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Abstract— A rogue access point is a wireless access point that 
has either been installed on a secure company network without 
explicit authorization from a local network administrator or 
has been created to allow a hacker to conduct a man-in-the-
middle attack. In this paper, we propose two online algorithms 
to detect rogue access points using sequential hypothesis tests 
applied to packet-header data collected passively at a 
monitoring point. One algorithm requires training sets, while 
the other does not. Both algorithms extend our earlier TCP 
ACK-pair technique to differentiate wired and wireless LAN 
TCP traffic, and exploit the fundamental properties of the 
802.11 CSMA/CA MAC protocol and the half duplex nature of 
wireless channels. 
Keywords—Rogue access point detection, Sequential 
hypothesis testing, TCP ACK-pairs. 

 

I. INTRODUCTION 

The deployment of IEEE 802.11 wireless networks 
(WLANs) has been growing at a remarkable rate during the 
past several years. The presence of a wireless infrastructure 
within a network, however, raises various network 
management and security issues. One of the most 
challenging issues is rogue access points (APs), i.e., 
wireless access points that are installed without explicit 
authorization from a local network management [9, 1, 3, 4]. 
Although usually installed by innocent users for 
convenience or higher productivity, rogue APs pose serious 
security threats to a secured network. They potentially open 
up the network to unauthorized parties, who may utilize the 
resources of the network, steal sensitive information or 
even launch attacks to the network. Furthermore, rogue APs 
may interfere with nearby well-planned APs and lead to 
performance problems inside the network. Due to the above 
security and performance threats, detecting rouge APs is 
one of the most important tasks for a network manager. 
Broadly speaking, two approaches can be used to detect 
rogue APs. The first approach detects rogue APs by 
monitoring the RF airwaves, possibly exploiting additional 
information gathered at routers and switches [2, 8, 9, 1, 3, 
4, 10, 11, 27]. The second approach monitors incoming 
traffic at a traffic aggregation point (e.g., a gateway router) 
and determines whether a host uses wired or wireless 
connection1. If a host is determined as using wireless 
connection while it is not authorized to do so (e.g., it is not 
contained in the authorization list), the AP attached by this 
host is detected as a rogue AP. The first approach can suffer 
from various drawbacks including scalability, deployment 
cost, effectiveness and accuracy (see Section 1.1). The 
second approach does not have the above drawbacks: (1) 
since it is based on passive measurements at a single 
monitoring point, it is scalable, requiring little deployment 
cost and effort, and is easy to manage and maintain; (2) 

since the detection is by detecting wireless connections, it is 
equally applicable to detect layer-2 or layer-3 rogue devices 
while the first approach may need different schemes for 
rogues at different layers [10, 11]. The challenge in 
applying the second approach is: how to effectively detect 
wireless traffic from passively collected data in an online 
manner? In this paper, we take the second approach and 
develop two online algorithms to meet the above 
challenges. Our main contributions are as follows: 
• We extend the analysis in [25] and demonstrate that using 
TCP ACK-pairs can effectively differentiate Ethernet and 
wireless connections (including both 802.11b and 802.11g).  
• We develop two online algorithms to detect rogue APs. 
Both algorithms use sequential hypothesis tests and make 
prompt decisions as TCP ACK-pairs are observed. One 
algorithm requires training data, while the other does not. 
To the best of our knowledge, ours are the first set of 
passive online techniques that detect rogue APs by 
differentiating connection types. 
• We have built a system for online rogue-AP detection 
using the above algorithms and deployed it at the gateway 
router of the University of Massachusetts, Amherst 
(UMass). Extensive experiments in various scenarios have 
demonstrated the excellent performance of our algorithms:  
(1) The algorithm that requires training provides rapid 
detections and is extremely accurate (the detection is mostly 
within 10 seconds, with very low false positive and false 
negative ratios);  
(2)The algorithm that does not require training detects 60%-
76% of the wireless hosts without any false positives;  
(3) Both algorithms are light-weight, with computation and 
storage overhead well within the capability of commodity 
equipment. We further conduct experiments to demonstrate 
that our scheme can detect connection-type switching and 
wireless networks behind a NAT box, and it is effective 
even when the hosts have high CPU, disk or network 
utilizations. 

II. RELATED WORK 

As mentioned earlier, monitoring RF waves and IP traffic 
are two broad classes of approaches to detecting rogue APs. 
Most existing commercial products take the first approach 
they either manually scan the RF waves using sniffers (e.g., 
AirMagnet [2], NetStumbler [8]) or automate the process 
using sensors (e.g.,[1, 9, 4]. Automatic scanning using 
sensors is less time consuming than manual scanning and 
provides a continuous vigilance to rogue APs. However, it 
may require a large number of sensors for good coverage, 
which leads to a high deployment cost. Furthermore, since 
it depends on signatures of APs (e.g., MAC address, SSID, 
etc.), it becomes ineffective when a rogue AP spoofs 
signatures. Three recent research efforts [10, 11, 27] also 
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use RF sensing to detect rogue APs. In [10], wireless clients 
are instrumented to collect information about nearby APs 
and send the information to a centralized server for rogue 
AP detection. This approach is not resilient to spoofing. 
Secondly, it assumes that rogue APs use standard beacon 
messages in IEEE 802.11 and respond to probes from the 
clients, which may not hold in practice. Last, all unknown 
APs (including those in the vicinity networks) are flagged 
as rogue APs, which may lead to a large number of false 
positives. The main idea of [11] is to enable dense RF 
monitoring through wireless devices attached to desktop 
machines. This study improves upon [10] by providing 
more accurate and comprehensive rogue AP detection. 
However, it relies on proper operation of a large number of 
wireless devices, which can be difficult to manage. In 
contrast, our approach only requires a single monitoring 
point, and is easy to manage and maintain. The focus of 
[27] is on detecting protected layer3 rogue APs. Our 
approach is equally applicable to detect layer-2 or layer-3 
rogue devices. The studies of [13, 19] detect rogue APs by 
monitoring IP traffic. The authors of [13] demonstrated 
from experiments in a local test bed that wired and wireless 
connections can be separated by visually inspecting the 
timing in the packet traces of traffic generated by the 
clients. The settings of their experiments are very 
restrictive. Furthermore, the visual inspection method 
cannot be carried out automatically. Our schemes are based 
on a rigorous analysis of Ethernet and wireless traffic 
characteristics in realistic settings. Furthermore, we provide 
two sequential hypothesis tests to automatically detect 
rogue APs in real time. The technique in [19] requires 
segmenting large packets into smaller ones, and hence is 
not a passive approach. There are several prior studies on 
determining connection types. However, none of them 
provides a passive online technique, required for our 
scenario. Our previous work [25] proposes an iterative 
Bayesian inference technique to identify wireless traffic 
based on passive measurements. This iterative approach is 
not suitable for online deployment. The work of [12] uses 
entropies to detect wireless connection in an offline 
manner. In other studies, differentiating connection types is 
based on active measurements [26] or certain assumptions 
about wireless links (such as very low bandwidth and high 
loss rates) [15], which do not apply to our scenario. 
Last, sequential hypothesis testing provides an opportunity  
to make decisions as data come in, and thus is a suitable 
technique for our purpose. It is also used for prompt port 
scan detection. 

III. PROBLEM SETTING AND APPROACH 

Consider a local network (e.g., a university campus or an 
enterprise network), as illustrated in Fig. 1. A monitoring 
point is placed at an aggregation point (e.g., the gateway 
router) of this local network, capturing traffic coming in 
and going out of the network. End hosts within this network 
use either wired Ethernet or 802.11 WLAN to access the 
Internet. An end host not authorized to use WLAN may 
install a rogue AP to connect to the network. Our goal is to 
detect those rogue APs in real time based on passive 
measurements at the monitoring point. For this purpose, we 
must answer the following two questions: (1) what statistics 

can be used to effectively detect wireless hosts? (2) how to 
detect wireless hosts in an online manner? We next provide 
a high-level description on how we address these two 
questions; a detailed description is deferred to Sections 3 
and 4.We have shown that inter-ACK time is a statistic that 
can be used to effectively detect wireless hosts in [25]. An 
inter-ACK time is the inter-arrival time of a TCP ACK-pair, 
i.e., a pair of ACKs corresponding to two data packets that 
arrive 

 
Figure 1: Problem setting: a monitoring point at an aggregation point 

captures incoming traffic and outgoing traffic to detect rogue APs. 

 
at the monitoring point close in time. In [25], we analyze 
the inter-ACK time in Ethernet and WLAN and 
demonstrate that it can be used to differentiate these two 
connection types. However, the analysis does not include 
802.11g, since it was not widely deployed at that time. In 
Section 3, we extend the analysis in [25] to 802.11g, and 
derive a new set of results for Ethernet and 802.11b. Our 
results demonstrate that inter-ACK times can effectively 
differentiate Ethernet and WLAN (including both 802.11b 
and 802.11g hosts). For online detection of wireless hosts, 
we develop two light-weight algorithms (see Section 4), 
both using sequential hypothesis tests and taking the inter-
ACK times as input. These two algorithms roughly work as 
follows. They calculate the likelihoods that a host uses 
WLAN and Ethernet as TCP ACK-pairs are observed. 
When the ratio of the WLAN likelihood against the 
Ethernet likelihood exceeds a certain threshold, they make a 
decision that the host uses WLAN. 

IV. ONLINE DETECTION ALGORITHMS 

In this section, we develop two online algorithms to detect 
wireless hosts based on our analysis in the previous section. 
Both algorithms use sequential hypothesis test technique 
and take the inter-ACK times as the input. The first 
algorithm requires knowing the inter-ACK time 
distributions for Ethernet and WLAN traffic a priori. The 
second algorithm does not have such a requirement. 
Instead, it is directly based on Theorems 1 and 2 (see 
Section 3). We refer to these two algorithms as sequential 
hypothesis test with training and sequential hypothesis test 
without training respectively. The algorithm without 
training, although is not as powerful as the one with 
training (see Section 7), is suitable for scenarios where the 
inter-ACK time distributions are not available a priori (e.g., 
for organizations with no wireless networks). We now 
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describe these two algorithms in detail. Both algorithms use 
at most N = 100 ACK-pairs to make a decision (i.e., 
whether the connection is Ethernet or WLAN) to 
accommodate the scenarios where a host switches between 
Ethernet and WLAN connections. 
IV.I Sequential Hypothesis Test with Training 
We have demonstrated that the inter-ACK time 
distributions for Ethernet and WLAN differ significantly 
(see Section 3). When these distributions are known, we 
can calculate the likelihoods that a host uses Ethernet and 
WLAN respectively given a sequence of observed inter-
ACK times. If the likelihood of using WLAN is much 
higher than that of using Ethernet, we conclude that the host 
uses WLAN (and vice versa). We now describe the test in 
more detail. Let {δA i }n i=1 represent a sequence of inter-
ACK time observations from a host, and {_Ai }n i=1 
represent their corresponding random 
variables. Let E and W represent respectively the events 
that a host uses Ethernet and WLAN. Let LE = P(_A1 = 
δA1 ,_A2 = δA2 , . . . ,_An = δA n | E) be the likelihood 
that this observation sequence is from an Ethernet host. 
Similarly, let LW = P(_A1 = δA 1 ,_A2 = δA 2 , . . . ,_An = 
δA n | W) be the likelihood that the observation sequence is 
from a WLAN host. Let pi = P(_Ai = δA i | E) be the 
probability that the i-th inter-ACK time has value δA i 
given that it is from an Ethernet host. Similarly, let qi = 
P(_Ai = δA i | W) be the probability that the i-th inter-ACK 
time has value δA i given that it is from a WLAN host. 
Both pi and qi are known obtained from the inter-ACK time 
distributions for Ethernet and WLAN traffic respectively. 
Assuming that the inter ACK times are independent and 
identically distributed, we have  

 
 
This test updates LW and LE as an ACK-pair is observed. 
Let K > 1 be a threshold. If after the n-th ACK-pair, the 
ratio of LW and LE is over the threshold, i.e., LW/LE > K, 
then the host is classified as a WLAN host. If LW/LE < 
1/K, then the host is classified as an Ethernet host. 
 

 
Figure 3: Sequential hypothesis test with training N = 100. 

 
If neither decision is made after N ACK-pairs, the 
connection type is classified as undetermined. In the 
implementation, for convenience, we use log-likelihood 
function lw = log(LW) and lE = log(LE) instead of the 

likelihood function.  This test is summarized in Fig. 3. As 
we can see, it has very little computation and storage 
overhead (it only stores the current likelihoods for Ethernet 
and WLAN for each IP address being monitored). 
IV.II Sequential Hypothesis Test without Training 
This test does not require knowing the inter-ACK time 
distributions for Ethernet and WLAN hosts a priori. Instead, 
it leverages the analytical results that the probability of an 
inter-ACK time exceeding 600 μs is small for Ethernet 
hosts, while it is much larger for WLAN hosts. In the 
following, we first construct a likelihood ratio test [14], and 
then derive from it a sequential hypothesis test. The 
likelihood ratio test is as follows. Let p be the probability 
that an inter-ACK time exceeds 600 μs, that is, p = P(_A > 
600 μs). By Theorem 1, we have p < θ = 0.18 for Ethernet 
host. Therefore, if the hypothesis p < θ is rejected by the 
inter-ACK time observation sequence, we conclude that this 
host does not use Ethernet and hence uses WLAN. More 
specifically, consider two hypotheses,H0 and  

 
Figure 4: Sequential hypothesis test without training, , where 1(・) is the 

indicator function, N = 100. 
 

Ha, representing respectively the null hypothesis that a host 
uses Ethernet and the alternative hypothesis that the host 
uses WLAN. For a sequence of inter-ACK time 
observations {δA 
i }n i=1, let m be the number of observations that exceed 
600 μs. Let K > 1 be a threshold. Then the likelihood ratio 
test rejects the null hypothesis H0 when 
 

            
 
In the middle term above, the numerator is the maximum 
probability of having the observed sequence (which has m 
inter-ACK times exceeding 600 μs) computed over 
parameters in the null hypothesis (i.e., 0 ≤ p ≤ θ). The 
denominator of λ is the maximum probability of having the 
observed sequence over all possible parameters (i.e., 0 ≤ p ≤ 
1). If λ < 1/K, that is, there are parameter points in the 
alternative hypothesis for which the observed sample is 
much more likely than for any parameter points in the null 
hypothesis, the likelihood ratio test concludes that H0 
should be rejected. In other words, if λ < 1/K, the likelihood 
ratio test concludes that the host uses WLAN. We now 
derive a sequential hypothesis test from the above 
likelihood ratio test. Let ˆp = m/n, where m is the number of 
inter-ACK times exceeding 600 μs and n is the total number 
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of inter-ACK times. It is straightforward to show that ˆp is 
the maximum likelihood estimator of p, i.e., sup0≤p≤1 
pm(1−p)n−m is achieved when p = ˆp. When ˆp ≤ θ, we 
have sup0≤p≤_ pm(1 −p)n−m = sup0≤p≤1 pm(1− p)n−m, 
and hence λ = 1 > 1/K. In this case, the null hypothesis H0 
is not rejected. Therefore, we only consider the case where 
θ < ˆp, which can be classified into two cases: 
 
Case 1: θ < ˆp < 1. In this case, to reject the null hypothesis 
H0, we need 
 

                             
which is equivalent to 

 
 

 
Figure 5: Online rogue-AP detection system. 

 

Case 2: ˆp = 1. In this case, to reject the null hypothesis 
H0, we need 
 

 
which is equivalent to 

 
 

When K = 106 and θ = 0.18, from (2), we have n ≥ 8. This 
implies that we need at least 8 ACK-pairs to detect a 
WLAN host for the above setting. In addition to conditions 
(1) and (2), we also derive a complementary condition to 
reject the null hypothesis H0 directly from Theorem 2. 
Theorem 2 states that, when the number of inter-ACK 
observations n is between 43 and 100, we have P(ξn .5(_A) 
≤ 600 μs) ≈ 1 for Ethernet hosts. Therefore, an additional 
condition to reject H0 is when 43 ≤ n ≤ 100 and ˆp > 0.5 
(because this condition implies that at least half of the inter-
ACK observations exceed 600 μs, that 
is, ξn .5(_A) > 600 μs, which contradicts Theorem 2). We 
combine the above three conditions to construct a 
sequential hypothesis test as shown in Fig. 4. As we can 
see, this test has very little computational and storage 
overhead (it only stores the total number of inter-ACK 
times and the number of inter-ACK times exceeding 600 μs 
for each IP address being monitored). Last, note that it only 
reports WLAN hosts, while the sequential hypothesis test 
with training reports both WLAN and Ethernet hosts. 
 

V ONLINE ROGUE-AP DETECTION SYSTEM 
We design a system for online detection of rogue APs. This 
system consists of three major components as illustrated in 
Fig. 5. The data capturing component collects incoming and 
outgoing packet headers. These packet headers are then 
passed on to the online detection engine, where WLAN 
hosts are detected using the algorithms described in the 
previous sections. Once a WLAN host is detected, its IP 
address is looked up from an authorization list for rogue-AP 
detection. We next describe the online detection engine, the 
core component in the system, in more detail. Afterwards, 
we describe how to identify ACK-pairs in real time and 
obtain inter-ACK time distributions a priori (required by the 
sequential hypothesis test with training). 
V.I Online Detection Engine 
The online detection engine makes a detection on a per host 
(or IP address) basis. Since TCP data packets and ACKs 
come in on a per flow basis and a host may have multiple 
simultaneous active TCP flows3, the online detection 
engine maintains a set of data structures in memory, each 
corresponding to an active TCP flow. We name the data 
structure as an unpacked-data-packet queue since it stores 
the information on all the data packets that have not been 
acknowledged by the receiver. Each item in a queue 
represents a data packet in the corresponding active flow. It 
records the sequence number (4 bytes), the timestamp (8 
bytes) and size (2 bytes) of the packet. In addition, the 
online detection engine also records the latest ACK for each 
TCP flow in memory. These information is used to identify 
ACK-pairs as follows. For each incoming ACK, the online 
detection engine finds its corresponding unpacked-data-
packet queue (using a hash function for quick lookup) and 
then matches it with the items in the queue to identify 
ACK-pairs. Once an ACK-pair is identified, depending on 
whether training data is available, it is fed into the 
sequential hypothesis test with or without training to 
determine whether the host uses WLAN. The memory 
requirement of the online detection system mainly comes 
from storing the unpacked-data-packet queues. 
Each queue contains no more than M items, where M is the 
maximum TCP window size (since an item is removed 
from the queue once its corresponding ACK arrives). In our 
experiments, we find that most queues contain a very small 
number of items (see Section 7.3), indicating that the 
memory usage of this online detection system is low.  
V.II  Online Identification of TCP ACK-pairs 
As described earlier, two successive ACKs form an ACK- 
pair if the inter-arrival time of their corresponding data 
packets at the monitoring point is less than a threshold T 
(chosen as 240 μs or 400 μs in our system, see Section 7). 
In addition to the above condition, we also take account of 
several practical issues when identifying ACK-pairs. First, 
we exclude all ACKs whose corresponding data packets 
have been retransmitted or reordered. We also exclude 
ACKs due to expiration of delayed-ACK timers if delayed 
ACK is implemented (inferred using techniques in [25]). 
This is because, if an ACK is triggered by a delayed-ACK 
timer, it is not released immediately after a data packet. 
Therefore, the inter-arrival time of this ACK and its 
previous ACK does not reflect the characteristics of the 
access link. Furthermore, to ensure that two ACKs are 
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successive, we require that the difference of their IPIDs to 
be no more than 1. We also restrict 
that the ACKs are for relatively large data packets (of size 
at least 1000 bytes), to be consistent with the assumption of 
our analysis (in Section 3). Last, we require that the inter 
ACK time of an ACK-pair to be below 200ms. 
 

VI DISCUSSIONS 
We next discuss several issues related to rogue AP 
detection. 
VI.I Locating Rogue APs 
Our approach to detecting a rogue AP also helps to locate 
the rogue AP. Let us consider a common scenario in which 
a WLAN host is connected to a rogue AP, which is 
connected to an access router via one or multiple switches. 
In this scenario, the rogue AP can be located using the 
following steps. First, a network manager detects the IP 
address of the WLAN host at the monitoring point, and then 
locates the access router of this host based on the host’s IP 
address and the subnet addressing structure. From the ARP 
table at the access router (which stores the mapping 
between an IP address and its corresponding MAC 
address), the network manager further determines the MAC 
address of the WLAN host. Afterwards, the network 
manager uses the identified MAC address to obtain its 
corresponding switch port by SNMP querying the first 
downstream switch connected to the access router (this is 
through the switch table at the switch, which stores the 
mapping between a MAC address and a switch port). Last, 
the network manager sequentially queries downstream 
switches (if any) to locate the switch port (and hence the 
physical location) of the rogue AP.  
VI.II Rogues by Authorized Users 
Our scheme can easily detect rogue APs installed by hosts 
not authorized to use WLAN. We next discuss the case that 
rouges are installed by hosts authorized to use WLAN. We 
consider two types of local networks: purely wireless 
networks (i.e., all IP addresses are allowed to use wireless 
connections) and mixed networks (i.e., networks supporting 
both Ethernet and wireless connections). 
 Purely wireless networks. In such a network, a wireless 
host A may set up another wireless card as a rogue AP for 
an illegitimate host B (as described in Section 7.4). In this 
case, packets from B will have the IP address of A, which is 
an authorized WLAN address. Therefore, our scheme does 
not detect this type of rogue directly. However, since host B 
connects to the Internet through two wireless hops, its 
traffic characteristics will differ from those through a single 
wireless hop and those through Ethernet, and hence can be 
detected through traffic analysis. An accurate detection 
scheme for this type of rogue is left as future work. 
Mixed networks. In such a network, we consider two 
scenarios. In the first scenario, the IP address blocks for 
Ethernet and WLAN connections do not overlap. Then a 
host will have different IP addresses for its Ethernet and 
WLAN connections. In this scenario, if a host authorized to 
use both 
Ethernet and WLAN installs a rogue AP on its Ethernet 
connection, the host obtains an IP address in the Ethernet 
block and the associated rogue AP will be easily detected 
by our scheme. In the second scenario, the IP address 

blocks for Ethernet and WLAN connections overlap. Then 
a host may maintain the same IP address for both Ethernet 
and WLAN connections. Similar to the first scenario, we 
can detect rogue APs that provide hosts Internet connection 
using two wireless hops through traffic analysis. However, 
a host authorized to use WLAN may also set up a rogue AP 
on its Ethernet connection for itself to connect to the 
Internet. This type of rogue cannot be detected by our 
scheme or traffic analysis (since this host only uses a single 
wireless hop).  
VI.III Possible attacks to our approach 
Our approach is based on inter-ACK times. It is effective 
for the common scenario where a rogue AP is installed by 
an innocent user (for convenience or flexibility). It is also 
robust against MAC-address spoofing attacks. However, a 
rogue AP may change the inter-ACK times to elude being 
detected by our algorithms. For instance, it may reduce the 
inter-ACK times by buffering ACKs first and then releasing 
them in a batch in order to disguise the traffic as Ethernet 
traffic. Such a camouflage, however, will inevitably 
increase local RTTs (i.e., the portion of RTT inside the 
WLAN). Therefore, we may combine inter-ACK time and 
local RTT measurement to detect such a camouflage. An 
effective scheme is left as future work. 
 

CONCLUSIONS 
In this paper, we have proposed two online algorithms to 
detect rogue access points, based on real time passive 
measurements collected at a gateway router. Both 
algorithms exploit the fundamental properties of the 802.11 
CSMA/CA MAC protocol and the half duplex nature of 
wireless channels to differentiate Ethernet and WLAN TCP 
traffic. Central to both algorithms are sequential hypothesis 
tests that determine a host’s connection type in real time by 
extending our earlier TCP ACK-pair techniques [25]. One 
algorithm requires training sets, while the other does not. 
Extensive experiments in various scenarios and over hosts 
with various operating systems have demonstrated the 
excellent performance of our approach: the algorithm that 
requires training provides rapid detection and is extremely 
accurate; the algorithm that does not require training detects 
60%-76% of the wireless hosts without any false positives; 
both algorithms require computation and storage well 
within the capability of commodity equipment. 
Furthermore, our scheme can detect connection switching 
and wireless networks behind a NAT box. Last, our scheme 
remains effective for hosts with high CPU, hard disk or 
network utilizations.  
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