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Abstract— Ensuring the trustworthiness in cyber space has 
become an important and indispensable security challenge. 
Questions about trust in the physical space can be answered 
based on the factors namely closeness, time, analysing actions 
and body language. But in the cyber space these factors are 
not readily available correctly to ensure and verify trust. In 
this paper, we discuss the approaches used earlier for 
establishing trust and their limitations, and focus on the need 
for hardware-based root of trust as software-only solutions are 
inadequate to ensure complete trust. 
We discuss an emerging technology in the field of trusted 
computing, Trusted Platform Module (TPM) that provides a 
hardware-based root of trust. we also discuss about its scope, 
various applications, and the future work being done on it.  
  
Keywords— Trust, Physical space, Cyber Space, Trusted 
Computing Base, Trusted Platform Module. 

I. INTRODUCTION 

In recent years the general purpose computer has 
become pervasive and supports a large number of functions. 
This multiple functionality of a single computer 
interconnected with various other computers in the 
cyberspace has reduced the isolation needed to protect 
security-sensitive operations. The interconnection of 
multiple computers has also paved a way for easy 
propagation of malware. When these attacks are analysed 
and examined it often lead us to the weakness of the 
operating systems and even the kernel's growing 
complexity has become problematic. In this era of 
innovation, OS vendors are forced to implement new 
features, making the system more complex and prone to 
bugs, which makes the reliability of the operating system an 
ever growing concern. If an application runs on top of a 
compromised operating system then its correctness cannot 
be guaranteed. To thwart such threats, a system that allows 
applications to run on a minimal trusted computing base 
(TCB) [1] is needed, that provides stronger isolation 
functions.  

In earlier days, most of the operating system kernels 
were implemented on a single entity. Communications 
between subsystems happened by means of procedure calls 
and shared memory. Subsystems had no practical 
boundaries between them, and such systems were said to be 
monolithic. There were severe problems concerning the 
robustness and security of these monolithic operating 
systems as the whole systems control can be gained by 
attacking any subsystem. As the isolation between 
applications is insufficient, an attacker can gain access to a 
single application and from there exploit the entire machine 
[2]. A monolithic kernel cannot ensure trust as all OS 
subsystems run in privileged mode without isolation from 

one another; instead architecture is needed that allows more 
fine grained access control and applications with a small 
TCB to be built.  

The second generation of microkernels provided a 
suitable platform for secure systems to be built. But they 
have a slight overhead when compared to the monolithic 
systems as they communicate using IPC which requires 
switching from user privilege level to kernel privilege level 
and then switching back to user level.  

Due to the inabilities of these current operating systems, 
virtualization has become popular. Virtualization can be 
used to run applications written for different operating 
systems concurrently. An efficient isolated duplicate called 
the virtual machine (VM) is run by a control program called 
a virtual machine monitor (VMM). As multiple VMs can 
exist in a time-shared environment a strong isolation is 
guaranteed where multiple users may own different VMs.  

There is not much advantage in moving from a 
microkernel to a hypervisor as it doesn't contribute much in 
system trustworthiness. Each virtual machine of a 
hypervisor runs a complete operating system and does not 
isolate one application from the other. In essence, the TCB 
for each application i.e. the set of components on which a 
subsystem depends must be minimized.  

II. BACKGROUND 

A. Threat Model 

Most of the commercial operating systems assume that 
the software running on behalf of a subject is trusted. 
However, these software may be under the control of an 
attacker and can result in the leakage of the user's data. For 
example, low level programs may get escalated to high 
level privileges thereby increasing the possibility of error 
and malice. This may allow untrusted user code to execute 
with full super user privilege and may also grant access to 
user's secrets. The overwhelming number of 
communications and computations occurring in the 
cyberspace has to maintain a high degree of trust for their 
validity. The concept of trusted platforms thus came into 
picture and many software and hardware based mechanisms 
were experimented. A purely software based trusted system 
is not impossible to implement, but they have to 
successfully overcome many unresolved challenges. 
Cryptographic keys stored in the hard disk can be accessed, 
code can be manipulated without leaving a clue and much 
vulnerability in the software can be exploited by a skilled 
attacker. 

To ensure trust in a system, the TCB should be 
protected. This will ensure that the processes behave in the 
way they were intended to. But these processes which are 
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untrusted interact among each other, and the possibility of 
secrets being shared increases. As the secrets become 
available to attackers, they can be further used to 
compromise other systems which use the same data for 
authentication.  

Once compromised, a system can prove to be a threat to 
the entire network when connected. To prevent such 
systems from connecting to the network, there must be a 
mechanism to identify them as compromised. Software-
only authentication mechanisms use the computer name or 
MAC address which can be forged. As these vulnerabilities 
increase, there must be a way to detect when a system is 
compromised and prevent an attacker from exploiting it.   

Hence, the concept of a hardware based root of trust was 
perceived and many promising attempts have already been 
made. One such attempt resulted in a secure coprocessor, 
which can be a smart card for simple applications or a 
completely independent execution environment provided by 
a separate computer like IBM 4758 [7]. Though it was 
successful in mitigating side-channel attacks and fault 
injection, these coprocessors were expensive and meant for 
securing specific applications. To reduce the expense, 
virtual coprocessors like ARM TrustZone were developed, 
which provided two operational modes for the processor 
called a secure mode and an insecure mode. Despite the fact 
that it was cheaper and had a separate memory, it still had 
to get code and data from the untrusted environment and 
could only run one application in the protected platform.  

B. Earlier Approaches 

Kernel is the cardinal part of an operating system; it has 
unrestricted access to all the resources in the system and 
forms a part of the trusted computing base of a system.  

1) Monolithic Kernel: Initially, monolithic kernels were 
developed which executed the basic system services like 
interrupt handling, inter process communication, memory 
management, file system, etc. in the kernel space. 
Applications and libraries were included in the less 
privileged user space. Applications used well defined 
system call interface to interact with the kernel. Both 
operating system and device driver code share the same 
kernel memory space. It also provided rich and powerful 
hardware access. Since all the basic system operations were 
included in the kernel space, it was not extensible or 
maintainable and it inflated the kernel size. Kernel 
recompilation was required for bug fixing and addition of 
new features [2]. Also bugs in one part of the kernel could 
corrupt the data structures of another kernel part or of any 
other programs in execution. 

2) Microkernel: By late 1980's the microkernels were 
introduced, in which only the most basic process 
communication and input-output control was included in 
kernel space, while other system services were made 
resident in the user space as normal processes. The OS was 
divided into separate processes or servers which 
implemented a set of services like file server, display server, 
memory server, process server, etc. Only the microkernel 
has access to the hardware resources and each application 
which requires a service from a server sends a message to 

the appropriate server which is intercepted and forwarded 
by the microkernel [3]. The result from the server to the 
application is also intercepted and conveyed by the 
microkernel. This provides a good level of memory 
protection and isolation among the user processes. This 
solved the issue of extensibility and maintainability, by 
reducing the TCB to the barest minimum system 
functionalities running in the kernel space, but introduced 
new difficulties. Due to the basic nature of the microkernel 
API, it alone is not adequate to run real-time tasks or 
applications. So system designers had to frequently provide 
standard APIs to their application developers, which 
increased the complexity of the operating systems. Because 
of the multiple interactions of the kernel components 
running at different privilege levels, communicating by IPC, 
the performance can also be affected. 

3) Virtualization Technology: Soon virtualization 
technology was introduced. It is a framework that enables 
the resources of a computer to be shared among multiple 
execution environments. At the core of virtualization 
technology is the VMM which provides the foundation for 
virtualization management. It was used to consolidate 
workloads of under-utilized servers to lesser number of 
machines. It provides isolation between untrusted 
applications through one of the techniques known as 
sandboxing. It executes multiple operating systems or 
multiple instances of the same operating system in the same 
machine in complete isolation [3]. But still, it increases the 
TCB as the hypervisor code is also included in the trusted 
base. If it gets corrupted, then the isolation and partitioning 
cannot guarantee the code in execution. 

4) Trusted Computing Base: The concept of TCB was 
first proposed in 1972 by James. P. Anderson in a study 
entitled 'computer security Technology and Planning'. TCB 
refers to the hardware, software and firmware components 
that provide a secure computing environment and enforce 
the security policies. If the TCB can be altered, influenced 
or compromised by any means, it lacks integrity and the 
system is in an untrusted state. All the security decisions 
must be made by the TCB using the predefined untampered 
set of security policies [9], [11]. The TCB must be small 
enough so that it can be tested and verified. But in most of 
the modern OS models, this last principle of minimizing the 
TCB is ignored which has led to serious security breaches. 
The trusted platform module is a cutting edge technology 
that aims in minimizing the TCB by providing a hardware-
based root of trust for ensuring the integrity of systems. 

III. TRUSTED PLATFORM MODULE 

The harsh reality that even the most secure conventional 
operating systems fail to guarantee its genuineness to its 
users or to the remote entity that it is communicating with, 
marked the genesis of the Trusted Computing Group 
(TCG)[4], [9]. With the goal of enhancing the security of 
computing environment, TCG a not-for-profit industry-
standards organization was formed by AMD, Hewlett-
Packard, IBM, Intel and Microsoft in spring 2003. TCG has 
adopted the specifications developed by the Trusted 
Computing Platform Alliance (TCPA) for better industry 
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participation, transparent specification development process 
and documented IP policies. Its mission is to “develop and 
promote open, vendor-neutral, industry standard 
specifications for trusted computing building blocks and 
software interfaces across multiple platforms”. 

TCG specifications characterize trusted platform into 
three major components. The core component is a secure 
crypto processor called TPM, which if enabled, provides 
much functionality, including secure booting by computing 
the measurement of the boot sequence after the device is 
powered on. The Core Root of Trust for Measurement 
(CRTM) [7], [10], [11] which constitutes the second 
component is the first code that the trusted platforms 
execute during boot time and is responsible for initiating 
the chain of measurement. It forms the first part of BIOS 
that cannot be flashed or modified. The third component is 
the TCG Software Stack (TSS) which provides a platform 
independent software interface to utilize the TPM functions. 

TCG developed TPM, a secure cryptographic integrated 
circuit (IC) which has been included in almost half a billion 
end products to enable trusted computing. TPM has 
progressed from its first level over 10 years ago to the TPM 
1.2 version [10] today. It was designed to provide a high 
level of security to establish trustworthiness of the 
computing platform. Hardware-based credential storage, 
software integrity, attestation, as well as authentication, or 
proof of identity, are among the tasks enabled by the root of 
trust established by the TPM.  

A. TPM Components 

The TPM 1.2 implementations are stand-alone chips 
which are soldered on the motherboard of a computer on 
the LPC bus or integrated into a custom PCB for an 
embedded device, they communicate with the rest of the 
system by using a hardware bus. A TPM should support the 
following core functionalities: secure storage, platform 
integrity reporting and platform authentication. 

TPM is the hardware realization of the TCG 
specifications. It enhances the level of trust in networks and 
computing devices. TPM is a passive (slave device that 
does not control or prohibit the normal execution flow of 
the system and does not have access to the system 
resources); opt-in device, which provides privacy-enabling 
functions when activated. According to the TCG 
specification [4] it is not mandatory for a TPM to be 
implemented as an IC. Developers are free to implement 
this functionality, either in hardware or software.  

The I/O block allows data to be transported over 
virtually any bus or interconnect; it manages information 
flow between the components and between the TPM and 
external bus. The flags maintained by the Opt-In block 
determine the access rights. The non-volatile memory in the 
TPM stores two long-term keys i.e. the Endorsement Key 
(EK) and the Storage Root Key (SRK) which forms the 
basis of key hierarchy. It is also used to store the owner’s 
authorization data (owner's password). The Endorsement 
Key (EK) which is unique to the TPM is embedded in it. 
More precisely, a TPM has an endorsement key pair, whose 
private key never leaves it. The EK pair is provided by 
TPM manufacturers and stored in the tamper resistant non-
volatile memory before shipping the TPM. 

The private EK is never used to generate signatures. The 
process of encrypting data sent to the TPM during the 
process of taking ownership and the process of creating 
AIK certificates uses the public EK. The Attestation 
Identity Key (AIK) regarded as an alias for the 
Endorsement Key may also be stored within the TPM. 
Multiple AIKs are supported by a TPM, this helps to 
maintain anonymity between different service providers 
who require proof of identity. To make the AIKs persistent, 
they should be stored in secure external storage. A volatile 
storage area in the TPM is provided where one or more 
AIKs can be loaded when in use. The Platform 
Configuration Registers (PCR) are used to store integrity 
metrics which measure the integrity of any code, from 
BIOS to applications, mainly before the execution of the 
code. These registers are reset on power-offs and restarts. 
They store 160-bit values which are SHA-1 digests. In TPM 
v1.1 there are 16 PCRs (0-15), but in the latest TPM v1.2 
there are 24 or more PCRs, in v1.1 specification the PCR 
values will be reset only when the system is rebooted, 
registers 0-7 are reserved for TPM use and register 8-15 for 
operating system and application use. While in v1.2 
specification there are static and dynamic PCRs. 
Specifically, PCR 0-16 (static PCRs) will be reset to 0 by a 
system reboot, thus providing a static root of trust for 
measurement (SRTM) and PCRs 17-22 (dynamic PCRs) 
can be reset to 016 without a system reboot or to 116 with a 
system reboot, providing dynamic root of trust for 
measurement (DRTM). The Programme Code is the “root 
of trust” for integrity measurements which is referred as the 
Core Root of Trust for Measurement (CRTM). The 
Execution Engine runs the programme code described 
above. 

TPM chip contains a Random Number Generator (RNG) 
that can seed random numbers to induce randomness in key 
generation, nonce creation and to strengthen passphrases. 
SHA-1 Engine is used to generate AIK blobs, computing 
signatures and for other general purpose use. RSA Key 
Generation and RSA Engine is used to produce 2048-bit 
modulus storage and signing keys (SRK and AIKs) using 
the RSA algorithm. TPM chips will be in ready-to-be-
owned state when the devices are shipped. Depending on 
the user discretion, its state can vary from disabled and 
deactivated to fully enabled. Opt-in facility maintains the 
physical state of the TPM and applies the disabling feature 
to all the TPM components as per the user directions. 

B. TPM Functions 

The major TPM security features are secure or protected 
storage in shielded locations, integrity measurement and 
remote attestation.  

1) Secure Storage: A TPM can store secrets securely. As 
the TPM has limited storage space, it allows to store keys, 
and other data needs to be protected. This limited storage 
can be extended by exporting keys in encrypted form 
(encrypted using SRK or some other storage key), that are 
decrypted only when loaded back into the TPM. The private 
key of the SRK never leaves the TPM. Binding and sealing 
are the two mechanisms provided by TPM for secure 
storage [4], [5], [10]. Binding refers to the encryption of 
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data using a key managed by a particular TPM. The bound 
data inside the TPM can be decrypted using the private key 
(unbinding). Sealing refers to encrypting externally 
provided data with reference to a specific PCR state along 
with a nonce specific to a particular TPM using a storage 
key. It is a way to combine the measurements (PCR content) 
and external data. Unsealing refers to loading the key used 
for sealing into the TPM and decrypting the blob, if the 
nonce does not match the one of the TPM or if the specified 
PCR values do not match the platforms current PCR values, 
it returns error.    

2) Integrity Measurement: The process of obtaining 
configuration parameters of a platform is known as integrity 
measurement [7], [8]. The goal of integrity measurement is 
to measure system state into the PCRs [5]. The steps 
involved in this process are to measure (compute the hash 
value of) the next entity, e.g. BIOS measures the integrity 
of the OS Loader, the OS Loader measures the integrity of 
the operating system and this process continues up to the 
user level applications. The measurement is made by 
creating a SHA-1 digest of the code to be loaded (SHA-
1(data)) and extended (appends the new measurement to the 
old PCR value) into one of the PCRs. Measurements 
change with system updates and patches. 

3) Remote Attestation: Attestation provides a current 
platform state stored in the Integrity Measurement 
Architecture (IMA) to the remote entity for platform 
authentication [6][11]. IMA contain the log of software 
events stored as measurements and extended to TPM's 
PCRs. Attestation involves a challenge-response protocol. 
A remote verifier (challenger) sends a challenge consisting 
of a nonce (to thwart replay attacks), and a list of PCR 
indices. The response consists of the current PCR values of 
the listed PCR indices, along with a quote. Quote is a 
digital signature computed within the TPM, over the 
aggregate of the list of PCR values and nonce received from 
the challenger, using private AIK [6]. The challenger upon 
reception of the response should verify the following: 
 The value of nonce in the reply 
 Decrypt the quote using the public AIK obtained 

through an authenticated channel 
 Verify whether the list of PCR values matches those 

included in the quote. 
 Verify whether the PCR values itself represent an 

acceptable and secure boot sequence.  

IV. APPLICATIONS 

There are a number of reasons why TPM chips are useful. 
For example, they permit online service providers to verify 
the platform authenticity through secure booting and 
integrity measurement, thereby reducing online fraud and 
identity theft. A website could also be verified by a 
consumer if it’s a legitimate merchant site or not using 
TPM technology. Hardware-based security provided by the 
TPM can be used to encrypt emails, and for improving 
protection for VPN, wireless networks, file encryption and 
password/PIN/credentials' management. User authentication 
can be provided by augmenting the device with TPM 
features likes sealed storage along with normal security 
practices like finger-print biometrics [5], smart cards [5] 

and passphrases. Already a transition is well underway to 
use TPM-based security in mobile devices which access the 
restricted information in government and other networks. 
Attempts to incorporate TPMs in VANETs, cloud 
computing networks, grids are in progress and soon it will 
be included in security sensitive devices like electronic 
voting machines and biomedical equipment.  

V. SCOPE AND FUTURE WORK 

As mobile-phone embedded computers are gaining 
popularity, with the host of interesting services that they 
provide including Javascript and interactive web-services, 
TPM can be deployed for controlling and monitoring these 
devices. TPM can even be incorporated in tape drives and 
USB drives. Full disk encryption applications like 
TrueCrypt, BitLocker drive encryption can make use of 
TPM to protect the keys, encrypt hard disk and provide 
trusted boot through integrity measurement. TPM can be 
added to network devices for authentication of requests, 
before allowing access to resources. A future home network 
with Internet-capable devices can be safeguarded using a 
TPM this will prevent the stealing of the Home Key. The 
TPM also plays a vital role in the Windows 8 operating 
system by providing remote attestation by trusted third 
parties. It provides a trusted boot mechanism called the 
hardened UEFI BIOS standard. There is a future for TPM 
in protecting credentials for authentication, where TPM 
stores credentials of users for different services. Each user 
will just have to remember a unique access code for a TPM-
enabled device, which can then provide the access 
credentials for all the required services in complete 
isolation with other user accounts. As TPM cannot mitigate 
some hardware attacks, plans are underway to release 
specialized hardware with more tightly integrated TPMs, as 
the TPM specification does not require it to be a separate 
chip. 

VI. CONCLUSION 

Cyberspace has entered the realm of reality; it is no 
longer a science fiction. Our increased dependency in this 
virtual world of networked information systems emphasizes 
the need to ensure trust in these devices. Any kind of 
disruption in their operation can put life, property and 
economy at stake. In this paper, we have surveyed the 
security threats in the cyberspace and have elaborated on 
the countermeasures to those threats. Having mentioned the 
countermeasures, we identified that these countermeasures 
were inadequate to ensure complete trust of an end system. 
As the underlying security mainly depends on the hardware, 
the TCG's TPM is capable of providing a hardware-based 
root of trust, which increases the overall security of the 
computing devices. Further we have provided a detailed 
account on the necessity of a trusted computing module and 
the various application areas it can be applied to. With 
various innovations taking place in the area of trusted 
computing TPM still has a long way to go. 
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