
Data Center Transmission Control Protocol an
Efficient Packet Transport for the Commoditized

Data Center

Madhavi Gulhane

Computer Science& Engg.

Prof.Ram Meghe Institute of Technology & Research
Badnera-Amravati(Maharashtra)

INDIA

Prof. Dr.Sunil R.Gupta

Computer Science& Engg.

Prof.Ram Meghe Institute of Technology & Research
Badnera-Amravati(Maharashtra)

INDIA

Abstract-Cloud data centers host diverse applications, mixing
in the same network a plethora of workflows that require
small predictable latency with others requiring large sustained
throughput. In this environment, today’s state-of-the-art TCP
protocol falls short. We present measurements of a 6000
server production cluster and reveal network impairments,
such as queue buildup, buffer pressure, and incast, that lead to
high application latencies. Using these insights, propose a
variant of TCP, DCTCP, for data center networks. DCTCP
leverages Explicit Congestion Notification (ECN) and a simple
multibit feedback mechanism at the host. We evaluate DCTCP
at 1 and 10Gbps speeds, through benchmark experiments and
analysis. In the data center, operating with commodity,shallow
buffered switches, DCTCP delivers the same or better
throughput than TCP, while using 90% less buffer space.
Unlike TCP, it also provides hight burst tolerance and low
latency for short flows. While TCP’s limitations cause our
developers to restrict the traffic they send today, using
DCTCP enables the applications to handle 10X the current
background traffic, without impacting foreground traffic. Fur-
ther, a 10X increase in foreground traffic does not cause any
timeouts, thus largely eliminating incast problems.

1. INTRODUCTION
In recent years, data centers have transformed computing,
with large scale consolidation of enterprise IT into data
center hubs, and with the emergence of cloud computing
service providers like Amazon, Microsoft and Google. A
consistent theme in data center design has been to build
highly available, highly performant computing and storage
infrastructure using low cost, commodity components
[18,5]. A corresponding trend has also emerged in data
center networks. In particular, low-cost switches are
common at the top of the rack, providing up to 48 ports at
1Gbps, at a price point under $2000 — roughly the price of
one data center server. Several recent research proposals
envision creating economical, easy-to-manage data centers
using novel architectures built atop these commodity
switches [3,14,17]
Is this vision realistic? The answer depends in large part on
how well the commodity switches handle the traffic of real
data center applications. In this paper, we focus on soft real-
time applications, such as web search, retail, advertising,
and recommendation systems that have driven much of the
data center construction. We find that these applications

generate a diverse mix of short and long flows, and require
three things from the data center network: low latency for
short flows, high burst tolerance, and high utilization for
long flows.
The first two requirements stem from the
Partition/Aggregate workflow pattern that many of these
applications use. The soft real-time deadlines for end results
translate into latency targets for the individual tasks in the
workflow. These targets vary from 10ms to 100ms, and
tasks not completed before their deadline are cancelled,
affecting the final result. Thus, application requirements for
low latency directly impact the quality of the result returned
and thus revenue. Reducing network latency allows
application developers to shift more cycles to the
algorithms that improve relevance and end user experience.
The third requirement, high utilization for large flows,
stems from the need to continuously update internal data
structures of these applications, as the freshness of this data
also affects the quality of results. High throughput for long
flows that update the data is thus as essential as low latency
and burst tolerance.
In this paper, we make two major contributions:
1. We measure and analyze production data center traffic
that uses commodity switches (>150TB of compressed

data), collected over the course of a month from 6000
servers (x2), extracting application patterns and needs (in
particular, low latency needs). Impairments that hurt
performance are identified, and linked to properties of the
traffic and the switches.

2.We propose a TCP variant, DCTCP, which addresses
these impairments to meet the needs of applications (x3).
DCTCP uses Explicit Congestion Notification (ECN), a
feature already available in modern commodity switches.
We evaluate DCTCP at 1 and 10Gbps speeds on ECN-
capable commodity switches (x4). We find DCTCP
successfully supports 10X increases in application
foreground and background traffic in our benchmark
studies.

The measurements reveal that the data center’s traffic
consists of query traffic (2KB to 20KB), delay sensitive
short messages (100KB to 1MB), and throughput sensitive
long flows (1MB to 100MB). We find that the query traffic

Madhavi Gulhane et al | International Journal of Computer Science Engineering and Technology(IJCSET) | April 2014 | Vol 4, Issue 4,114-120

www.ijcset.net 114

experiences the incast impairment, discussed in [32, 15] in
the context of storage networks. However, the data also
reveal new impairments unrelated to incast: query and
delay-sensitive short messages experience long latencies
due to long flows consuming some or all of the available
buffer in the switches. Our key learning from these
measurements is that to meet the requirements of such a
diverse mix of short and long flows, switch buffer
occupancies need to be persistently low, while maintaining
high throughput for the long flows. DCTCP is designed to
do exactly this.
DCTCP combines Explicit Congestion Notification (ECN)
with a novel control scheme at the sources. It extracts
multi-bit

Figure 1: Queue length measured on a Broadcom Triumph switch. Two
long flows are launched from distinct 1Gbps ports to a common 1Gbps
port. Switch has dynamic memory management enabled, allowing flows to
a common receiver to dynamically grab up to 700KB of buffer.

feedback on congestion in the network from the single bit
stream of ECN marks. Sources estimate the fraction of
marked packets, and use that estimate as a signal for the
extent of congestion. This allows DCTCP to operate with
very low buffer occupancies while still achieving high
throughput. Figure 1 illustrates the effectiveness of DCTCP
in achieving full throughput while taking up a very small
footprint in the switch packet buffer, as compared to TCP.
While designing DCTCP, a key requirement was that it be
implementable with mechanisms in existing hardware —
meaning our evaluation can be conducted on physical
hardware, and the solution can be deployed to our data
centers. The industry reality is that after years of debate and
consensus building, a very small number of mechanisms,
such as basic RED and ECN, are realized in hardware.
We deliberately concentrate on the data center environment,
and on TCP (which makes up 99 :91% of the traffic in our
data centers). Our solution confronts the many differences
between the data center environment and wide area
networks (WANs), where most of the prior work on TCP
has focused (x5). For example, we observe empty queue
Round Trip Times (RTTs) to be consistently under 250 s.
Further, applications have simultaneous needs for
extremely high bandwidths and very low latencies, and
often there is little statistical multiplexing: a single flow can
dominate a particular path.
At the same time, we leverage luxuries not available in the
WAN. The data center environment is largely homogeneous
and under a single administrative control. Thus, backward
compatibility, incremental deployment and fairness to
legacy protocols are not major concerns. Connectivity to

the external Internet is typically managed through load
balancers and application proxies that effectively separate
internal traffic from external, so issues of fairness with
conventional TCP are irrelevant.
The TCP literature is vast, and there are two large families
of congestion control protocols that also attempt to control
queue lengths: (i) Implicit delay-based protocols use
increases in RTT measurements as a sign of growing
queueing delay, and hence of congestion. These protocols
rely heavily on accurate RTT measurement, which is
susceptible to noise in the very low latency environment of
data center

�Figure 2: The partition/aggregate design pattern

Small noisy fluctuations of latency become
indistinguishable from congestion and the algorithm can
over-react. (ii) Active Queue Management (AQM)
approaches use explicit feedback from congested switches.
The algorithm we propose is in this family. Other
approaches for obtaining short latencies include QoS and
dividing network traffic into classes. However, QoS
requires application developers to agree on how traffic is
prioritized in a dynamic multi-application environment.
Having measured and analyzed the traffic in the cluster and
associated impairments in depth, we find that DCTCP
provides all the benefits we seek. DCTCP requires only 30
lines of code change to TCP, and the setting of a single
parameter on the switches.

2. COMMUNICATIONS IN DATA CENTERS
To understand the challenges facing data center transport
protocols, we first describe a common application structure,
Partition/Aggregate, that motivates why latency is a critical
metric in data centers. We then measure the synchronized
and bursty traffic patterns that result, and we identify three
performance impairments these patterns cause.
2.1 Partition/Aggregate
The Partition/Aggregate design pattern shown in Figure 2 is
the foundation of many large scale web applications.
Requests from higher layers of the application are broken
into pieces and farmed out to workers in lower layers. The
responses of these workers are aggregated to produce a
result. Web search, social network content composition, and
advertisement selection are all based around this application
design pattern. For interactive, soft-real-time applications
like these, latency is the key metric, with total permissible
latency being determined by factors including customer
impact studies[21] . After subtracting typical Internet and
rendering delays, the “backend” part of the application is

Madhavi Gulhane et al | International Journal of Computer Science Engineering and Technology(IJCSET) | April 2014 | Vol 4, Issue 4,114-120

www.ijcset.net 115

typically allocated between 230-300ms. This limit is called
an all-up SLA.
Many applications have a multi-layer partition/aggregate
pattern workflow, with lags at one layer delaying the
initiation of others. Further, answering a request may
require iteratively invoking the pattern, with an aggregator
making serial requests to the workers below it to prepare a
response. (1 to 4 iterations are typical, though as many as
20 may occur.) For example, in web search, a query might
be sent to many aggregators and workers, each responsible
for a different part of the index. Based on the replies, an
aggre-gator might refine the query and send it out again to
improve the relevance of the result. Lagging instances of
partition/aggregate can thus add up to threaten the all-up
SLAs for queries. Indeed, we found that latencies run close
to SLA targets, as developers exploit all of the available
time budget to compute the best result possible.
To prevent the all-up SLA from being violated, worker
nodes are typically assigned tight deadlines, usually on the
order of 10-100ms. When a node misses its deadline, the
computation continues without that response, lowering the
quality of the result. Further, high percentiles for worker
latencies matter. For example, high latencies at the 99 :9
percentile mean lower quality results or long lags (or both)
for at least 1 in 1000 responses, potentially impacting large
numbers of users who then may not come back. Therefore,
percentiles are typically tracked to 99 :9 percentiles, and
deadlines are associated with high percentiles. Figure 8
shows a screen shot from a production monitoring tool,
focusing on a 5ms issue.
With such tight deadlines, network delays within
the data center play a significant role in
application design. Many applications find it so hard
to meet these deadlines using stateof-the-art TCP that they
often take on enormous amount of complexity to get around
it. For example, our application reduces the amount of data
each worker sends and employs jitter. Facebook, reportedly,
has gone to the extent of developing their own UDP-based
congestion control [29]
2.2 Workload Characterization
We next measure the attributes of workloads in three
production clusters related to web search and other services.
The measurements serve to illuminate the nature of data
center traffic, and they provide the basis for understanding
why TCP behaves poorly and for the creation of
benchmarks for evaluating DCTCP.
We instrumented a total of over 6000 servers in over 150
racks. The three clusters support soft real-time query traffic,
integrated with urgent short message traffic that coordinates
the activities in the cluster and continuous background
traffic that ingests and organizes the massive data needed to
sustain the quality of the query responses. We use these
terms for ease of explanation and for analysis, the
developers do not separate flows in simple sets of classes.
The instrumentation passively collects socket level logs,
selected packetlevel logs, and app-level logs describing
latencies – a total of about 150TB of compressed data over
the course of a month.
Each rack in the clusters holds 44 servers. Each server
connects to a Top of Rack switch (ToR) via 1 Gbps

Ethernet. The ToRs are shallow buffered, shared-memory
switches; each with 4 MB of buffer shared among 48 1
Gbps ports and two 10Gbps ports.
Query Traffic. Query traffic in the clusters follows the
Partition/Aggregate pattern. The query traffic consists of
very short, latency-critical flows, following a relatively
simple pattern, with a high-level aggregator (HLA)
partitioning queries to a large number of mid-level
aggregators (MLAs) that in turn partition each query over
the 43 other servers in the same rack as the mid-level
aggregator. Servers act as both MLAs and workers, so each
server will be acting as an aggregator for some queries at
the same time it is acting as a worker for other queries.
Figure 3(a) shows the CDF of time between arrivals of
queries at mid-level aggregators. The size of the query
flows is extremely regular, with queries from MLAs to
workers being 1.6 KB and responses from workers to
MLAs being 1.6 to 2 KB.
Background Traffic. Concurrent with the query traffic is a
complex mix of background traffic, consisting of both large
and small flows. Figure 4 presents the PDF of background
flow size, illustrating how most background flows are small,
but most of the bytes in background traffic are part of large
flows. Key among background flows are large, 5KB to
50MB, update flows that copy fresh data to the workers and
time-sensitive short message flows, 50KB to 1MB in size,
that update control state on the workers. Figure 3(b) shows
the time between arrival of new background flows. The
interarrival time between background flows reflects the
superposition and diversity of the many different services
supporting the application: (1) the variance in interarrival
time is very high, with a very heavy tail; (2) embedded
spikes occur, for example the 0ms inter-arrivals that explain
the CDF hugging the y-axis up to the 50 percentile; and (3)
relatively large numbers of outgoing flows occur
periodically, resulting from workers periodically polling a
number of peers looking for updated files.

Figure 3: Time between arrival of new work for the Aggregator (queries)
and between background flows between servers (update and short
message).

Figure 4: PDF of flow size distribution for background traffic. PDF of
Total Bytes shows probability a randomly selected byte would come from
a flow of given size.

Madhavi Gulhane et al | International Journal of Computer Science Engineering and Technology(IJCSET) | April 2014 | Vol 4, Issue 4,114-120

www.ijcset.net 116

Flow Concurrency and Size. Figure 5 presents the
CDF of the number of flows a MLA or worker
node participates in concurrently (defined as the
number of flows active during a 50 ms window).
When all flows are considered, the median

Figure 5: Distribution of number of concurrent connections.

number of concurrent flows is 36, which results from the
breadth of the Partition/Aggregate traffic pattern in which
each server talks to 43 other servers. The 99.99th percentile
is over 1,600, and there is one server with a median of
1,200 connections.
When only large flows (>1MB) are considered, the degree
of statistical multiplexing is very low — the median
number of concurrent large flows is 1, and the 75th
percentile is 2. Yet, these flows are large enough that they
last several RTTs, and can consume significant buffer space
by causing queue buildup.

In summary, throughput-sensitive large flows,
delay sensitive short flows and bursty query
traffic, co-exist in a data center network. In the
next section, we will see how TCP fails to satisfy
the performance requirements of these flows.

3. THE DCTCP ALGORITHM

The main goal of DCTCP is to achieve high burst tolerance,
low latency, and high throughput, with commodity shallow
buffered switches. To this end, DCTCP is designed to
operate with very small queue occupancies, without loss of
throughput.

DCTCP achieves these goals primarily by
reacting to congestion in proportion to the extent
of congestion. DCTCP uses a very simple
marking scheme at switches that sets the
Congestion Experienced (CE) codepoint of
packets as soon

Figure 6: DCTCP’s AQM scheme is a variant of RED: Low and High
marking thresholds are equal, and marking is based on the instantaneous
queue length.

as the buffer occupancy exceeds a fixed small threshold.
The DCTCP source reacts by reducing the window by a
factor that depends on the fraction of marked packets: the
larger the fraction, the bigger the decrease factor.

It is important to note that the key contribution
here is not the control law itself. It is the act of
deriving multi-bit feedback from the information
present in the single-bit sequence of marks. Other
control laws that act upon this information can be
derived as well. Since DCTCP requires the
network to provide only single-bit feedback, we
are able to re-use much of the ECN machinery
that is already available in modern TCP stacks
and switches.
We note that the idea of reacting in proportion to the extent
of congestion is also used by delay-based congestion
algorithms [6,31]Indeed, one can view path delay
information as implicit multi-bit feedback. However, at
very high data rates and with low-latency network fabrics,
sensing the queue buildup in shallow-buffered switches can
be extremely noisy. For example, a 10 packet backlog
constitutes 120s of queuing delay at 1 Gbps, and only
12 sat 10 Gbps. The accurate measurement of such small
increases in queueing delay is a daunting task for today’s
servers.
The need for reacting in proportion to the extent of
congestion is especially acute in the absence of large-scale
statistical multiplexing. Standard TCP cuts its window size
by a factor of 2 when it receives ECN notification. In effect,
TCP reacts to presence of congestion, not to its extent
Dropping the
window in half causes a large mismatch between the input
rate to the link and the available capacity. In the high speed
data center environment where only a small number of
flows share the buffer, this leads to buffer underflows and
loss of throughput.

3.1 Algorithm
The DCTCP algorithm has three main components:
(1) Simple Marking at the Switch: DCTCP employs a very
simple active queue management scheme, shown in Figure
10. There is only a single parameter, the marking threshold,
K. An arriving packet is marked with the CE codepoint if
the queue occupancy is greater than Kupon its arrival.
Otherwise, it is not marked. The design of the DCTCP
marking scheme is motivated by the need to minimize
queue buildup. DCTCP aggressively marks packets when a
queue overshoot is sensed. This allows sources to be
notified of the queue overshoot as fast as possible.
Figure 6 shows how the RED marking scheme
(implemented by most modern switches) can be
re-purposed for DCTCP. We simply need to set
both the low and high thresholds to K, and mark

Madhavi Gulhane et al | International Journal of Computer Science Engineering and Technology(IJCSET) | April 2014 | Vol 4, Issue 4,114-120

www.ijcset.net 117

based on instantaneous, instead of average queue
length.
 (2) ECN-Echo at the Receiver: The only
difference between a DCTCP receiver and a TCP
receiver is the way information in the CE
codepoints is conveyed back to the sender. RFC
3168 states that a receiver sets the ECN-Echo flag
in a series of ACK packets until it receives
confirmation from the sender (through the CWR
flag) that the congestion notification has been
received. A DCTCP receiver, however, tries to
accurately convey the exact sequence of marked
packets back to the sender. The simplest way to
do this is to ACK every packet, setting the ECN-
Echo flag if and only if the packet has a marked
CE codepoint

Figure 7 : Two state ACK generation state machine.

However, using Delayed ACKs is important for a variety of
reasons, including reducing the load on the data sender. To
use delayed ACKs (one cumulative ACK for every m
consecutively received packets the DCTCP receiver uses
the trivial two state state-machine shown in Figure 11 to
determine whether to set ECN-Echo bit. The states
correspond to whether the last received packet was marked
with the CE codepoint or not. Since the sender knows how
many packets each ACK covers, it can exactly reconstruct
the runs of marks seen by the receiver.
(3) Controller at the Sender: The sender maintains a
running estimate of the fraction of packets that are marked,
called , which is updated once for every window of data
(roughly one RTT) as follows:
 (1 g) + g F (1) where Fis the fraction of packets that were
marked in the
last window of data, and 0 <g<1 is the weight given to new
samples against the past in the estimation of .
Note that is a real number between 0 and 1. Given that the
sender receives marks for every packet when the queue
length is higher than Kand does not receive any marks
when the queue length is below K, the formula shown
above implies that is the probability that the queue is
greater than K. Essentially, close to 0 indicates low,
and close to 1 indicates high levels of congestion.
Prior work on congestion control in the small buffer regime
have argued that at high line rates, queue size fluctuations

become so fast that you cannot control the queue size, only
its distribution[25,20]. The physical significance of is well
aligned with this intuition: it represents a single point of the
queue size distribution at the bottleneck link.
The only difference between a DCTCP sender and a TCP
sender is in how each reacts to receiving an ACK with the
ECN-Echo flag set. All other features of TCP such as slow
start, additive increase in congestion avoidance, or recovery
from packet lost are left unchanged. While TCP always cuts
its window size by a factor of 2 in response a marked ACK,
DCTCP uses to cut its window size as follows

Thus, when is near 0 (low congestion), the window is
slightly reduced. In other words, DCTCP senders start
gently reducing their window as soon as the queue exceeds
K. This is how DCTCP maintains low queue length, while
still ensuring high throughput. When congestion is high
(α=1), DCTCP cuts its window in half, just like TCP.

4. BENCHMARK TRAFFIC
In the sections that follow, we evaluate how DCTCP would
perform under the traffic patterns found in production
clusters (x2.2). For this test, we use 45 servers connected to
a Triumph top of rack switch by 1Gbps links. An additional
server is connected to a 10Gbps port of the Triumph to act
as a stand-in for the rest of the data center, and all inter-rack
traffic is directed to/from this machine. This aligns with the
actual data center, where each rack connects to the
aggregation switch with a 10Gbps link.
We generate all three types of traffic found in the cluster:
query, short-message, and background. Query traffic is
created following the Partition/Aggregate structure of the
real application by having each server draw from the
interarrival time distribution and send a query to all other
servers in the rack, each of which then send back a 2KB
response ,
(45 2KB 100KB total response size). For the shortmessage
and background traffic, each server draws independently
from the interarrival time and the flow size distributions,
choosing an endpoint so the ratio of inter-rack to intra-rack
flows is the same as measured in the cluster.

Figure 8: Completion time of background traffic. Note the log scale on

the Y axis.

carry out these experiments using TCP and DCTCP, with
RTO set to 10ms in both. For DCTCP experiments, K was
set to 20 on 1Gbps links and to 65 on the 10Gbps link.
Dynamic buffer allocation was used in all cases. We

Madhavi Gulhane et al | International Journal of Computer Science Engineering and Technology(IJCSET) | April 2014 | Vol 4, Issue 4,114-120

www.ijcset.net 118

generate traffic for 10 minutes, comprising over 200,000
background flows and over 188,000 queries.
Both query and short-message flows are time critical, their
metric of interest is completion time. The RTT (i.e. queue
length) and timeouts affect this delay the most. For large
flows in the background traffic (e.g., updates), the
throughput of the network is the main consideration.
Figure 8 shows the mean and 95th percentile of completion
delay for background traffic, classified by flow sizes. The
90% confidence intervals of the mean are too tight to be
shown. Short-messages benefit significantly from DCTCP,
as flows from 100KB-1MB see a 3ms/message benefit at
the mean and a 9ms benefit at 95th percentile. The
background traffic did not suffer any timeouts with either
protocol in this experiment. Thus, the lower latency for
short-messages is due to DCTCP’s amelioration of queue
buildup.

Figure 9 : Completion time Figure 10 :95th percentile
 Query traffic completion time
 10x background & 10x query

Figure 9 shows query completion time

statistics. DCTCP performs better than TCP,
especially at the tail of the distribution. The
reason is a combination of timeouts and high
queueing delay. With TCP, 1.15% of the queries
suffer from timeout(s). No queries suffer from
timeouts with DCTCP.
 Scaled traffic: The previous benchmark shows how
DCTCP performs on today’s workloads. However, as
explained in x2.3, the traffic parameters we measured
reflect extensive optimization conducted by the developers
to get the existing system into the tight SLA bounds on
response time. For example, they restrict the size of query
responses and update frequency, thereby trading off
response quality for response latency. This naturally leads
to a series of “what if” questions: how would DCTCP
perform if query response sizes were larger? Or how would
DCTCP perform if background traffic characteristics were
different? We explore these questions by scaling the traffic
in the benchmark, while keeping the structure unchanged.
We begin by asking if using DCTCP instead of TCP would
allow a 10X increase in both query response size and
background flow size without sacrificing performance. We
use the same testbed as before. We generate traffic using the
benchmark, except we increase the size of update flows
larger than 1MB by a factor of 10 (most bytes are in these
flows, so this effectively increases the volume of
background traffic by a factor of 10). Similarly, we generate

queries as before, except that the total size of each response
is 1MB (with 44 servers, each individual response is just
under 25KB). We conduct the experiment for both TCP and
DCTCP.
Additionally, for TCP, we tried two ways of fixing its
performance. First, we replaced the shallow-buffered
Triumph switch with the deep-buffered CAT4948 switch.
Second, instead of drop tail queues, we used RED with
ECN.
It was as difficult to tune RED parameters at 1Gbps as it
was previously at 10Gbps: after experimentation, we found
that setting min th= 20 ; maxth= 60 and using for the
remaining parameters gave the best performance.
Figure 10 shows the 95th percentile of response
times for the short messages (100KB-1MB) and the query
traffic (mean and other percentiles are qualitatively similar).
The results show DCTCP performs significantly better than
TCP for both update and query traffic. The 95th percentile
of completion time for short-message traffic improves by
14ms, while query traffic improves by 136ms. With TCP,
over 92% of the queries suffer from timeouts, while only
0.3% suffer from timeouts with DCTCP.

Figure 10: 95th percentile of completion time

In fact, short message completion time for DCTCP is
essentially unchanged from baseline (Figure 8(b)) and, even
at 10X larger size, only 0.3% of queries experience
timeouts under DCTCP: in contrast TCP suffered 1.15%
timeouts for the baseline.
Thus, DCTCP can handle substantially more traffic without
any adverse impact on performance.
Deep buffered switches have been suggested as a
fix for TCP’s incast problem, and we see this is
true: on the CAT4948 less than 1% of the queries
suffer from timeout with TCP, and the completion
time is comparable to DCTCP. However, if deep
buffers are used, the short-message traffic is
penalized: their completion times are over 80ms,
which is substantially higher than TCP without
deep buffers (DCTCP is even better)
The reason is that deep buffers cause queue
buildup.
We see that RED is not a solution to TCP’s
problems either: while RED improves
performance of short transfers by keeping average
queue length low, the high variability (see Figure
16) of the queue length leads to poor performance

Madhavi Gulhane et al | International Journal of Computer Science Engineering and Technology(IJCSET) | April 2014 | Vol 4, Issue 4,114-120

www.ijcset.net 119

for the query traffic (95% of queries experience a timeout).
Another possible factor is that RED marks packets based on
average queue length, and is thus slower to react to bursts
of traffic caused by query incast.
These results make three key points: First, if our
data center used DCTCP it could handle 10X
larger query responses and 10X larger
background flows while performing better than it
does with TCP today. Second, while using deep
buffered switches (without ECN) improves
performance of query traffic, it makes
performance of short transfers worse, due to
queue build up. Third, while RED improves
performance of short transfers, it does not
improve the performance of query traffic, due to
queue length variability.

Figure 12: Fraction of queries that suffer at least one timeout

Benchmark variations:
The intensity of our benchmark traffic can be varied either
by increasing the arrival rate of the flows or by increasing
their sizes. We explored both dimensions, but the results are
similar, so we report primarily on increases in flow sizes.
Specifically, we report on the two corners: scaling the
background traffic while holding query traffic to the
original benchmark size, and vice versa.
Figure 11(a) shows that increasing the size of background
traffic hurts the performance of both short messages and
query traffic. As big flows cause both queue buildup delays
and buffer pressure, which DCTCP mitigates. Figure 12(a)
shows how increasing background traffic causes buffer
pressure that causes query traffic timeouts, but the impact
on TCP is greater than DCTCP.
Figure 11(b) shows that increasing the size of the
query responses by a factor of 10 severely
degrades the latency of query traffic, with TCP.
However, DCTCP handles the increased traffic
without significant impact on the performance
(compare Fig. 11(b) to Fig.9). The reason is
DCTCP reducing incast timeouts: Figure 12(b)
shows how for TCP the fraction of queries that
suffer timeouts grows quickly with response size.
After the response size exceeds 800KB, almost all
queries suffer from timeout

5. CONCULSION

In this paper, we provided detailed traffic
measurements from a 6000 server data center
cluster, running production soft real time
applications, and linked these to the behavior of
the commodity switches in use in the cluster. We
found that to meet the needs of the observed
diverse mix of short and long flows, switch buffer
occupancies need to be persistently low, while
maintaining high throughput for the long flows. A
wide set of detailed experiments at 1 and 10Gbps
speeds showed that DCTCP does exactly this.
DCTCP relies on Explicit Congestion
Notification (ECN), a feature now available on
commodity switches rolling out in 2010. DCTCP
succeeds through use of the multi-bit feedback
derived from the series of ECN marks, allowing it
to react early to congestion. We recommend
enabling ECN and deploying DCTCP, to bring us
one step closer to economical, high performance
data center networks.

REFERENCE
[1] P. Agarwal, B. Kwan, and L. Ashvin. Flexible buffer allocation

entities for traffic aggregate containment. US Patent 20090207848,
August 2009.

[2] A. Aggarwal, S. Savage, and T. Anderson. Understanding the
performance of TCP pacing. In IEEE Infocom 2000, 2000.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity
data center network architecture. In SIGCOMM, 2008.

[4] G. Appenzeller et al. Sizing router buffers. In SIGCOMM, 2004.
[5] L. A. Barroso and U. Holzle. The Datacenter as a Computer - an

introduction to the design of warehouse-scale machines. Morgan &
Claypool, 2009.

[6] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas: New
techniques forcongestion detection and avoidance. In SIGCOMM,
1994.

[7] S.Floyd. RED: Discussions of setting
parameters.http://www.icir.org/floyd/REDparameters.txt.

[8] S. Floyd. Rfc 3649: Highspeed TCP for large congestion windows.
[9] S. Floyd et al. Adaptive RED: An algorithm for increasing the

robustness of RED’s active queue management. Technical report,
ACIRI, 2001.

[10] S. Floyd and V. Jacobson. Random early detection gateways for
congestion avoidance. IEEE/ACM Trans. Netw., 1(4):397–413, 1993.

[11] S. Floyd and V. Jacobson. Random early detection gateways for
congestion avoidance. IEEE/ACM ToN, 1993.

[12] S. Floyd and V. Jacobson. The synchronization of periodic routing
messages.IEEE/ACM ToN, 1994.

[13] S. Gorinsky, A. Kantawala, and J. Turner. Link buffer sizing: A new
look at the old problem. In IEEE ISCC ’05, 2005.

[14] A. Greenberg et al. Vl2: A scalable and flexible data center network.
In SIGCOMM, 2009.

[15] R. Griffith, Y. Chen, J. Liu, A. Joseph, and R. Katz. Understanding
TCP incast throughput collapse in datacenter networks. In WREN
Workshop, 2009.

[16] Y. Gu, D. Towsley, C. Hollot, and H. Zhang. Congestion control for
small buffer high bandwidth networks. In INFOCOM, 2007.

[17] C. Guo et al. Bcube: High performance, server-centric network
architecture for data centers. In SIGCOMM, 2009.

[18] J. Hamilton. On designing and deploying internet-scale services. In
USENIX LISA, 2007.

[19] C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong. On designing

Madhavi Gulhane et al | International Journal of Computer Science Engineering and Technology(IJCSET) | April 2014 | Vol 4, Issue 4,114-120

www.ijcset.net 120

improved controllers for AQM routers supporting TCP flows. In
Infocom, April 2001.

[20] F. Kelly et al. Stability and fairness of explicit congestion control
with small buffers. SIGCOMM Comput. Commun. Rev., 38(3):51–
62, 2008.

[21] R. Kohavi et al. Practical Guide to Controlled Experiments on the
Web: Listen to Your Customers not to the HiPPO. KDD, 2007.

[22] D. Leith, R. Shorten, and G. McCullagh. Experimental evaluation of
cubic-TCP. In Proc. Protocols for Fast Long Distance Networks 2007,
2007.

[23] Y.-T. Li, D. Leith, and R. N. Shorten. Experimental evaluation of
TCP protocols for high-speed networks. IEEE/ACM Trans. Netw.,
15(5):1109–1122, 2007.

[24] R. Z.-S. Nandita Dukkipati, Masayoshi Kobayashi and N. McKeown.
Processor sharing flows in the internet. In IWQOS, 2006.

[25] G. Raina, D. Towsley, and D. Wischik. Part ii: control theory for
buffer sizing.SIGCOMM Comput. Commun. Rev., 35(3):79–82,
2005.

[26] K. Ramakrishnan, S. Floyd, and D. Black. Rfc 3168: The addition of
explicit congestion notification (ECN) to IP.

[27]K. K. Ramakrishnan and R. Jain. A binary feedback scheme for
congestion avoidance in computer networks. ACM
TRANSACTIONS ON COMPUTER SYSTEMS, 8:158–181, 1990.

[28] B. P. A. L. Rong Pan. QCN: Quantized congestion notification an
overview.

[29] J. Rothschild. High performance at massive scale: Lessons learned at
facebook. mms://video-
jsoe.ucsd.edu/calit2/JeffRothschildFacebook.wmv.

[30] I. R. Sangtae Ha and L. Xu. Cubic: A new TCP-friendly high-speed
TCP variant. SIGOPS-OSR, July 2008.

[31] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP
Approach for High-speed and Long Distance Networks. In
INFOCOM, 2006.

[32] V. Vasudevan et al. Safe and effective fine-grained TCP
[33]D. X. Wei, C. Jin, S. H. Low, and S. Hegde. Fast TCP: motivation,

architecture, algorithms, performance. TON, Dec. 2006.

Madhavi Gulhane et al | International Journal of Computer Science Engineering and Technology(IJCSET) | April 2014 | Vol 4, Issue 4,114-120

www.ijcset.net 121

