
GUI Regression Test Selection Based on Event
Interaction Graph Strategy

Bouchaib Falah,Rahima Nouasse,Yassine Laghlid

School of Science and Engineering

Al Akhawayn University
Ifrane, Morocco

Abstract-- Testing is an efficient mean for assuring the quality of
software. Nowadays, Graphical User Interfaces (GUIs) make up
a big part of applications being developed. Within the scope of
regression testing, some test cases from the original GUI are
usable and others are unusable. This paper presents an
algorithm that drops the unusable test cases and creates new test
cases based on the main differences between the two GUIs,
which are represented as uncovered edges. Furthermore, the
algorithm creates a new test suite for the modified version by
combining the usable test cases and the new created test cases.
Keywords— regression testing; reusable test cases; event
interaction Graph; flow

I. INTRODUCTION

Graphical User Interfaces (GUIs) are common in today's
most applications, ranging from networking systems and
operating software to desktop applications. In fact, a GUI is
an interface for users to send commands to and monitor the
underlying business logic behind the application. Indeed, the
quality of GUIs directly and basically influences the
reliability and usability of the entire software application. A
faulty GUI affects the quality of a software product, reducing
user satisfaction. In this context, the quality assurance of the
GUIs is indispensable. Black box testing of applications with
Graphical User Interfaces (GUIs) can be accomplished by
running sequences of events based on a model of the
Graphical User Interfaces. Test cases identify sequences of
behavior; which means, these are subsets of the specifications
of behavior for the application. Several Researches have
proved that testing a GUI from this standpoint will find errors
associated not only to the Graphical User Interface and its
source code, but to the underlying business logic of the
software system as well [10].
A modern methodology developed to acquire such a model is
to perform the application under test and analyze or rip the
handled events and connections between them. These events
can then be represented as a graph showing their flow (Event
Flow Graph) or more conceptually as a directed graph of
events interacting (Event Interaction Graph) [7]. These
graphs will be explained later in the background section.
These models are then used to merge and test sequences of
events for program validation. These models are effective at
producing short sequences of events for generating test cases;
these test cases have a length of 2 or a very small number.
Such sequences can be run automatically and quickly by
means of a test harness. If a Graphical User Interface has 6

events, where every event can be run after every other event,
then there are only 6^2 or 36 length 2 sequences and only 216
length 3 sequences [7].

Previous conducted studies have proved that longer event
sequences can detect errors that are generally missed by short
ones. These longer sequences get to more compound code in
the application. On the other hand, there are two primary
restrictions of testing Graphical User Interfaces by means of
long test sequences. First, the number of sequences increases
exponentially with length. In the 6 event Graphical GUI, if
we generate length 10 sequences, we have a possible pool of
6^10 single sequences [9]. Moreover, this procedure suffers
from the second problem which is the infeasibility of test
cases. Based on this example, we can notice that GUI
regression testing is very expensive and it projects an
exponential growth. When a specific graphical user interface
is altered, it is costly to construct new test suites for it and
ignore the old test suites which are created for the original
GUI.

Therefore, we propose a technique for repairing the
Graphical User Interfaces test suites by searching for new
feasible test cases to complete the coverage of feasible
combinations and adding them to the set of usable test cases
generated in the original GUI. This research paper makes the
following contributions: 1) Presenting an intuitive algorithm
for repairing GUI test suites. This algorithm takes a GUI and
its modified version, detects the infeasible along with the
unusable, and based on an intelligent aspect it creates new
test cases and add them to the test suite of the modified
version. 2) Conducting experiments on 2 simple examples to
investigate the feasibility of the technique.

II. RELATED WORK

In more modern work (Si Huang) [9], a novel feedback
based method for Regression Graphical User Interface testing
was proposed. This method necessitates an initial test suite to
be created and run on the program under test [10]. Feedback
from this execution is used to build a model of the Graphical
User Interface and automatically produce additional test
cases. In fact, the test suite is produced using the Event
Interaction Graph (EIG) model. The suite is run on the GUI
by means of an automatic test case tool. During test
execution, the state of GUI is composed and exploited to
automatically build an Event Semantic Interaction (ESI)
projecting connections between events [9]. This relationship

 Bouchaib Falah et al | IJCSET |March 2013 | Vol 3, Issue 3, 76-79

ISSN:2231-0711

Available online @ www.ijcset.net 76

demonstrates how a Graphical User Interface event is linked
to another in terms of how it alters the other’s running
activities. The Event Semantic Interaction associations are
used to create a new graph of the Graphical User Interface,
named the Event Semantic Interaction Graph (ESIG). Since
the test suite is created from the Event Interaction and the
Event Semantic Interaction relationship, the Event Semantic
Interaction Graph conveys specific features of the GUI. The
Event Semantic Interaction Graph is used to create new test
suites. These test suites have an indispensable property; each
event is Event Semantic Interaction-associated to its
succeeding event, which means, it was proven to impact the
succeeding event during the running of the test suite [9].

Memon [4] has conducted regression testing studies and
has proved that test cases can be repaired. When the
organization of a GUI is altered, test cases from the original
Graphical User Interface suite are either unusable or reusable
on the modified Graphical User Interface [4]. Some
algorithms were proposed to (a) automatically decide the
usable and unusable test cases from a test suite after a
Graphical User Interface modification, (b) find out the
unusable test cases that can be fixed so that they can run on
the modified GUI, and (c) use fixing transformations
techniques to repair the test cases. The difficulties of fixing
sequences were fewer in the context of regression testing
because they exploited the differences between the old and
the new Graphical User Interface [4].

Kepple [3] considered the issue of dipping the number of
regression test cases to be executed. Their technique is to
inspect the various modifications made to numerous parts of
an application. If the modifications are within source code
that is actually being run by a specific test in a regression test
suite, then that specific test should be re-executed. Otherwise,
it may be ignored, as that would lead to a very important
conclusion which is a safe state without new code being
added.

White Howard [4] used a methodology which includes the
use of test suite capture data from a capture/replay testing
tool. Based on the produced data, White could characterize a
test suite for a provided Graphical User Interface using a call
graph. This later is mainly based on scores that represent
frequent paths selected in diverse test cases which are
principally the critical paths. Therefore, these critical paths
become indispensable for selecting which unit tests to
execute.

III. BACKGROUND: EVENT FLOW GRAPH (EFG)/

EVENT INTERACTION GRAPH (EIG):
An Event Flow Graph (EFG) conveys all potential event

sequences that may be run on a Graphical User Interface [9].
It is a directed graph with nodes and edges that characterize a
connection between events. An edge from node a to another
node b means that the event represented by b may be
executed straight away after the event represented by a of
course along some implementation path. This association is
named follows, which means, event b follows event a. The
Event Flow Graph is modeled by a group of nodes N

indicating events in the Graphical User Interface and a group
E of ordered pairs (a, b), where {a, b} belongs to N,
representing the directed edges in the Event Flow Graph; (a,
v) belongs to E if b follows a [9].

Figure 1(a) illustrates a Graphical User Interface that
consists of 4 events, New, Save, SaveAll, and File. Figure
1(b) shows the GUI’s Event Flow Graph; the four nodes
stand for the four events; the edges correspond to the follows
relationships. In this Event Flow Graph, the event Save All
follows File [9].

Figure 1. (a) A Simple GUI, (b) Its EFG, (c) Its EIG

Event interaction graph (EIG) nodes, on the other hand,

do not symbolize events to open or close applications menus
or windows menus. The output is a more solid, and thus more
efficient, Graphical User Interface model. An Event Flow
Graph can be automatically translated into an Event
Interaction Graph by using graph rewriting conventions.
Figure 1(c) illustrates the corresponding Event Interaction
Graph. We can see that the Event Interaction Graph does not
include the menu opening File event. The model used to
obtain this Event Interaction Graph was to (a) remove File
because it is a menu open event, (b) for all residual events a
put back each edge (a,File) with edge (a, b) for each incident
of edge (File, b), and (c) for all b, remove all edges (File, b).
The Graphical User Interface’s Event Interaction Graph is
fully linked with 3 nodes representing the 3 events [9].

IV. INNOVATIVE APPROACH

Let’s define some terminologies that will be used in our
approach.
Definition1: A node in a graph represents the interaction of a
user with the system. The class node is composed of outgoing
edges and incoming edges in addition to a Boolean variable
Visited to make sure the node is not visited twice.
Definition2: an Edge connects two nodes. The first one is the
source node and the second is the target node in addition to
the label of the edge representing the relationship between the
source node and the target node.
Definition3: a graph is basically a set of nodes with the
connecting nodes.

Our approach consists of implementing a reusability
algorithm that minimizes the cost and the time spent to
generate new test cases for the modified version in regression
testing. The test case reusability algorithm consists of
comparing two event interaction graphs and come up with the

 Bouchaib Falah et al | IJCSET |March 2013 | Vol 3, Issue 3, 76-79 ISSN:2231-0711

Available online @ www.ijcset.net 77

reusable test cases that can be rerun for the modified version
in regression testing.
If the algorithm successfully matches every node and the set
of outgoing edges of each node specified by a test case on the
new model, then the corresponding test case is deemed
reusable; otherwise, it is deemed as unfeasible.
The algorithm also labels all the edges covered by reusable
test cases. After that, it builds a sub-graph containing all the
skipped edges. It will also add outgoing edges of a choice
node if any of them have been skipped. Finally, it generates
new test cases from the sub-graph to achieve edge coverage.
This algorithm is a technique that not only identifies reusable
test cases and generates new test cases but also selects test
cases from a test suite.

V. ALGORITHMS (PSEUDO-CODE)
The algorithm operates on two events interaction graphs

as follows:
 The outgoing edges of the choice node in test case graphs

should match all outgoing edges of the choice node in the
new model graph.

 Check whether the number of outgoing edges for the
current node agrees in the two graphs.

 If so, perform a pair-wise match of all outgoing edges in
the two graphs.

 If any outgoing edge fails to match, the test case is
identified as unfeasible. Note that if the label of a node is
modified then the algorithm considers it as o modified.
For example in figure 9 a node called file in paint has
been changed to home in figure 10 even if the node is
basically the same the test case is identified as unfeasible.

 When all the outgoing edges of a choice node are
matched successfully, the algorithm continues to match
the respective target nodes of all the outgoing edges

 When all the respective target nodes and their
descendants in the test case graph match the new model
graph, the whole test case is identified as reusable. From
figure 6 and 7, we can see that the test case sequence
<File, open, search, ok> and test case sequence <file,
save> are the same in the modified version as well as in
the original one. Thus those test cases will be reusable.

 Whenever two edges match successfully, they are added
to the set of covered Edges.

 The algorithm then continues to recursively match the
target node of the outgoing edge in the model graph with
the target node of the outgoing edge in the test case graph.

 If two target nodes and their descendants match
recursively, the option node is tagged as a match.

 However, if the two target nodes or any of their
descendants fail to match, the algorithm will continue to
try and match the outgoing edge of the node in the test
case graph with other outgoing edges of the node in the
new model graph. Taking the case of Paint, in figure 6
and 7, the algorithm didn’t identify a match. In this case
all the test cases will be generated for the modified
version.

Figure 6. Original Event Interaction Graph for Paint

Figure 7. Modified Event Interaction Graph for Paint

 Any falsely remembered edges during the trial are

removed from the covered Edges set. Finally, if the
algorithm cannot match any of the outgoing edges of the
model graph, the node is marked as a non-match, which
means that the test case is unfeasible. Figure 8 shows
unfeasible test cases which are identified in the edges:
<File, Cut>, <File, Copy>, <File, Paste > , <Cut, Copy>,
<Cut, Paste>, <Paste, Copy>

Figure 8. Original Event Interaction Graph for Word Pad

A. New Test Cases Generation
Using the test case reusability algorithm, we have

partitioned the test suite for the original model into reusable
and unfeasible test cases. In addition, we have logged all the
edges covered by reusable test cases. As we want to achieve
edge coverage, we need a test case augmentation algorithm,
which generates new test cases to cover all the skipped edges.
 It starts by finding all the skipped edges of the new model

program graph based on all the edges covered by reusable
test cases. From figure 9 defines the skipped edges :
<edit,cut>, <edit,copy>, <edit,paste>, <edit,file>.

 Bouchaib Falah et al | IJCSET |March 2013 | Vol 3, Issue 3, 76-79 ISSN:2231-0711

Available online @ www.ijcset.net 78

Figure 9. Modified Event Interaction Graph for Word Pad

 To cover the skipped edges with new test cases
effectively, we first build a shortest path from the initial
node of the model graph to the source node of each
skipped edge. After that, we combine all the shortest
paths to form a subgraph. In our example, the shortest
paths are: Edit->cut, Edit->copy, Edit->paste, Edit>File

 We also add each skipped edge to the subgraph as shown
in figure 10. Finally, we split the subgraph into new test
case graphs in test normal form and generate the test
cases from the new test case graphs to achieve edge
coverage.

Figure 10. Sub-graph form shortest path and skipped edges

Our algorithm merges the original test case graphs of newly
generated test cases and reusable test cases to form a test case
graph for the modified model.

B. Results Analysis

Given a test case graph with m edges and the model
program graph with n edges, in the worst case, each edge of
the test case is compared with every edge of the model
program graph, and so the complexity of the test case
augmentation algorithm is O(nm). It should be emphasized
that although there may be loops within a test case graph, our
technique will not revisit the same node in the test case graph.
As a result, the complexity of our algorithm is proportional to
the size of the test case graph.

VI. CONCLUSION AND FUTURE WORK

This paper presents a new regression testing algorithm
that consist of test case reusability concept that minimizes the
cost and the time spent to generate new test cases for the
modified version in regression testing. In this work, we first
explain the causes that may lead to infeasibility of test cases.
We then present an intuitive algorithm that takes a GUI and
its modified version, detects the infeasible along with the
unusable, and based on an intelligent aspect it creates new
test cases and add them to the test suite of the modified
version. Finally, we experiment with this algorithm on a set
of one simple example in order to check if this algorithm is
feasible or not.

A possible future work will be to use these findings that
we found in our study and continue the process to repair the
found unfeasible test cases. Another possible future direction
is to create a framework in which this proposed algorithm is
integrated. This later will automatically detects unfeasible test
cases and it will generate new test suite for the modified
version of software.

VII. REFERENCES

[1] Ball T. On the limit of control flow analysis for regression test
selection. Proceedings of the 1998 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 1998), ACM
SIGSOFT Software Engineering Notes 1998; 23(2):134–142.

[2] BEIZER, B. 1990. Software Testing Techniques, 2nd ed. Van Nostrand
Reinhold, New York, NY.

[3] KEPPLE, L. R. 1994. The black art of GUI testing. Dr. Dobb’s J. Softw.
Tools 19, 2 (Feb.), 40.

[4] L. White. Regression testing of GUI event interactions. In Proceedings of
the International Conference on Software Maintenance, pages 350–358,
Washington, Nov.4–8 1996.

[5] MEMON, A., BANERJEE, I., AND NAGARAJAN, A. 2003. GUI
ripping: Reverse engineering of graphical user interfaces for testing. In
WCRE ’03: Proceedings of the 10th Working Conference on Reverse
Engineering. IEEE Computer Society Press, Los Alamitos, CA, 260–
269.

[6] MEMON, A., NAGARAJAN, A., AND XIE, Q. 2005. Automating
regression testing for evolving GUI software. J. Softw. Maint. Evolut.
Res. Pract. 17, 1, 27–64.

[7] MEMON, A. M. 2001. A comprehensive framework for testing graphical
user interfaces. Ph.D. dissertation, Department of Computer Science,
University of Pittsburgh, Pittsburgh, PA.

 [8] Memon AM, Soffa ML. Regression testing of GUIs. In Proceedings of
the Joint 9th European Software Engineering Conference and 11th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC 2003/FSE-11), ACM SIGSOFT Software
Engineering Notes 2008; 28(5):1-36.

 [9] X. Yuan, M. B. Cohen, and A. M. Memon, “GUI interactiontesting:
Incorporating event context,” IEEE Transactions on Software
Engineering, 2010, to appear.

 Bouchaib Falah et al | IJCSET |March 2013 | Vol 3, Issue 3, 76-79 ISSN:2231-0711

Available online @ www.ijcset.net 79

