
TPM: A More Trustworthy Solution to Computer
Security

Angela Francis, Renu Mary Daniel, Vinodh Ewards S. E.

Department of Computer Science and Engineering, Karunya University
Coimbatore – 641114, India

Abstract— Ensuring the trustworthiness in cyber space has
become an important and indispensable security challenge.
Questions about trust in the physical space can be answered
based on the factors namely closeness, time, analysing actions
and body language. But in the cyber space these factors are
not readily available correctly to ensure and verify trust. In
this paper, we discuss the approaches used earlier for
establishing trust and their limitations, and focus on the need
for hardware-based root of trust as software-only solutions are
inadequate to ensure complete trust.
We discuss an emerging technology in the field of trusted
computing, Trusted Platform Module (TPM) that provides a
hardware-based root of trust. we also discuss about its scope,
various applications, and the future work being done on it.

Keywords— Trust, Physical space, Cyber Space, Trusted
Computing Base, Trusted Platform Module.

I. INTRODUCTION

In recent years the general purpose computer has
become pervasive and supports a large number of functions.
This multiple functionality of a single computer
interconnected with various other computers in the
cyberspace has reduced the isolation needed to protect
security-sensitive operations. The interconnection of
multiple computers has also paved a way for easy
propagation of malware. When these attacks are analysed
and examined it often lead us to the weakness of the
operating systems and even the kernel's growing
complexity has become problematic. In this era of
innovation, OS vendors are forced to implement new
features, making the system more complex and prone to
bugs, which makes the reliability of the operating system an
ever growing concern. If an application runs on top of a
compromised operating system then its correctness cannot
be guaranteed. To thwart such threats, a system that allows
applications to run on a minimal trusted computing base
(TCB) [1] is needed, that provides stronger isolation
functions.

In earlier days, most of the operating system kernels
were implemented on a single entity. Communications
between subsystems happened by means of procedure calls
and shared memory. Subsystems had no practical
boundaries between them, and such systems were said to be
monolithic. There were severe problems concerning the
robustness and security of these monolithic operating
systems as the whole systems control can be gained by
attacking any subsystem. As the isolation between
applications is insufficient, an attacker can gain access to a
single application and from there exploit the entire machine
[2]. A monolithic kernel cannot ensure trust as all OS
subsystems run in privileged mode without isolation from

one another; instead architecture is needed that allows more
fine grained access control and applications with a small
TCB to be built.

The second generation of microkernels provided a
suitable platform for secure systems to be built. But they
have a slight overhead when compared to the monolithic
systems as they communicate using IPC which requires
switching from user privilege level to kernel privilege level
and then switching back to user level.

Due to the inabilities of these current operating systems,
virtualization has become popular. Virtualization can be
used to run applications written for different operating
systems concurrently. An efficient isolated duplicate called
the virtual machine (VM) is run by a control program called
a virtual machine monitor (VMM). As multiple VMs can
exist in a time-shared environment a strong isolation is
guaranteed where multiple users may own different VMs.

There is not much advantage in moving from a
microkernel to a hypervisor as it doesn't contribute much in
system trustworthiness. Each virtual machine of a
hypervisor runs a complete operating system and does not
isolate one application from the other. In essence, the TCB
for each application i.e. the set of components on which a
subsystem depends must be minimized.

II. BACKGROUND

A. Threat Model

Most of the commercial operating systems assume that
the software running on behalf of a subject is trusted.
However, these software may be under the control of an
attacker and can result in the leakage of the user's data. For
example, low level programs may get escalated to high
level privileges thereby increasing the possibility of error
and malice. This may allow untrusted user code to execute
with full super user privilege and may also grant access to
user's secrets. The overwhelming number of
communications and computations occurring in the
cyberspace has to maintain a high degree of trust for their
validity. The concept of trusted platforms thus came into
picture and many software and hardware based mechanisms
were experimented. A purely software based trusted system
is not impossible to implement, but they have to
successfully overcome many unresolved challenges.
Cryptographic keys stored in the hard disk can be accessed,
code can be manipulated without leaving a clue and much
vulnerability in the software can be exploited by a skilled
attacker.

To ensure trust in a system, the TCB should be
protected. This will ensure that the processes behave in the
way they were intended to. But these processes which are

Angela Francis et al | IJCSET |March 2013 | Vol 3, Issue 3, 99-103

ISSN:2231-0711

Available online @ www.ijcset.net 99

untrusted interact among each other, and the possibility of
secrets being shared increases. As the secrets become
available to attackers, they can be further used to
compromise other systems which use the same data for
authentication.

Once compromised, a system can prove to be a threat to
the entire network when connected. To prevent such
systems from connecting to the network, there must be a
mechanism to identify them as compromised. Software-
only authentication mechanisms use the computer name or
MAC address which can be forged. As these vulnerabilities
increase, there must be a way to detect when a system is
compromised and prevent an attacker from exploiting it.

Hence, the concept of a hardware based root of trust was
perceived and many promising attempts have already been
made. One such attempt resulted in a secure coprocessor,
which can be a smart card for simple applications or a
completely independent execution environment provided by
a separate computer like IBM 4758 [7]. Though it was
successful in mitigating side-channel attacks and fault
injection, these coprocessors were expensive and meant for
securing specific applications. To reduce the expense,
virtual coprocessors like ARM TrustZone were developed,
which provided two operational modes for the processor
called a secure mode and an insecure mode. Despite the fact
that it was cheaper and had a separate memory, it still had
to get code and data from the untrusted environment and
could only run one application in the protected platform.

B. Earlier Approaches

Kernel is the cardinal part of an operating system; it has
unrestricted access to all the resources in the system and
forms a part of the trusted computing base of a system.

1) Monolithic Kernel: Initially, monolithic kernels were
developed which executed the basic system services like
interrupt handling, inter process communication, memory
management, file system, etc. in the kernel space.
Applications and libraries were included in the less
privileged user space. Applications used well defined
system call interface to interact with the kernel. Both
operating system and device driver code share the same
kernel memory space. It also provided rich and powerful
hardware access. Since all the basic system operations were
included in the kernel space, it was not extensible or
maintainable and it inflated the kernel size. Kernel
recompilation was required for bug fixing and addition of
new features [2]. Also bugs in one part of the kernel could
corrupt the data structures of another kernel part or of any
other programs in execution.

2) Microkernel: By late 1980's the microkernels were
introduced, in which only the most basic process
communication and input-output control was included in
kernel space, while other system services were made
resident in the user space as normal processes. The OS was
divided into separate processes or servers which
implemented a set of services like file server, display server,
memory server, process server, etc. Only the microkernel
has access to the hardware resources and each application
which requires a service from a server sends a message to

the appropriate server which is intercepted and forwarded
by the microkernel [3]. The result from the server to the
application is also intercepted and conveyed by the
microkernel. This provides a good level of memory
protection and isolation among the user processes. This
solved the issue of extensibility and maintainability, by
reducing the TCB to the barest minimum system
functionalities running in the kernel space, but introduced
new difficulties. Due to the basic nature of the microkernel
API, it alone is not adequate to run real-time tasks or
applications. So system designers had to frequently provide
standard APIs to their application developers, which
increased the complexity of the operating systems. Because
of the multiple interactions of the kernel components
running at different privilege levels, communicating by IPC,
the performance can also be affected.

3) Virtualization Technology: Soon virtualization
technology was introduced. It is a framework that enables
the resources of a computer to be shared among multiple
execution environments. At the core of virtualization
technology is the VMM which provides the foundation for
virtualization management. It was used to consolidate
workloads of under-utilized servers to lesser number of
machines. It provides isolation between untrusted
applications through one of the techniques known as
sandboxing. It executes multiple operating systems or
multiple instances of the same operating system in the same
machine in complete isolation [3]. But still, it increases the
TCB as the hypervisor code is also included in the trusted
base. If it gets corrupted, then the isolation and partitioning
cannot guarantee the code in execution.

4) Trusted Computing Base: The concept of TCB was
first proposed in 1972 by James. P. Anderson in a study
entitled 'computer security Technology and Planning'. TCB
refers to the hardware, software and firmware components
that provide a secure computing environment and enforce
the security policies. If the TCB can be altered, influenced
or compromised by any means, it lacks integrity and the
system is in an untrusted state. All the security decisions
must be made by the TCB using the predefined untampered
set of security policies [9], [11]. The TCB must be small
enough so that it can be tested and verified. But in most of
the modern OS models, this last principle of minimizing the
TCB is ignored which has led to serious security breaches.
The trusted platform module is a cutting edge technology
that aims in minimizing the TCB by providing a hardware-
based root of trust for ensuring the integrity of systems.

III. TRUSTED PLATFORM MODULE

The harsh reality that even the most secure conventional
operating systems fail to guarantee its genuineness to its
users or to the remote entity that it is communicating with,
marked the genesis of the Trusted Computing Group
(TCG)[4], [9]. With the goal of enhancing the security of
computing environment, TCG a not-for-profit industry-
standards organization was formed by AMD, Hewlett-
Packard, IBM, Intel and Microsoft in spring 2003. TCG has
adopted the specifications developed by the Trusted
Computing Platform Alliance (TCPA) for better industry

Angela Francis et al | IJCSET |March 2013 | Vol 3, Issue 3, 99-103 ISSN:2231-0711

Available online @ www.ijcset.net 100

participation, transparent specification development process
and documented IP policies. Its mission is to “develop and
promote open, vendor-neutral, industry standard
specifications for trusted computing building blocks and
software interfaces across multiple platforms”.

TCG specifications characterize trusted platform into
three major components. The core component is a secure
crypto processor called TPM, which if enabled, provides
much functionality, including secure booting by computing
the measurement of the boot sequence after the device is
powered on. The Core Root of Trust for Measurement
(CRTM) [7], [10], [11] which constitutes the second
component is the first code that the trusted platforms
execute during boot time and is responsible for initiating
the chain of measurement. It forms the first part of BIOS
that cannot be flashed or modified. The third component is
the TCG Software Stack (TSS) which provides a platform
independent software interface to utilize the TPM functions.

TCG developed TPM, a secure cryptographic integrated
circuit (IC) which has been included in almost half a billion
end products to enable trusted computing. TPM has
progressed from its first level over 10 years ago to the TPM
1.2 version [10] today. It was designed to provide a high
level of security to establish trustworthiness of the
computing platform. Hardware-based credential storage,
software integrity, attestation, as well as authentication, or
proof of identity, are among the tasks enabled by the root of
trust established by the TPM.

A. TPM Components

The TPM 1.2 implementations are stand-alone chips
which are soldered on the motherboard of a computer on
the LPC bus or integrated into a custom PCB for an
embedded device, they communicate with the rest of the
system by using a hardware bus. A TPM should support the
following core functionalities: secure storage, platform
integrity reporting and platform authentication.

TPM is the hardware realization of the TCG
specifications. It enhances the level of trust in networks and
computing devices. TPM is a passive (slave device that
does not control or prohibit the normal execution flow of
the system and does not have access to the system
resources); opt-in device, which provides privacy-enabling
functions when activated. According to the TCG
specification [4] it is not mandatory for a TPM to be
implemented as an IC. Developers are free to implement
this functionality, either in hardware or software.

The I/O block allows data to be transported over
virtually any bus or interconnect; it manages information
flow between the components and between the TPM and
external bus. The flags maintained by the Opt-In block
determine the access rights. The non-volatile memory in the
TPM stores two long-term keys i.e. the Endorsement Key
(EK) and the Storage Root Key (SRK) which forms the
basis of key hierarchy. It is also used to store the owner’s
authorization data (owner's password). The Endorsement
Key (EK) which is unique to the TPM is embedded in it.
More precisely, a TPM has an endorsement key pair, whose
private key never leaves it. The EK pair is provided by
TPM manufacturers and stored in the tamper resistant non-
volatile memory before shipping the TPM.

The private EK is never used to generate signatures. The
process of encrypting data sent to the TPM during the
process of taking ownership and the process of creating
AIK certificates uses the public EK. The Attestation
Identity Key (AIK) regarded as an alias for the
Endorsement Key may also be stored within the TPM.
Multiple AIKs are supported by a TPM, this helps to
maintain anonymity between different service providers
who require proof of identity. To make the AIKs persistent,
they should be stored in secure external storage. A volatile
storage area in the TPM is provided where one or more
AIKs can be loaded when in use. The Platform
Configuration Registers (PCR) are used to store integrity
metrics which measure the integrity of any code, from
BIOS to applications, mainly before the execution of the
code. These registers are reset on power-offs and restarts.
They store 160-bit values which are SHA-1 digests. In TPM
v1.1 there are 16 PCRs (0-15), but in the latest TPM v1.2
there are 24 or more PCRs, in v1.1 specification the PCR
values will be reset only when the system is rebooted,
registers 0-7 are reserved for TPM use and register 8-15 for
operating system and application use. While in v1.2
specification there are static and dynamic PCRs.
Specifically, PCR 0-16 (static PCRs) will be reset to 0 by a
system reboot, thus providing a static root of trust for
measurement (SRTM) and PCRs 17-22 (dynamic PCRs)
can be reset to 016 without a system reboot or to 116 with a
system reboot, providing dynamic root of trust for
measurement (DRTM). The Programme Code is the “root
of trust” for integrity measurements which is referred as the
Core Root of Trust for Measurement (CRTM). The
Execution Engine runs the programme code described
above.

TPM chip contains a Random Number Generator (RNG)
that can seed random numbers to induce randomness in key
generation, nonce creation and to strengthen passphrases.
SHA-1 Engine is used to generate AIK blobs, computing
signatures and for other general purpose use. RSA Key
Generation and RSA Engine is used to produce 2048-bit
modulus storage and signing keys (SRK and AIKs) using
the RSA algorithm. TPM chips will be in ready-to-be-
owned state when the devices are shipped. Depending on
the user discretion, its state can vary from disabled and
deactivated to fully enabled. Opt-in facility maintains the
physical state of the TPM and applies the disabling feature
to all the TPM components as per the user directions.

B. TPM Functions

The major TPM security features are secure or protected
storage in shielded locations, integrity measurement and
remote attestation.

1) Secure Storage: A TPM can store secrets securely. As
the TPM has limited storage space, it allows to store keys,
and other data needs to be protected. This limited storage
can be extended by exporting keys in encrypted form
(encrypted using SRK or some other storage key), that are
decrypted only when loaded back into the TPM. The private
key of the SRK never leaves the TPM. Binding and sealing
are the two mechanisms provided by TPM for secure
storage [4], [5], [10]. Binding refers to the encryption of

Angela Francis et al | IJCSET |March 2013 | Vol 3, Issue 3, 99-103 ISSN:2231-0711

Available online @ www.ijcset.net 101

data using a key managed by a particular TPM. The bound
data inside the TPM can be decrypted using the private key
(unbinding). Sealing refers to encrypting externally
provided data with reference to a specific PCR state along
with a nonce specific to a particular TPM using a storage
key. It is a way to combine the measurements (PCR content)
and external data. Unsealing refers to loading the key used
for sealing into the TPM and decrypting the blob, if the
nonce does not match the one of the TPM or if the specified
PCR values do not match the platforms current PCR values,
it returns error.

2) Integrity Measurement: The process of obtaining
configuration parameters of a platform is known as integrity
measurement [7], [8]. The goal of integrity measurement is
to measure system state into the PCRs [5]. The steps
involved in this process are to measure (compute the hash
value of) the next entity, e.g. BIOS measures the integrity
of the OS Loader, the OS Loader measures the integrity of
the operating system and this process continues up to the
user level applications. The measurement is made by
creating a SHA-1 digest of the code to be loaded (SHA-
1(data)) and extended (appends the new measurement to the
old PCR value) into one of the PCRs. Measurements
change with system updates and patches.

3) Remote Attestation: Attestation provides a current
platform state stored in the Integrity Measurement
Architecture (IMA) to the remote entity for platform
authentication [6][11]. IMA contain the log of software
events stored as measurements and extended to TPM's
PCRs. Attestation involves a challenge-response protocol.
A remote verifier (challenger) sends a challenge consisting
of a nonce (to thwart replay attacks), and a list of PCR
indices. The response consists of the current PCR values of
the listed PCR indices, along with a quote. Quote is a
digital signature computed within the TPM, over the
aggregate of the list of PCR values and nonce received from
the challenger, using private AIK [6]. The challenger upon
reception of the response should verify the following:
 The value of nonce in the reply
 Decrypt the quote using the public AIK obtained

through an authenticated channel
 Verify whether the list of PCR values matches those

included in the quote.
 Verify whether the PCR values itself represent an

acceptable and secure boot sequence.

IV. APPLICATIONS

There are a number of reasons why TPM chips are useful.
For example, they permit online service providers to verify
the platform authenticity through secure booting and
integrity measurement, thereby reducing online fraud and
identity theft. A website could also be verified by a
consumer if it’s a legitimate merchant site or not using
TPM technology. Hardware-based security provided by the
TPM can be used to encrypt emails, and for improving
protection for VPN, wireless networks, file encryption and
password/PIN/credentials' management. User authentication
can be provided by augmenting the device with TPM
features likes sealed storage along with normal security
practices like finger-print biometrics [5], smart cards [5]

and passphrases. Already a transition is well underway to
use TPM-based security in mobile devices which access the
restricted information in government and other networks.
Attempts to incorporate TPMs in VANETs, cloud
computing networks, grids are in progress and soon it will
be included in security sensitive devices like electronic
voting machines and biomedical equipment.

V. SCOPE AND FUTURE WORK

As mobile-phone embedded computers are gaining
popularity, with the host of interesting services that they
provide including Javascript and interactive web-services,
TPM can be deployed for controlling and monitoring these
devices. TPM can even be incorporated in tape drives and
USB drives. Full disk encryption applications like
TrueCrypt, BitLocker drive encryption can make use of
TPM to protect the keys, encrypt hard disk and provide
trusted boot through integrity measurement. TPM can be
added to network devices for authentication of requests,
before allowing access to resources. A future home network
with Internet-capable devices can be safeguarded using a
TPM this will prevent the stealing of the Home Key. The
TPM also plays a vital role in the Windows 8 operating
system by providing remote attestation by trusted third
parties. It provides a trusted boot mechanism called the
hardened UEFI BIOS standard. There is a future for TPM
in protecting credentials for authentication, where TPM
stores credentials of users for different services. Each user
will just have to remember a unique access code for a TPM-
enabled device, which can then provide the access
credentials for all the required services in complete
isolation with other user accounts. As TPM cannot mitigate
some hardware attacks, plans are underway to release
specialized hardware with more tightly integrated TPMs, as
the TPM specification does not require it to be a separate
chip.

VI. CONCLUSION

Cyberspace has entered the realm of reality; it is no
longer a science fiction. Our increased dependency in this
virtual world of networked information systems emphasizes
the need to ensure trust in these devices. Any kind of
disruption in their operation can put life, property and
economy at stake. In this paper, we have surveyed the
security threats in the cyberspace and have elaborated on
the countermeasures to those threats. Having mentioned the
countermeasures, we identified that these countermeasures
were inadequate to ensure complete trust of an end system.
As the underlying security mainly depends on the hardware,
the TCG's TPM is capable of providing a hardware-based
root of trust, which increases the overall security of the
computing devices. Further we have provided a detailed
account on the necessity of a trusted computing module and
the various application areas it can be applied to. With
various innovations taking place in the area of trusted
computing TPM still has a long way to go.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the
faculty in Karunya University towards this survey and
analysis.

Angela Francis et al | IJCSET |March 2013 | Vol 3, Issue 3, 99-103 ISSN:2231-0711

Available online @ www.ijcset.net 102

REFERENCES
[1] Nor Fatimah Bt Awang, “Trusted Computing- Opportunities &

Risks,” Collaborative Computing: Networking, Applications and
Worksharing, IEEE, 2009.

[2] Arun Viswanathan, and B. C. Neuman, “A survey of isolation
techniques,” University of Southern California, Information Sciences
Institute.

[3] François Armand, and Michel Gien, “A Practical Look at Micro-
Kernels and Virtual Machine Monitors,” Consumer Communications
and Networking Conference, IEEE, 2009.

[4] Trusted Computing Group, Incorporated, “TCG specification
architecture overview,” 2007.

[5] Keith E. Mayes and Konstantinos Markantonakis, Smart Cards,
Tokens, Security and Applications, ISBN-13: 978-0-387-72197-2,
Springer Science + Business Media, LLC, 2008.

[6] Dries Schellekens, Brecht Wyseur, and Bart Preneel, “Remote
Attestation on Legacy Operating Systems with Trusted Platform

Module,” Electronic Notes in Theoretical Computer Science 197,
Elsevier, 2008.

[7] Bryan Parno, Jonathan M. McCune, and Adrian Perrig,
Bootstrapping Trust in Modern Computers, ISBN 978-1-4614-1459-
9, Springer, 2011.

[8] Junkai Gu, and Weiyong Ji, “A secure bootstrap based on trusted
computing,” International Conference on New Trends in Information
and Service Science, IEEE, 2009.

[9] A. Sadeghi, M. Selhorst, C. Stuble, C. Wachsmann, and M. Winandy,
“TCG inside?: A note on TPM specification compliance,”
Proceedings of the first ACM workshop on Scalable trusted
computing, ACM, pp. 4756, 2006.

[10] Sundeep Bajikar, “Trusted Platform Module (TPM) based Security
on Notebook PCs White Paper,” Intel Corporation, 2002.

[11] Siani Pearson, “Trusted Computing Platforms, the Next Security
Solution,” HP Laboratories, Hewlett-Packard Company, 2002.

Angela Francis et al | IJCSET |March 2013 | Vol 3, Issue 3, 99-103 ISSN:2231-0711

Available online @ www.ijcset.net 103

