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I. INTRODUCTION 
Bilinear pairings are used in several ways in cryptography 
[1], [2], [3]. Bilinear pairings can be formed in different 
ways [4]. We are presenting new set of bilinear pairings 
over Zp and a few of its applications in Cryptography.  
 

A. Basic Definition 
Let Zp be the modulo p integer set for a large prime 
number p. That is, 
Zp = { 0, 1, 2, …, p-2, p-1}                               (1) 
 
Zp is referred as the set of residues [5]. It is a finite field of 
order p. 
We define the new bilinear pairing over Zp as, 

 mod  p                                   (2) 
 
Here, U and V are the given integers in Zp. That is, U∈ Zp 
and V∈ Zp. Expression  is calculated using the 

modular arithmetic such that  also belongs to Zp. Thus, ∈ Zp.  In Eq. (2), integer 2 is raised to the power 
(U*V) using mod p modular arithmetic.  
 

In  our method,    mod  p  is calculated as, 

   mod  p  =  mod  p)V mod p. Therefore the 
definition of e(U,V) becomes, 

         e(U,V) =  mod  p)V mod p                              (3)  
 
We use left-to-right binary method for modular 
exponentiation in our calculation of e(U,V)..     
 

B. Properties of e(U,V) 
    In the following expressions, U, V, a, b and R belong to 
Zp. 
[1] e(U, V) is commutative. That is,  

e(U,V) = e(V, U).  
This follows from the definition (2). 

 

[2] e(a*U, V) = e(U, a*V)           (4) 
This follows from the property of indices as, 

 

 
Similarly, it can be shown that, 

e(U, a*V)  
[3] e(a*U, b*V) = e(b*U, a*V) = 

       =  =  

       =                    (5) 
This can be proved as follows. 
By definition, 

 
 
By the theory of indices, 

 

  
Therefore, Eq. (5) is proved. 

        is evaluated as, 

         
 
[4] e(U+R, V) = e(U, V)*e(R, V)                   (6) 
This follows from the theory of indices as, 
     2(U+R)* V = 2U*V+R*V = (2U*V ) * (2R*V) 

 
II. DIFFIE-HELLMAN TYPE KEY EXCHANGE 

Our new bilinear pairings are used for Diffie-Hellman (DH) 
type key exchange. The public keys of user A and user B 
are chosen as, 
                      KA =  e(a, U)                              (7) 
                      KB =  e(b, V)                               (8) 
The private keys of A and B are, 
                RA = { a ,  U}                                  (9) 
                RB = { b ,  V}                                   (10) 
A sends KA to B through an unsecured channel and 
similarly, B sends KB to A. The arrangement is shown in 
Fig.1. After receiving KB from B, user A calculates the 
common key KBA as, 

            KBA =                                                (11) 
Here, A uses his private keys m and U to get KBA. 
Similarly, user B calculates KAB after receiving KA a, 

            KAB =                                                (12) 
Substituting for KB and KA from Eqs. (8) and (7), in Eqs. 
(11) and (12), we get, 

            KBA =                                                (13) 
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            KAB =                                                (14) 
From Eq.(5), we see that the RHS’s of the above equations 
are equal. Therefore, 
                          KBA = KAB                                                
(15) 
Hence common secret key is available for both A and B. 
 

K B =  e (b,  V)          

K A  =   e( a, U)            
U ser A Us er B

Private 
Ke ys:  
 
  a,  U  

Private
Ke ys:  
 
b ,  V

Fig . 1 .  D iffi -Hel lman  T yp e Key  E xch ang e 

    A simple example is given to demonstrate the DH key 
exchange. 
Example 1. The following parameters are chosen for this 
example. 
Prime number  p = 30577. 
Private Keys of A:   m = 1939, U = 2313. 
Private Keys of B:    n = 1799, V = 3111. 
From Eqs. (7) and (8) KA and KB are found to be, 
                    KA = 21771  and KB = 5553.   

The intermediate values  and  are found to be, 

 
The final values KBA and KAB are, 
             KBA = KAB = 9150 

 
III. THRESHOLD CRYPTOGRAPHY USING BILINEAR 

PAIRINGS 
    Bilinear pairings are well suited for threshold 
cryptography [6], [7]. In the (t, n) threshold scheme, a 
secret key is encoded in n shares which are then distributed 
to the corresponding n users. Any t (or more) shares out of 
n can be used to decode the secret. In our paper, the (t, n) 
encryption scheme is implemented using the Lagrange 
interpolation formula and the bilinear pairings. The 
arrangement is shown in Fig.2.  

b,  V 
KGC 

--------- 
Content 
Server  

---------- 
Secret 
Key 

Decoder 
--------- 
Content 
Decoder 

and 
Distributor 

user 1 
 
a1,U1 

user 2 
 
a2,U2 

user i 
 
ai,Ui 

Fig.2. (t, n) threshold  cryptography scheme 

Ki  =  e(ai, Ui)  for i = 1, 2, …, n 

Li = e(bi, V)  for i = 1, 2, …, n 

 

There are n users designated by 1,2,…,n. They can access 
the content server which also houses the Key Generation 
Centre (KGC) and the secret key decoder as shown in Fig.2. 
The working of the scheme is described as follows. 

A. Setup Phase            
     User i selects (randomly) his/her two private keys ai and 
Ui belonging to Zp for i = 1, 2, …, n. The KGC selects its 
private key V∈ Zp randomly. It also randomly chooses the 
coefficients b, d1, d2,…dt-1 ∈ Zp and forms the polynomial 
over Zp as, 
 
          F(x) = b + d1*x + d2*x2 + …+dt-1*xt-1            (16) 
The degree of the polynomial is (t-1). The additional private 
keys of KGC are calculated as, 
          b =  F(0);                                                      (17) 
          b1=F(1), b2=F(2), …,bi=F(i),for i = 1,2,…,n.  (18) 
 

B. Public keys generation and distribution 
User i generates his/her public key Ki as, 
        Ki = e(ai, Ui)  for i=1,2,…,n                             (19) 

and sends it to KGC. In turn, KGC generates the public 
keys 
              Li = e(bi, V) for 1≤ i≤ n                              (20) 
and sends them to the respective users. Therefore user i 
receives  Li = e(bi, V) .  
 

C. Identification signatures by users 
     User i generates his/her identification signature as, 

    Gi =  =   for 1≤ i≤ n                   (21) 
 

D. Verification signatures by KGC   
    The KGC generates verification signatures from Ki’s it 
has received from users as, 

      Hi =  =   for 1≤ i≤ n                  (22) 
These Hi’s are passed on to the secret key decoder unit of 
the content server for validating the users. 
 

E. Secret key of KGC  
     The KGC generates its secret key K as, 
            K = e(q*b, V)                                                      (23) 
Here, q is a scale factor given by, 
        q = (n–1) !                                                              (24) 
q is the factorial(n-1). This scale factor is used to take care 
of fractional multipliers which may occur while calculating 
the coefficients in Lagrange formula which will be 
described later.  
The content server uses this key K to encrypt its contents. 
 

F. Secret key decoding 
Let us represent all the users in the scheme by the set W 
as,W = {1, 2, …, n}. Here, user i is represented by the 
number i for 1≤ i ≤. n. Let the given t number of users 
involved in the current threshold decoding be represented 
by Y. Here Y is a subset of W For example if n =4 and t =3, 
the entire user set is W = {1, 2, 3, 4}. Then the threshold set 
Y could be one of the following sets. {1, 2, 3}, {1, 2 ,4}, 
{1, 3, 4) or {2, 3, 4}. In a given situation, let Y be a specific 
subset of t elements out of W. Then from the Lagrange 
interpolation formula [8], 
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 where,    

 
for 1≤ i ≤. n. 
ci’s are called the Lagrange Coefficients. 

Because of the term   in Eq. (26), ci can be a fraction 
instead of an integer. But in our cryptographic scheme, all 
variables should be integers and should belong to Zp. 
Therefore, ci’s are scaled up by the factor q such that q*ci’s 
become integers for all i’s. The value of q is fixed as 
follows.  
In Eq. (26), the denominator term is (j-i). The maximum 
value of (j-i) occurs when j = n (maximum of j) and i = 1 
(minimum of i). Then max(j-i) is (n-1).  The minimum of 
abs(j-i) cannot go to zero because of the condition j ≠ i in 
Eq. (26). Therefore the minimum of abs(j-i) is 1. Therefore 
the denominator term of Eq. (26) can take values in the 
range 1 to (n-1) depending on Y. Hence (n-1) ! is perfectly 
divisible by (j-i) for all possible combinations of j and i. 
Hence the scale up factor is, 
    q = (n-1) ! = factorial(n-1)                             (27) 
Therefore q*ci will be an integer for 1≤ i ≤. n. 
Now, multiplying both sides of Eq. (25) by q gives, 
         

 
  
The secret key decoder knows set Y and it calculates ci for i 

according to Eq. (26). It has also received Li’s from 
KGC for 1≤ i ≤. N. Then it will calculate Ri as, 
                   

  
From the property of the bilinear pairings,   
 can be expressed as, 

 
In the light of Eq.(30), Eq. (29) can be rewritten as, 
 

             
Now, consider the product, 

 
 

 
Using the identity, xm.xn = x(m+n), Eq. (33) can be expressed 
as, 
            

  summation over i∈Y      (34) 
 

But from Eq. (28),   over i∈Y is q*b. Hence Eq. 
(34) can be expressed as, 

 
Then from the property of the bilinear pairings, 
                         S = e(q*b, V)                               (36) 
From Eqs. (23) and (36), we see that the key recovered by 
Eq. (36) is same as given by Eq.(23). Hence K can be 
extracted by calculating S at the key decoding centre as 
follows.  

 
G. Signature verification and secret  key extraction 

     User i submits his Li along with Gi to the secret key 
decoder. The key decoder verifies the validity of the user by 
comparing Gi with Hi. If they are not equal the submission 
Li from user i is rejected by the decoder and there is no 
content decryption. If Gi and Hi are found equal, the 
decoder accepts Li and further processing takes place. 
    The key decoder accepts Li’s submitted by users for i∈Y. 
Here Y is a specific threshold combination of t users. The 
decoder calculates Ri‘s for  i∈Y using Eq. (29). 
    Then using Eq. (32), it calculates S which is same as K.  
The content decoder uses S to decrypt the encrypted data 
from the content server. The decrypted data can be viewed 
by the interested party at the content decoder’s location 
 

IV. TEST RESULTS 
Public and private key calculations and the secret key 
extraction using the threshold decryption is simulated using 
matlab. Example 2 demonstrates the resulting numerical 
values. 
Example 2.  The following parameters are used in this 
example. 
Number of users, n = 4. For Zp, p=30577. 
Threshold level    t =3. 
Private key parameters ai and Ui of the users in the order 
are, 
ai = [ 179    1993    2163     291 ]   for i = 1 to 4 
Ui = [ 235     111    173     2537 ]   for i = 1 to 4. 
The Lagrange polynomial is chosen as, 
  F(x) = 193+111*x+171*x2 

Private keys of KGC are, V = 13113 and b = 193. The 
values of bi’s are, 
bi = [ 475       1099       2065       3373 ] for i = 1to 4. 
 
The public keys generated by the users and sent to KGC 
are, 
Ki = [ 24531       23680       20447        9420 ] for i = 1to 4. 
 
The public keys generated by KGC and sent to the users 
are, 
Li = [ 3269       15713       17050       16505 ] for i = 1to 4. 
 
User generated identification signatures are, 
Gi = [ 12111        2954       22014       16508 ] for i = 1to 4. 
 
KGC generated Hi’s are found to be same as Gi’s. 
The threshold set Y = [ 1  2   4].  The corresponding 
Lagrange coefficients are, 
  [ c1   c2   c4 ] = [ 8/3    –2  1/3 ].  Here q=factorial(n-1) = 6. 
 
Therefore,  q*[ c1   c2   c4 ] = [ 16    –12    2]. 
The values of Ri’s are, 
[ R1    R2    R4 ] = [194       14252      4532]. 
 
The product term S =R1*R2*R4 is found to be 17816.  This 
is same as the secret key generated by KGC and used by the 
content decrypter. That is 
 
  K = e(q*b, V) = e(6*193, 13113) = 17816.          
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V. CONCLUSION 
A new set of bilinear pairings are defined. A new method is 
proposed for (t, n) threshold cryptography using these 
bilinear pairings. Even though the key generation process 
and the bilinear calculations are computationally expensive, 
it is easy to implement them using the modern high speed 
machines.  
The decoding and recovery of the secret can take place at 
different distributed locations. The length of the secret key, 
given by k can be easily scaled up for improved security. 
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