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Abstract— The demand for fast transfer of larger volume of 
data, and the deployment of the network infrastructures is 
ever increasing. However, TCP is the dominant transport 
protocol of today, does not meet this demand because it favors 
reliability over timeliness and fails to fully utilize the network 
capacity due to its limitations of its conservative congestion 
control algorithm. The slow response of TCP in fast long 
distance networks leaves sizeable unused bandwidth in such 
networks. A large variety of TCP variants have been proposed 
to improve the connection’s throughput by adopting more 
aggressive congestion control algorithms. Some of the flavors 
of TCP congestion control are loss-based, high-speed TCP 
congestion control algorithms that uses packet losses as an 
indication of congestion; delay-based TCP congestion control 
that emphasizes packet delay rather than packet loss as a 
signal to determine the rate at which to send packets. Some 
efforts combine the features of loss-based and delay-based 
algorithms to achieve fair bandwidth allocation and fairness 
among flows. A comparative analysis between different 
flavors of TCP congestion control namely Standard TCP 
congestion control (TCP Reno), loss-based TCP congestion 
control (HighSpeed TCP, Scalable TCP, CUBIC TCP), delay-
based TCP congestion control (TCP Vegas) and mixed loss-
delay based TCP congestion control (Compound TCP) is 
presented here in the paper.  
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1. INTRODUCTION 
Moving bulk data quickly over high-speed data 

network is a requirement of many applications. These 
applications require high-bandwidth links between network 
nodes. To maintain the stability of Internet all applications 
should be subjected to congestion control. TCP is well-
developed, extensively used and widely available Internet 
transport protocol. TCP is fast, efficient and window size, 
thus it hurts the data rate. Standard TCP contains the 
congestion window that can be achieved in realistic 
environments. In the past few years, we notice that  a surge 
of TCP variants address the under utilization problem 
responsive to network congestion conditions but TCP’s 
AIMD congestion back-off algorithm [1] is too abrupt in 
decreasing the most notably due to the slow growth of TCP 
congestion window that makes TCP unfavorable for high 
BDP networks.  In this paper we describe Standard TCP 
congestion control algorithm. The related paper is 
organized as related work including TCP modifications and 
new protocols are reviewed in section 1. Three prominent 
window-based high-speed TCP congestion control 
algorithms that use packet-loss as an implicit indication of 
congestion are described in section 2. Compound TCP and 

Zeta TCP approach is described in section 3. Further 
Classification of congestion control mechanism according 
to their properties is described in paper in section 4. 
Propose work is described in section 5. Finally this work is 
concluded in section 6. 
  

I. BACKGROUND AND RELATED WORK 
The standard TCP congestion control algorithm which 

we refer to as TCP Reno[1] was developed in 1988. Further 
there is several enhancements in TCP Reno. Few 
modifications addressing the conservative approach of TCP 
to update its congestion window under congestion 
condition are: 
i. Loss-based TCP congestion control: HSTCP, BIC-

TCP, STCP, CUBIC-TCP, HTCP etc. 
ii. Delay-based congestion control: TCP-Vegas, Fast-TCP 

, TCP-LP etc. 
iii. Learning- based TCP congestion control: Compound 

TCP, Zeta TCP etc. 
Most of these protocols deal with modifying the 

window growth function of TCP in a more scalable fashion. 
Tomoya[2] proposed a TCP-friendly congestion control 
that realizes efficient data transmission in highspeed 
networks, fairness with TCP Reno and fair bandwidth 
allocation among flows with different RTTs.] 

 
a) TCP Reno 
TCP Reno[2] implements the TCP’s AIMD 

mechanism of increasing the congestion window W by one 
segment per round-trip time for each received ACK and 
halving the congestion window for each loss event per 
round-trip time. TCP Reno controls the congestion window 
as follows: 
Increase: 

W= W + 1÷W                                (1) 
Decrease: 

W= W- 1 ÷W                                 (2) 
When the link bandwidth does not change, TCP Reno 
periodically repeats the window increase and decrease.TCP 
Reno’s congestion window in terms of packet loss rate (p) 
is defined as: 

Wreno = 1.22                                   (3) 
               P0.5 

As shown above, TCP Reno places a serious constraint 
on the congestion window that can be achieved by TCP in 
realistic environments. TCP requires extremely small 
packet loss rate to sustain a large window which is not 
possible in real life networks. 
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b) High-Speed TCP  
Although TCP performs very well in low to middle 

speed networks[11] (Kbps to several Mbps), it has very 
poor performance in high (tens of Mbps to Gbps) to very 
high (Gbps to Tbps) speed networks, as TCP is very 
inefficient in utilizing the high-speed network bandwidth. 
HighSpeed TCP (HSTCP)  is a modification toTCP’s 
congestion control mechanism for use with TCP 
connections with large congestion windows. HighSpeed 
TCP’s modified response function only takes effect with 
higher congestion windows, it does not modify TCP 
behavior in environments with heavy congestion, and 
therefore does not introduce any new dangers of congestion 
collapse. HSTCP uses three parameters, WL, WH, and PH. 
To ensure TCP compatibility, HSTCP uses the same 
response function as TCP Reno when the current 
congestion window is WL at most, and uses the HSTCP 
response function when the current congestion window is 
greater than WL.   
HSTCP response function is computed as follows: 

Whighspeed = 0.12                                   (4) 
                                P0.835 

It is clear from equation that HSTCP is more 
aggressive than TCP Reno and a HighSpeed TCP 
connection would receive ten times the bandwidth of a 
standard TCP in an environment with packet drop rate 
of10-6, which is unfair. 

c) Scalable TCP 
Scalable TCP[13] is designed to be incrementally 

deployable and behaves identically to traditional TCP 
stacks when small windows are sufficient. Scalable TCP 
(STCP) and HighSpeed TCP were originally designed for 
high-speed backbone links, and they appear to be the major 
candidates for replacing in the next generation Internet the 
current congestion control mechanism implemented by 
standard TCP. STCP is a simple sender side modification to 
TCP congestion control, and it employs Multiplicative 
Increase Multiplicative Decrease (MIMD) technique. Using 
Scalable TCP, better utilization of a network link with the 
high bandwidth delay product can be achieved. If STCP is 
mixed with regular TCP then STCP dominates the 
bandwidth for sufficiently large bandwidth-delay product 
region. This shows unfriendliness towards standard TCP. 

d) Cubic TCP 
Cubic TCP[16] is an enhanced version of Binary 

Increase Congestion Control shortly BIC. It simplifies the 
BIC window control function and improves its TCP- 
friendliness and RTT fairness as BIC’s growth function is 
too aggressive for TCP especially under short RTT or low 
speed networks. As the name of the protocol represents, the 
window growth function of CUBIC is a cubic function in 
terms of the elapsed time since the last loss event, whose 
shape is very similar to the growth function of BIC. CUBIC 
function provides good scalability and stability. The 
protocol keeps the window growth rate independent of 
RTT, which keeps the protocol TCP friendly under short 
and long RTTs. The congestion epoch period of CUBIC is 
determined by the packet loss rate alone. As TCP’s 
throughput is defined by the packet loss rate as well as 
RTT, the throughput of CUBIC is defined only by the 

packet loss rate. Thus, when the loss rate is high and/or 
RTT is short, CUBIC can operate in a TCP mode. 

 
ii . DELAY-BASED CONGESTION CONTROL 
     Delay-based TCP congestion control algorithms like TCP 
Vegas attempt to utilize the congestion information Contained  
in packet round-trip time (RTT) samples. 
a) TCP Vegas 
     TCP Vegas is a TCP congestion control algorithm that 
emphasizes packet delay, rather than packet loss, as a 
signal to determine the rate at which to send packets. TCP 
Vegas detects congestion based on increasing Round Trip 
Time (RTT) values of the packets in the connection unlike 
TCP Reno which detect congestion only after it has 
actually happened via packet drops. The algorithm depends 
heavily on accurate calculation of the Base RTT value. 
Base RTT is set to be the minimum of all measured RTTs; 
it is commonly the RTT of the first segment sent by the 
connection. 

 
iii .LEARNING BASED CONGESTION CONTROL 
    Loss-based high speed algorithms are aggressive to 
satisfy bandwidth requirement but this aggressiveness 
causes TCP unfairness and RTT unfairness. Delay-based 
approaches provide RTT fairness but it is difficult to meet 
TCP fairness. Thus there is another approach i.e. learning 
based approaches that address the problems in the two 
approaches. 
a) Compound TCP 
     Compound TCP integrates a scalable delay-based 
component into the standard TCP congestion avoidance 
algorithm. This scalable delay-based component has a fast 
window increase function when the network is under-
utilised and reduces the sending rate when a congestion 
event is sensed. To implement Compound TCP maintains 
the following state variables; cwnd (congestion window), 
dwnd (delay window), awnd 
(Receiver advertised window). 
b) ZETA TCP 

The accurate and rapid detection of packet loss 
capabilities of Zeta TCP[21] is especially valuable with the 
explosive growth of mobile networks. The flaky last mile 
fading channel to the mobile devices creates frequent bulk 
packet loss. Such loss triggers standard and delay-based 
TCP to jam more packets into the network, which actually 
causes more problems. ZetaTCP, analyzes the situation 
intelligently and allows rapid and efficient recovery from 
packet loss and enables a smoother transmission and 
maximum throughput.        
 

I. CLASSIFICATION 
The following is one possible classification according 

to the following properties: 
1. The type and amount of feedback received from 

the network: Loss (L); delay (D); single-bit (S) or 
multi-bit (M) explicit signals 

2. Incremental deploy ability on the current Internet: 
Sender needs modification (S); receiver needs 
modification (R); routers/gateways need 
modification (G) 
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3. The aspect of performance it aims to improve: 
high bandwidth delay product networks (B); lossy 
links (L); fairness (F); advantage to short flows 
(S); variable-rate links (V); speed of 
covergenec(C) 

4. The fairness criterion it uses: max-min (M), 
proportional (P), "minimum potential delay" (D), 
Other (O) 

Some well-known congestion avoidance mechanisms 
are classified[19][20] by this scheme are as follows: 
 

TABLE Ι 
CLASSIFICATION OF CONGESTION AVOIDANCE MECHANISM 

 

Variant Feedback Changes Benefits Fairness

(New)Reno L - - D 

Vegas D S Less loss P 

High Speed L S B O 

BIC L S B O 

CUBIC L S B O 

H-TCP L S B O 

FAST D S B P 

Compound 
TCP 

L/D S B P 

Westwood L/D S L O 

Jersey L/D S L O 

CLAMP M G/R V M 

TFRC L S/R 
No 

Retransmission
D 

XCP M S/G/R BLFC M 

VCP M(2 bits) S/G/R BLF P 

 
II. PROPOSE WORK 

TCP is relied upon to carry more than 90% of all 
Internet traffic. It has become essential to stay with today’s 
demands of impatient end-users to effectively delivering 
latency sensitive web applications. In order to keep up with 
these demands, various TCP optimization approaches have 
been developed now. Applying optimization techniques to 
standard, loss-based TCP provides some improvement. But 
as long as network speed is governed by loss, a high data-
rate and stable throughput will be impossible to achieve. A 
more modern delay-based approach can provide some 
fundamental improvement to dealing with network latency, 
but for the most part in it remains a static. An advanced 
learning-based approach is needed that is capable of 
observing session characteristics on-the-fly in order to 
apply it intelligentelly, session-specific transport 
optimizations. Advanced learning-based TCP is now use by 
hundreds of companies and millions of users to accelerate 
the latency-sensitive applications. It is able to provide these 
capabilities in a completely transparent manner. 
  

III. CONCLUSION 
TCP Reno was commonly implemented algorithm. 

Most others are competing proposals which still need some 
evaluation. Starting with 2.6.8 the Linux kernel switched 

the default implementation was again changed to CUBIC in 
the 2.6.19 version. FreeBSD uses New Reno as the default 
algorithm. However, it supports a number of other choices. 
When the per-flow product of bandwidth and latency 
increases, regardless of the queuing scheme, TCP prone to 
instability and becomes inefficient. This becomes 
increasingly important as the Internet evolves to 
incorporate very high-bandwidth optical links.TCP 
Interactive allows applications to subscribe to TCP events 
and it respond accordingly enabling various functional 
extensions to TCP from outside TCP layer. Most of the 
TCP congestion schemes work internally. Zeta-TCP detects 
the congestions from both the loss rate measures and 
latency, and applies different CWND back off strategies 
based on the likelihood of the congestions to maximize its 
goodput. It also has a couple of other improvements to 
accurately detect the packet losses, accelerate/control the 
inbound (download) traffic and avoiding RTO 
retransmission. 
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