search leads to waste of 
algorithm resources [39]. 
It is apparent that local search and learning apply local 
knowledge in enhancing the likelihood of an individual to 
be promulgated into the preceding generation, and therefore 
the local search is perceived as a learning process. This 
implies that the gained knowledge and its applications have 
enormous effect in improving the algorithm performance; 
however, this method forces the genetic structure to mirror 
the outcome of the local search. However, this never occurs 
in many fuzzy inference systems because of lack of 
mechanisms of accomplishing it [39]. 
The aim of hybridization should be making search effective 
if the two algorithms can work in combination by 
cooperating their resources, otherwise the result can be 
very destructive. Therefore, for an effective search both 
methods must interact cooperatively, and methods of 
minimizing the improper application of the hybrid scheme 
include using local search parameters in terms of period of 
local search, selection and likelihood of local search, and 
local search frequency [39]. 

 
Fig 26: Evolutionary Neuro Fuzzy Model 

 

E. Learning Data and Adaptive Capabilities 
Evolutionary neuro fuzzy inference systems and 
applications hybridize the approximate reasoning with 
learning capabilities of evolutionary algorithms and neural 
networks. This hybridization strategy has innate limitations 

of fuzzy logic systems; however they can be overcome by 
wholly integrating soft computing paradigms into 
evolutionary neural fuzzy systems. Adaptive neuro fuzzy 
systems that can learn from available data are constructed 
from fuzzy inference systems that are multi layered in the 
neural architecture [8]. 
Soft computing paradigms of fuzzy systems with the use of 
evolutionary algorithms with learning data and adaptive 
capabilities comprises of the adaptation process, and the 
intelligence component. The adaptation process of artificial 
neural networks consists of making adjustments to the 
conditions in the environment, such as a change in the 
linguistic variables like temperature means a change to the 
quality or intensity of simulation.  The systems also adapts 
by modifying some elements of the surrounding 
environment, specifically those that makes the fuzzy 
inference system to make more fit for existence under the 
prevailing environmental conditions [23]. 
The artificial neural network of the evolutionary computing 
systems learns and understands, as well as deal with trying 
and new situations. Therefore the neural networks 
manipulate and apply knowledge in the environment, as 
well as think in an abstract manner and are measured with 
reference to the objective criteria. Adaptive database 
framework that applies evolutionary algorithms supports 
decision making systems by delivering fuzzy IF/THEN 
rules with highly complex computational abilities that leads 
to enormous amounts of simulation time [23]. 
The major problems with the artificial neural network of 
the evolutionary computing systems learn and understand 
includes the need of expert knowledge in modeling the 
objective function that sets up the fuzzy rules. The fuzzy 
inference technique enables approximate human reasoning, 
and the genetic optimization and neural learning makes the 
fuzzy inference system to learn the fuzzy logic model using 
any given data set, which is optimized for interpretability 
and accuracy [8]. 

F. Aviation Safety and Risk assessment 
Promoting aviation safety operations using fuzzy inference 
modeling approaches have characteristics such as safety 
procedures, personnel capabilities, and aircraft 
performance, which all impacts aviation safety. When 
dealing with situations with high levels of uncertainty 
requires strategies that evaluates the factors in the risk base 
in line with either risk mitigation or reduction, with respect 
to human factors, weather conditions, aircraft type, aircraft 
lighting, as well as other surface conditions. Fuzzy 
inference systems approach performs risk analysis through 
the provision of the proactive measures in risk reduction 
during the initial stages of the fuzzy model design [17]. 
Flight delays and safety is a common problem, and safety 
management systems built on fuzzy logic models combined 
with appropriate decision making process demonstrates 
useful insights into effective Aviation Safety and Risk 
assessment. The traditional approaches of probabilistic 
decision making techniques for safety risk analysis have 
been used, however fuzzy probability estimation uses 
expert confidence index in ensuring reliability of data. 
Therefore, defuzzification processes overcomes limitations 
that lends themselves to fuzzy linear estimations, and 
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therefore the fuzzy inference system applies sensitivity 
analysis in evaluating the proportion of contribution of 
basic factors of risk events [24]. 
Fault diagnosis systems based upon fuzzy logic parity 
equation relying on non linear systems are drawn from 
entirely decoupled parity equation.  This implies that the 
residuals that are derived from it become only sensitive to 
the particular sensor or actuator fault. This implies that the 
fuzzy logic parity equation derive the fuzzification process 
of the residuals by applying another traditional linear 
model. Therefore, the digital human in aviation safety is 
influenced by factors such as coverage, which means the 
pilot selection range, visibility, comfort, accessibility, 
cooperation, and decision making [17]. 
Given that security is a major challenge to the aviation 
industry means that attacks must be reduced in order to 
enhance passenger safety. The fuzzy logic system must be 
flexible, knowledgeable, efficient, and dedicated while 
making effective judgments that enhances aviation safety. 
Environment also poses a great challenge to aviation safety, 
and factors such as aviation weather including lighting, 
turbulence, wind, and precipitation are variables that the 
defuzzification engine use intelligence from human error 
such as communication gaps, pilot’s errors, errors in design 
and repair, and so on. Therefore, the fuzzy inference 
modeling covers for human error, as well as promote 
security management including subjective variables such as 
attitude or level of training, experience of personnel and 
aviation security systems [24]. 
 

V. DISCUSSION 
The discussion of the results and corresponding analysis of 
the research study discusses and quantifies the tangible and 
intangible benefits of fuzzy environment in relation to 
optimization of aviation safety, as well as the limitations of 
fuzzy inference systems in the performance of aviation 
technologies. The application of the fuzzy sets theory in 
developing economic evaluations and hierarchical heuristic 
structural analysis uses Fuzzy Systems and Applications 
Evolutionary Genetic algorithms in the Aviation Industry.  
Computer based prototypes for aviation performance 
models handles complex fuzzy calculations, where decision 
making systems apply pertinent factors in terms of 
linguistic variable scales such as very high, medium, and 
very low being converted to fuzzy numerals [26]. 
An integrated fuzzy approach is necessary for designing 
aircraft transportation by applying theory of constraints, 
fuzzy set theory, and balanced scorecard, which must be 
integrated in order to satisfy the design process for 
maximum optimization that meets the needs of customers, 
shareholders, and employees. Aviation errors occurs in all 
aspects of the industry including maintenance errors, 
aviation incidences, and therefore aviation industry wide 
safety and performance improvement requires progressive 
innovative tools for preventing and eliminating errors from 
occurring [26]. 
Fuzzy logic handles the concept of super set of Boolean or 
conventional logic and the concept of partial truth, and 
therefore considers the gamut of fuzzy values from 
completely true to completely false. While aircraft design 

comprises several steps including structural analysis, flight 
control design, and aerodynamic design, flight control is a 
very significant component that directly affects aviation 
safety and [performance. Fuzzy logic enables the aviation 
industry to depend on automated control systems for 
functions that demands persistently efficient controllers 
[26]. 
As much as conventional controllers work efficiently for 
systems that follow linear patterns in the real world, 
aviation dynamics require highly non linear controllers that 
perfectly work with non linear trajectories. Fuzzy logic 
controllers  applies non linear control methods in terms of 
linguistic approaches  based on specific sets of rules and 
membership functions in designing controllers functions for 
autopilot aviation operations. The safety level is a very 
crucial aspect of the aviation industry, and the grounds 
examination of the predicted air traffic and airspace 
challenges, such as increased air traffic increases the safety 
responsibility. Therefore, hazards and risks recognition and 
analysis fundamentally defines the safety level of air traffic 
[38]. 
Integrated fuzzy approaches based on abstract objects, 
mapping design attributes, function space theory, air traffic 
system model, and integrated aviation includes both static 
and dynamic parameters of aircraft, air traffic control, and 
airport. The novelty of the integrated fuzzy approaches is 
based on complexity, integration, and flight specificity 
attributes. However, the theoretical fuzzy model comprises 
the meteorological parameters, system infrastructure, 
system components, and human factors or agents, as well 
as the entire active system and processes of the loaded. 
Therefore, the Fuzzy Systems and Applications 
Evolutionary Genetic algorithms in the Aviation Industry 
must take into account the complexity of the present loaded 
parameters [38]. 
A significant task for aviation industry operators is the 
establishment of a risk assessment of airports and aircrafts 
safety through the identification of risk items, and 
measuring risk value objectively. Therefore, application of 
fuzzy logic in finding out the significance of decision 
factors in relation to effect, failure modes, and critical 
analysis. The decision factors include severity, probability, 
and detect ability of aviation risks that helps in discovering 
the threshold of the value of risk. Fuzzy logic provides 
techniques with respect to linguistic terms that make 
critical assessment of risk linked to failure modes in a 
natural manner. The IF/THEN fuzzy rules using expert 
knowledge formulates appropriate rules for coping with 
situations in linguistic terms [38]. 
Obtaining an optimal solution is the primary function of 
fuzzy models in problems affecting the aviation industry, 
and fuzzy controllers and fuzzy expert knowledge must 
have predefined membership functions together with fuzzy 
inference rules that transform numerical data into linguistic 
variable factors. Thus the performance of fuzzy reasoning 
proposes learning methods that provides a framework for 
the derivation of fuzzy membership functions and 
IF/THEN rules from a set of fuzzy training examples, thus 
building prototype fuzzy logic expert systems in a complex 
environment. In essence, the fuzzy controllers uses fuzzy 
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rules directly  and fuzzy theory in creating fuzzy controlled 
engine by fuzzification, that is applying membership 
functions by graphically describing a particular aviation 
situation. The rule evaluation applies fuzzy rules, which 
defuzzification then obtains actual or crisp results [27]. 
 

 
Fig 27: Approximate Reasoning Inputs and Rules 

Processes 
Neuro fuzzy cooperation model prototype development 
requires learning ability and precision in making the ability 
of the neural network easy to understand by acquiring 
knowledge from experts and converting the fuzzy system 
into neural system [14]. Fuzzy logic in aviation control 
systems therefore, converts linguistic controls into 
automated control strategy by constructing a fuzzy logic 
control system that assesses the performance and problems 
of fuzzy reasoning implications. Therefore, within the 
aerospace domain requires optimal solutions for complex 
search, as well as planning problems, of which genetic 
algorithms comes very useful. Genetic algorithms provide 
wide-ranging populations of solutions that enable aviation 
operations to cope with the changing aerospace 
circumstances. Genetic algorithms learning of neural model 
for aviation guidance and control requires complex 
airframes, which improves performance in stressful 
maneuvers [14].Therefore, autopilot’s airframe is highly 
non linear in highly cross coupled environments, and hence 
guidance and control comprises multiple inputs that 
generates appropriate outputs within neural net 
architectures that provides greater robustness.  

 
VI. CONCLUSIONS AND RECOMMENDATIONS 

The overall contribution of this research to the Fuzzy 
Systems and Applications Evolutionary Genetic algorithms 
in the Aviation Industry evaluates performance and needs 
of optimization the current fuzzy inference systems. The 
incorporation of fuzzy logic into neuro adaptive learning 
with appropriate fuzzy design rules and membership 
functions significantly improves defuzzification outputs in 
relation to appropriate fuzzy inputs. The motivation behind 
the development of multiobjective evolutionary systems 
has helped to address most of the problems and challenges 
of the conventional control systems using linear methods. 
Therefore hybridization and adaptive learning fuzzy 

systems have enhanced the dimensionality of fuzzy 
inference systems in terms of accuracy and interpretability, 
and hence fuzzy systems in uncertain aviation conditions 
deals with anomalous inputs that help deal with optimizing 
the real world challenges into automatic determination. 
Based on the literature and empirical case studies, the 
performance and safety index in the application of fuzzy 
logic systems views the empirical evidence in a number of 
perspectives, such as systematical fuzzy inference designs 
that reflects aviation probability, scientific feasibility that 
displays aviation profitability, expansibility referring to 
having ability to be replicated in different regions, periods, 
weather conditions, and other aviation conditions. 
Independence is important characteristic of efficient and 
effective fuzzy inference system by the fact that they are 
relevant to other fuzzy systems and conventional systems, 
as well as objectivity where the safety and performance 
index is measured in terms of the evaluation being made. 
Future research should be devoted in real time planning, 
and therefore developments should consider more research 
into delays on airports, weather conditions, and other 
aviation events that compromise safety and performance 
such as aviation accidents and attacks. Self adaptive neuro 
fuzzy inference systems with learning capabilities are the 
direction of future research and innovation in the Fuzzy 
Systems and Applications Evolutionary Genetic algorithms 
in the Aviation Industry. 
Future developments should consider innovations in 
designing fuzzy logic controllers for non linear systems that 
are easier to use as compared to traditional controller 
designs. This implies that spatiotemporal framework for 
adaptive network based fuzzy inference systems should 
greatly improve performance and safety index in terms of 
structural similarity index that will successfully evaluate 
generated fuzzy outputs. The human limitations will 
completely be eradicated with modeling techniques that 
promote adaptive learning in the field of neural networks, 
and hence will provide an appropriate balance between 
numerical accuracy and interpretability of the predictive 
ability of fuzzy rules and membership functions. Therefore, 
identification and analysis of threats to safety and 
performance of aviation systems must carry out 
probabilistic criteria in using neural networks and fuzzy 
logic expert inference systems. 
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