
A Replication-Based and Fault Tolerant Allocation
Algorithm for Cloud Computing

Torki Altameem

Dept. of Computer Science, RCC,

King Saud University,

P.O. Box: 28095 – 11437

Riyadh-Saudi Arabia.

Abstract— The very large infrastructure and the increasing
demand of services of cloud computing systems lead to the
need of an effective fault tolerant allocation technique. In this
paper, we address the problem of allocating user applications
to the virtual machines of cloud computing systems so that
failures can be avoided in the presence of faults. We employ
job replication as an effective mechanism to achieve efficient
and fault-tolerant cloud. Most of the existing replication-based
algorithms use a fixed number of replications for each
application which consumes more cloud resources. We
propose an algorithm to determine adaptively the number of
replicas according to the fault rate of cloud virtual machines.
The proposed algorithms have been evaluated through
simulation and have shown better performance in terms of
turnaround time and throughput.

Keywords— Fault tolerant, Replication, Cloud Computing, Fault
rate.

I. INTRODUCTION

Cloud computing is an internet based computing
solution which is considered as the next step in the
technology evolution of distributed computing. It provides a
comprehensive solution for delivering IT as a service and it
facilitates scalable and cooperative sharing of resources
among different organizations. The cloud enables on-
demand access to applications from anywhere in the world,
without considering their implementation details [1].
Resources include storage, processors, platforms, or
application services. The flexibility of cloud computing is a
function of allocating resources on demand [2], [3].

In clouds, resources of different physical machines can
be grouped into Virtual Machines (VMs). These VMs can
be started and stopped on-demand on to meet service
requests. This provides maximum flexibility to configure
various partitions of resources for different specific
requirements of user requests [4].

VMs can fail to do their work due to their heterogeneity
and usage for longer periods of time. Failure of VMs has a
great impact on scalability, performance, profit and
consumer trust. Fault tolerance is an approach where a
cloud computing system continues to work successfully
even if there is a fault[5].

Although cloud computing has been widely adopted by
the industry, fault tolerance is still a main research
challenge to be fully addressed [6].Because of the very

large infrastructure of cloud and the increasing demand of
services an effective fault tolerant allocation technique for
cloud computing is required[2].

The main mechanisms used in implementing fault
tolerance in cloud computing include checkpointing and
replication. Checkpointing is the ability to save the state of
a running application to a stable storage. In case of any
fault, this saved state can be used to resume execution of
the application from the point in computation where the
check-point was last registered instead of restarting the
application from its very beginning [7]. In this paper, job
and application will be used interchangeably.

Replication is based on the assumption that the
probability of a single VM failure is much higher than of a
simultaneous failure of multiple VMs. It avoids job
recomputation by starting several copies of the same job on
different VMs. With redundant copies of a job, the cloud
can continue to provide a service in spite of failure of some
VMs carrying out job copies without affecting the
performance[8].

Cloud applications must have dynamic fault-tolerant
services that detect faults and resolve it. These services
enable applications to carry on their computations in case of
failure without terminating applications. Also, these
services must satisfy the minimum levels of quality of
service (QoS) requirements of applications such as the
deadline to complete the applications, the number of
computing VMs, the type of the platform and so on.

In this paper, the main contribution is to develop a
replication based algorithm for allocating applications of
users to the VMs of the cloud computing system. The
algorithm selects VMs according to the finishing time of
applications rather than the response time. The algorithm
generates the number of replicas dynamically. This means
the number of replicas will not be fixed for all the
applications.

This paper is organized as follows: section 2 briefly
explains related work of tolerating faults in cloud
computing systems. Section 3 elaborates the proposed
algorithm. Section 4 augments results and discusses the
performance of the proposed algorithm. Section 5 presents
our conclusion.

Torki Altameem | International Journal of Computer Science Engineering and Technology(IJCSET) | Dec 2014 | Vol 4, Issue 12,395-399

www.ijcset.net 395

II. RELATED WORK

In [3], K. Ganga and S. Karthik discussed the fault
tolerance techniques and classified them as proactive and
reactive techniques. Proactive techniques predict the failure
and replace the suspected resources from the other working
resources. Reactive techniques try to reduce the effect of
failures when occurs such as checkpointing, replication and
resubmission. They focused on applying job replication on
scientific workflow systems.

Alhosban et al. [1] provides a technique to dynamically
evaluate the performance of services based on their
previous history and user requirements. Their technique
uses a prediction and planning approach and it consists of
two phases. In the first phase, the fault likelihood of the
service is assessed. In the second phase, they built a
recovery plan to execute in case of fault(s) and they
calculated the overall system reliability based on the fault
occurrence likelihoods assessed for all the services.

Das and Khilar [2] have proposed a reactive model that
integrates fault tolerance with cloud virtualization. Their
model depends on using success rate of the computing
nodes and virtualization and it includes the support of load
balancing. They have used replication mechanism to
achieve the fault tolerance.

Jhawar, Piuri and Santambrogio [9] have presented an
approach toward transparently delivering fault tolerance on
the applications deployed in virtual machine instances.
They have presented an approach for realizing generic fault
tolerance mechanisms as independent modules, validating
fault tolerance properties of each mechanism, and matching
user’s requirements with available fault tolerance modules
to obtain a comprehensive solution with desired properties.
Also, they have designed a framework that allows the
service provider to integrate its system with the existing
cloud infrastructure and provides the basis to generically
deliver fault tolerance as a service.

Reviewing literatures reveals that all previous works
are mainly based on using the response time as the main
criteria when selecting VMs that can execute a cloud
application. There is no work done in the area of cloud

computing that considers the finishing time of applications
on the cloud VMs. In this paper, an algorithm that depends
on the finishing time of jobs or applications on cloud VMs
is presented and evaluated.

Also, our algorithm uses the mechanism of replication
to tolerate faults of VMs if occurred. Replication provides
an efficient way to guarantee the completion of jobs
according to the QoS required by the user. In cloud
computing, most of the existing replication based
algorithms uses a fixed number of replicas. This fixed
number of replicas can lead to the use of extra VMs in
executing user applications. These extra VMs may be
needed by other waiting applications. Thus, cloud will lose
the monetary benefit of these VMs. So, there is a need to a
way to provide a dynamic number of replicas to preserve
the cloud resources.

III. THE PROPOSED ALGORITHM

The main purpose of the proposed algorithm is to
improve the performance of the cloud through minimizing
both the time spent by the application in the cloud and the
effect of failure if occurred. The algorithm depends on
selecting VMs that have the earliest finishing time for user
applications. Also, it depends on using the replication
mechanism to generate multiple copies of the same
application to be executed on multiple VMs,
simultaneously.

The components of the cloud computing system used in
our paper are shown in Figure 1. These components include
the broker, the VM monitoring server, the replication
manager and the cloud VMs. Consumers or users submit
their applications or jobs along with their QoS requirements
to the cloud through the cloud portal. The jobs will be
inserted in the broker queue. The broker will receive a job
from the broker queue along with its required QoS. Then, it
will ask the VM Monitoring Server for a list of suitable
VMs for executing the job. The server will reply with a list
of VMs that can perform the application along with their
expected finish times for the user’s application. The broker
will sort this list according to the finish time of the
application on each VM. The first VM in the sorted list,

Customers’ jobs

VM1

VM2

VMk

j

j

j

B
ro

ke
r

VMs Monitoring
Server

Replication Manager

.

.

.

Figure 1. The components of the cloud computing system.

Torki Altameem | International Journal of Computer Science Engineering and Technology(IJCSET) | Dec 2014 | Vol 4, Issue 12,395-399

www.ijcset.net 396

which is the VM with the earliest finish time, is selected as
the main VM to execute the job.

The finish time of a VM i for a job j is defined as:

,ሺ݆ܶܨ ݅ሻ ൌ ,ሺ݆ݐ ݅ሻ ൅ 	ܵܶሺ݆, ݅ሻ, (1)

where t(j, i) is the execution time of job j on VM i and ST
(j, i) is the time at which job j will start execution on VM i.
The value of the ST(j, i) is summation of the execution time
of all the jobs assigned to the VM i and executed or to be
executed before job j and it can be defined by:

 ܵܶሺ݆, ݅ሻ ൌ 	∑ ,ሺ݇ݐ ݅ሻ௝ିଵ

௞ୀଵ . (2)

Since the selected main VM may fail, the system will

choose some other VMs from the list on which copies of
the job will be executed. Replicating a job can help dealing
with failure; then when one VM fails, the adverse effect on
performance of the application it runs can be reduced if
replicas complete without failure.

Now, the broker will ask the replication manager to
determine the number of replicas. The number of replicas
should not be high in order to avoid cloud overloading. The
number of replicas is based on the failure rate of the main
VM and the QoS requirements. The failure rate of a VM is
a representation of the failure history of it. Assume fi is the
number of times a VM j failed to complete jobs and ni is the
total number of jobs assigned to the VM j. The failure rate
of a VM i is defined by:

.01,  ifrwhere
in
if

ifr (3)

When providing his QoS requirements, the customer

determines whether he needs replication of his application
or not. This can be achieved through a factor called rep
whose value is given by the customer to the cloud server
provider. If the value of rep = 0 then the customer does not
need to replicate his application. If the customer needs to
replicate his application he will set rep = 1.

 If rep =1, Replication Manager uses the failure rate of
the main VM to determine the number of replicas for the
customer’s applications. It checks the value of fr of the
main VM. If the value of fr is less than k it will add an extra
replica for the application. If the value of fr is greater than
or equal k it will add two extra replica for the application.
The value of k is determined by the cloud service provider
according to the abundance of VMs that can execute the
application without affecting allocation of other
applications. Figure 2 shows the main steps of the
proposed algorithm.

For each application(job) j submitted to the cloud
Begin

Receive a job with QoS requirements from the portal;
Request a list of suitable VMs the job from the VM monitoring

server;
Receive a list of suitable VMs from VM monitoring server;
Compute FT(j, i) for each VM i;
Sort the list in an ascending order according to the FT(j, i) ;
Determine the main VM as the first one in the list;
Compute the fr for each the main VM;
Rj = 0; /* Rj number of replications of application j*/
If(rep==1)

If(0 ൑ ݎ݂ ൑ ݇ሻ
 Rj = 1;
Else

 Rj = 2;
 EndIf
Retrieve next job as j;

End

Figure 2. The proposed system’s operation.

IV. RESULTS AND ANALYSIS

In this section, the performance of the proposed
algorithm is compared against the performance of a
replication-based algorithm that depends on using the
response time in selecting VMs and uses a fixed number of
replicas. The comparison is performed within cloud data
centers with varying load and reliability. In the simulation
experiments, the number of applications submitted ranges
from 100 to 500. The number of VMs in the grid is
assumed to be 1000.

1. A. Throughput

Throughput is one of the most important standard
metrics used to measure the performance of fault tolerant
systems [10]. It is used to measure the ability of the cloud
to accommodate applications. Throughput is defined as:

nT

n
nThroughput )(, (4)

where n is the total number of applications submitted
and Tn is the total amount of time necessary to complete the
n applications. Throughput acts as an indicator of the
cloud’s profit. When the throughput increases the profit of
the cloud will increase.

Figure 3 and Figure 4 show the throughput comparison
of the proposed finish time based algorithm with a response
time based algorithm [8] for different number of
applications submitted.

In this experiment, the numbers of submitted
applications by the customers to the cloud are 100, 200,
300, 400 and 500. The percentage of faults injected in the
cloud is 10% in Figure 3 and 20% in Figure 4.

Torki Altameem | International Journal of Computer Science Engineering and Technology(IJCSET) | Dec 2014 | Vol 4, Issue 12,395-399

www.ijcset.net 397

Figure 3. Throughput Comparison with 10% injected faults.

Figure 4. Throughput Comparison with 20% injected faults.

The figures shows that the throughput of the proposed

finish time based algorithm is better than the throughput of
the response time based algorithm for the whole range of
job numbers. This is because that one VM can have a good
response time when executing an application but it may
have a delay to start that application. This delay is due to
that the VM may have a lot of work to do before starting
the execution of the application. On the other hand, another
VM with a worst response time but has a little work to do
can start that application and finish it earlier. Also, it is
shown from the figures that the value of throughput in
Figure 4 is less than its value in Figure 3 at the same
number of applications submitted. This is due to that in
Figure 4 the number of VMs faults is greater than the
number of VMs faults in Figure 3.

2. B. Turnaround Time

Turnaround is an important parameter for evaluating the
performance of distributed computing systems. It is the
most important parameter users pay attention to. It can be
defines as the interval between application submission and
application completion.

Figure 5 depicts the comparison of the proposed finish
time based algorithm with a response time based algorithm
[8] for different percentages of faults injected in the cloud.
The percentages of faults injected are from 5% to 25%.

Figure 5. Turnaround time comparison with 500 applications

submitted.

In general, the turnaround time resulting from using the
two algorithms increases with the increase in the number of
applications submitted. The figures show that the proposed
algorithm has better turnaround time than the other
algorithm for different application sizes.

This is because in the response time based algorithm the
number of faulty VMs is more than that of the proposed
algorithm. This will lead to more delay time resulting from
those main VMs that have the best response time fail to
execute the assigned applications. As the number of failed
VMs increases, the delay time will increase and thus the
turnaround time for executing user applications will
increase. On the other hand, the proposed system selects the
VMs which are less prone to fail. This will lead to a small
number of faulty VMs and lower delay times than the other
algorithm.

V. CONCLUSION

In this paper, we presented and evaluated a fault
tolerant allocation algorithm for cloud computing systems
that uses the replication mechanism. The algorithm depends
on using the finishing time in selecting VMs. Also, the
algorithm computes the number of replica for an application
according to the fault rate of the VM allocated to execute
the application. The performance of the proposed algorithm
is evaluated under different conditions using metrics such
as throughput and turnaround time. From results of
experiments, it can be concluded that the proposed
algorithm provides better performance.

20

30

40

50

60

70

80

100 200 300 400 500

T
h

ro
u

gh
p

u
t

No. of applications submitted

Finish time based

Response time-based

10

20

30

40

50

100 200 300 400 500

T
h

ro
u

gh
p

u
t

No. of applications submitted

Finish time based

Response time-based
5

10

15

20

25

30

35

40

5% 10% 15% 20% 25%
T

u
rn

ar
ou

n
d

 T
im

e

Percentage of faults injected

Finish time based

Response time-based

Torki Altameem | International Journal of Computer Science Engineering and Technology(IJCSET) | Dec 2014 | Vol 4, Issue 12,395-399

www.ijcset.net 398

REFERENCES
[1] A. Alhosban et al, “Self-healing Framework for Cloud-based Services,”

Proceedings of the 2013 Int’l Conf. on Computer Systems
and Applications, May 27-30

[2] P. Das, P. Mohan Khilar, "VFT: A Virtualization and Fault Tolerance
Approach for Cloud Computing," Proceedings of the IEEE
Conference on Information and Communication Technologies (ICT
2013), Kanyakumari, Tamil Nadu, in press, 2013, pp. 473-478.

[3] K. Ganga and S.Karthik, “A Fault Tolerent Approach in Scientific
Workflow Systems based on Cloud Computing,” Proceedings of the
IEEE International Conference on Pattern Recognition, Informatics
and Mobile Engineering, February 21-22, 2013, pp.117-122.

[4] R. Buyyaa et al,” Cloud computing and emerging IT platforms: Vision,
hype, and reality for delivering computing as the 5th utility,” Future
Generation Computer Systems, vol. 25, 2009, pp. 599-616.

[5] D. Singh, J. Singh and A. Chhabra, “High Availability of Clouds:
Failover Strategies for Cloud Computing using Integrated
Checkpointing Algorithms”, IEEE International Conference on
Communication Systems and Network Technologies, 2012.

[6] P. Gupta and S. Banga, “Review of Cloud Computing in Fault Tolerant
Environment with Efficient Energy Consumption,” International
Journal of scientific research and management, Vol. 1, Issue 4,
2013, pp. 251-254.

[7] G. Belalem and S. Limam,”Fault Tolerant Architecture to Cloud
Computing Using Adaptive Checkpoint,” International Journal of
Cloud Applications and Computing, Vol. 1, Issue 4, October-
December 2011, pp. 60-69.

[8] Z. Zheng, T. C. Zhou, M. R. Lyu and I. King, “Component Ranking for
Fault-Tolerant Cloud Applications,” IEEE Transactions On Services
Computing, Vol. 5, No. 4, October-December 2012, pp. 540-550.

[9] R. Jhawar, V. Piuri and M. Santambrogio, “Fault Tolerance
Management in Cloud Computing: A System-Level Perspective,”
IEEE Systems Journal, Vol. 7, No. 2, June 2013, pp. 288-297.

[10] M. Huda, H. Schmidt and I. Peake, "An agent oriented proactive fault-
tolerant framework for grid computing," Proc. of International
Conference on e-Science and Grid Computing, Melbourne,
Australia, pp. 304-311, Dec. 5-8, 2005.

Torki Altameem | International Journal of Computer Science Engineering and Technology(IJCSET) | Dec 2014 | Vol 4, Issue 12,395-399

www.ijcset.net 399

