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Abstract— The inherent differences between secret-based 
authentication (such as passwords and PINs) and biometric 
authentication have left gaps in the credibility of biometrics. 
These gaps are due, in large part, to the inability to adequately 
cross-compare the two types of authentication. This paper 
provides a comparison between the two types of authentication 
by equating biometric entropy in the same way entropy of 
secrets are represented. Similar to the method used by Ratha, 
Connell, and Bolle [1], the x and y dimensions of the 
fingerprints were examined to determine all possible locations 
of minutiae. These locations were then examined based on the 
observed probability of minutiae occurring in each of the 
designated locations. The results of this work show statistically 
significant differences in the frequencies and probabilities of 
occurrence for minutiae location, type, and angle, across all 
possible minutiae locations. These components were applied to 
Shannon’s Information Theory [2] to determine the entropy of 
fingerprint biometrics, which was estimated to be equivalent 
to an 8.3-character, randomly chosen password.   
 
Keywords — Fingerprint recognition; authentication methods; 
entropy 

I. INTRODUCTION 
Secret-based authentication mechanisms are some of the 

most widely used authentication mechanisms because of 
their very low cost to initially implement and the ability to 
be easily transported across multiple computing platforms. 
The established nature of secret-based authentication (such 
as passwords and PINs) has propelled these mechanisms to 
be the “de facto” standard for user authentication. Secret-
based authentication ultimately translates into strings of 
information represented as input characters entered into the 
authentication system. The process of entering 
alphanumeric characters can be easily accomplished using a 
keyboard or keypad. Such devices have a definitive number 
of possible values that are available to the user. In the case 
of passwords, this is a 94-character alphabet, and, for PINs, 
this is a 10-character alphabet.  

In biometric-based authentication, there is a tight bond 
between the authentication credential and the identity of the 
individual user. The inherent properties of this tight bond 
are described by O’Gorman [3] who states, “A biometric 
purports to inextricably link the authenticator to its owner, 
something passwords and tokens cannot do, since they can 
be lent or stolen” (p.4). The degree of binding between the 
user’s identity and the biometric sample presented by that 
user varies depending upon which biometric modality is 
being evaluated. However, one common theme is that the 
biometric sample is a digital string of information derived 
from the biometric characteristic provided by the user.  

The inability to quantify the number of possible values in 
the biometric sample is currently one of the major 

criticisms of biometrics, when trying to make cross-
comparisons to secret-based authentication. According to 
O’Gorman [3], “A biometric doesn’t have a fixed number 
of possible values. Theoretically, the key space of 
biometrics such as fingerprints is unlimited because if you 
could measure the continuous signal with infinite precision, 
no two would be the same” (p. 15).  

Entropy and strength of function are two concepts that 
have been the focal points in much discussion in recent 
years with regards to authentication mechanisms and, 
ultimately, to security systems. According to Shannon [2] 
entropy is defined to be the uncertainty of randomness of a 
discrete message space or string of information. The 
starting point for determining entropy is establishing the 
key space or the total number of possible values of keys in a 
cryptographic algorithm or other security measure, such as 
a password [4].  

Key space, for both passwords and biometrics, is limited 
to the parameters of the respective systems. For instance, 
the length of a password credential could be as short as one 
or two characters or as long as hundreds of characters. In 
reality, the password length lies somewhere in between 
those values, normally around six or eight characters 
depending on the constraints of the system. Similarly, a 
biometric sample is not measured in a continuous space; 
rather, it is measured discretely. An example of a discrete 
measurement is a fingerprint image.  

Strength of function is a term that is used to quantify the 
strength of an authentication mechanism (i.e., how difficult 
is a successful attack) taking into consideration many 
environmental factors about the system such as 
confidentiality (secrecy), integrity, and availability of the 
authentication credential.  

According to O’Gorman [3], “For a biometric, the 
probability of falsely matching is analogous to the 
probability of succeeding in a brute force password 
guessing attack. One has to be careful in comparing kp (key 
space for passwords) and kb (key space for biometrics) The 
kb is based on an experimentally determined value of FMR” 
(p.15). 

Statham [5] uses and expands the concept of entropy in 
breaking down the strength of authentication mechanisms. 
He suggests the concept of “real” entropy in determining 
relative strengths of function and its relationship to binding 
strength, which is the confidence that a person presenting 
the authentication credential is actually who they claim to 
be. Therefore, real entropy consists of three components: 
raw entropy, technical strength, and human/procedural 
strength. Raw entropy is the ability of the mechanism to 
distinguish between individuals. This is the exploitation 
avenue most used for casual (low or zero-effort) attacks. 
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Technical strength relates to exhaustion attacks against an 
authentication mechanism that exploit the vulnerabilities of 
that mechanism, as well as indirect attacks against the 
supporting infrastructure such as transmission paths or 
databases. Human or procedural strength attacks concern 
social engineering, “easy” secrets, failure to guard secrets, 
and corrupt users or administrators. This type of attack 
reduces effective entropy, sometimes to zero. While 
O’Gorman [3] and Statham [5] both address the entropy of 
authentication mechanisms from slightly different 
perspectives, it should be noted that in all cases, the 
discussion of entropy is limited to a functional error rate of 
the system. However, until now, a thorough examination 
into the entropy of the authentication information from 
Bishop’s model [6] for biometrics has not been conducted.  

In Bishop’s model, the authentication process contains 
five sets of information (A, C, F, L, S); where the set A of 
authentication information is the set of specific information 
with which the entities prove their identities. Set C is 
complementary information that the system stores and uses 
to validate the authentication information. The 
complementation functions of Set F generate the 
complementary information from the authentication 
information. Set L of authentication functions verifies the 
identity, and set S of selection functions enables an entity to 
create or alter the authentication and complementary 
information in A or C.  

One of the most well-known works that addressed 
biometric entropy from the perspective of key space was 
done by Ratha [1]. Their approach focused on a 
hypothetical brute force attack against minutiae based 
fingerprints. The first step in this process was to define the 
total number of possible sites at which minutiae could lie in 
a fingerprint image, taking into consideration the following: 
• The dimensions of the image in pixels 
• The number of pixels standard minutiae would 

consume 
• The number of orientations allowed for ridge angle of 

the minutiae points 
• The number of minutiae points in a reference template 

that is attempting to be matched against a new 
fingerprint image 

Using the parameters noted above, a linear relationship 
was made between the amount of minutiae required to be 
matched and the amount of information represented in bits 
contained in the fingerprint. Based on this method, a 
fingerprint requiring 25 minutiae points to be matched 
would have 82 bits of information. According to that study, 
this equates to a 16-character randomly generated password. 
Our study builds on that work by determining the 
probabilities of occurrence for individual potential minutiae 
locations. To equate entropy of biometrics to those secrets 
based on probability of potential values, the principles of 
Shannon’s Information Theory were applied to minutiae 
points in fingerprints. Shannon’s equation for determining 
entropy as values of H in bits based on a single analyzed 
variable (X) with a probability value (P) is shown below [2]. 

 

𝐻(𝑋) = ∑𝑥 P(x) 𝑙𝑜𝑔𝑥 �
1

𝑃(𝑥)
� 

 

In the case that there are two variables being observed, 
the base equation is expanded to represent the concept of 
Joint Entropy. The probability value (P) is the probability of 
both variables occurring jointly [2].  

 

𝐻(𝑋,𝑌) = ∑𝑥∑𝑦 P(x,y) 𝑙𝑜𝑔2 �
1

𝑃(𝑥,𝑦)
� 

 
The joint entropy equation is used for this study to allow 

for each possible minutiae location to be examined, as well 
as the combination of minutiae angle and minutiae type at a 
given location. 

II. METHODOLOGY 
A.  Data Collection 

The variables of fingerprint minutiae were analyzed on 
the basis of location, type, and orientation angle for every 
minutia in all usable fingerprint images collected. The 
location was represented as a coordinate (x, y) on a two 
dimensional pixel plane of the fingerprint image.  

The database comprised 251 subjects, who each placed 
eight fingers (left index, left middle, left ring, left little, 
right index, right middle, right ring, right little) three times 
onto the fingerprint sensor to produce 6024 images (251 x 8 
x 3 = 6024).  Prior to the data analysis, the dataset was 
reviewed for image acceptability. This process revealed that 
308 images were either completely white or completely 
black, and consequently, these images were manually 
removed from the dataset. These problematic images could 
be attributed to the automated timing window between each 
image captured and to the fact that the subject did not 
receive any feedback about each individual placement. In 
total, 5716 images were used for the analysis. These images 
were processed through Neurotechnology VeriFinger 4.2 
SDK in conjunction with Microsoft Visual Studio .NET 
2005 Application Development Suite. VeriFinger 4.2 
minutiae extraction complies with ANSI-INCITS 378-2004 
Finger Minutiae Format for Data Interchange [7].  

The dimensions of all images in the database were 248 
by 292 pixels, which created a total of 72,416 total possible 
pixel locations for a single minutiae point. Minutiae type 
was represented as one of two possibilities, either a ridge 
ending or ridge bifurcation. The minutiae orientation angles 
for a single point can range from 0 to 360 degrees, with 0° 
being the direction of a minutiae pointing directly to the top 
of the image, and 180° pointing directly to the bottom of the 
image. The use of four angle allocations was based on the 
same allocations in the previous work by Ratha [1].  The 
four possible quadrant values starting counterclockwise (0°-
89°, 90°-179°, 280°-269°, and 270°-359°) are shown below. 

 

 
Fig 1: Minutiae Orientation Angle Quadrant Assignments 
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For the purposes of statistical analysis, the two-
dimensional pixel plane was segmented into a matrix of 25 
groups. These groups were created by dividing both the x 
and y dimensions into five segments. The numbering of the 
groups originated in the upper left corner of the image place, 
which is the origin of the x and y coordinates used by 
VeriFinger. The center group (13) is shown in dark font, 
adjacent groups are highlighted in italics, and the remaining 
groups depicting the outer edges have no special 
highlighting.  The following figure shows the group 
numbering from top left to bottom right, the x dimension in 
pixels and the y dimension in pixels for each group. 
 

 
Fig 2: Group Numbering, x dimension, y dimension. 

 
Each group has a calculated surface area which was 

designed to be as similar as possible so that groups could be 
evaluated on the frequency of minutiae presence.  The 
surface area equation is shown below: 

 
𝑥 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 × 𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 

 
The surface area (in pixels) for each group is shown 

below: 

 
 

Fig 3: Surface area (in pixels) for each group 
 
The first hypothesis examined frequencies of occurrence 

for minutiae points to determine whether they are equally 
likely to appear in the center of the images as opposed to 
the outer edges and corners. The test results show that all 
groups are statistically significant compared to the center 
group (13) based on the minutiae frequency of occurrence. 
This finding is important when considering how difficult it 
would be to predict where minutiae would occur. Related to 
entropy, minutiae in locations that are less common provide 
more entropy than minutiae in locations that are more 
common across all samples.  

The second hypothesis examined minutiae types (either 
ridge ending or ridge bifurcation) to determine if they are 
equally likely to appear in the center of the images as 
opposed to the outer edges and corners. 

The results for this hypothesis show a statistically 
significant difference in all but the last group, which is 
adjacent to the center group (13). The numbering and 
location of the groups, as defined previously, and their 
statistical significance are shown in Table I. 

 

 
TABLE I 

HYPOTHESIS 2 EST AND P VALUES BY GROUP 

 Ending Bifurcation    

Ending  Est P Est P 
Intercept  -7.8216 <.0001 -8.1191 <.0001 
Group 21 -1.9627 <.0001 -2.1211 <.0001 
Group 25 -1.8495 <.0001 -1.9584 <.0001 
Group 1 -1.6628 <.0001 -1.9784 <.0001 
Group 5 -1.6400 <.0001 -1.9388 <.0001 
Group 22 -1.0527 <.0001 -1.2428 <.0001 
Group 24 -0.9015 <.0001 -1.2166 <.0001 
Group 2 -0.8849 <.0001 -1.1517 <.0001 
Group 23 -0.8738 <.0001 -1.0593 <.0001 
Group 4 -0.8278 <.0001 -1.0534 <.0001 
Group 3 -0.7533 <.0001 -0.9392 <.0001 
Group 16 -0.6811 <.0001 -1.0849 <.0001 
Group 6 -0.6258 <.0001 -0.9547 <.0001 
Group 11 -0.4703 <.0001 -0.8432 <.0001 
Group 20 -0.4905 <.0001 -0.6814 <.0001 
Group 10 -0.4977 <.0001 -0.6431 <.0001 
Group 15 -0.3412 <.0001 -0.5331 <.0001 
Group 17 -0.2717 <.0001 -0.4129 <.0001 
Group 7 -0.2110 <.0001 -0.3494 <.0001 
Group 18 -0.1728 <.0001 -0.2380 <.0001 
Group 8 -0.1461 <.0001 -0.2066 <.0001 
Group 19 -0.1169 <.0001 -0.2447 <.0001 
Group 12 -0.1270 <.0001 -0.2031 <.0001 
Group 9 -0.1055 <.0001 -0.2054 <.0001 
Group 14 -0.0041 0.8146 -0.0612 0.0028 

 

 
An important finding from hypothesis 2 suggests that the 

ridge endings and bifurcations occur at different frequencies 
depending on the location the image. In particular, ridge 
endings are more prevalent towards the outer edges of the 
fingerprint image, whereas ridge bifurcations are more 
prevalent in the center of the image. A possible rationale for 
this could be that all the ridges start from a common point 
in the center of the image and branch out from the center, 
which results in a higher rate of bifurcations. As the 
multiple ridges created from these bifurcations approach the 
outer edges of the image, the finger starts to lose contact 
with the sensor. Subsequently, a ridge ending may appear in 
the fingerprint image even through the actual ridge is not 
exhibiting a true ridge ending.  

The third hypothesis examined minutiae orientation 
angles (separated into four equal quadrants between 0° and 
360°) to determine if the minutiae orientation angles are 
equally likely to appear in the center of the image as 
opposed to the outer edges and corners. The results showed 
statistically significant differences for all but four groups. 
The groups not showing statistically significant differences 
were group 18 for angle 1, group 16 for angle 2, and groups 
2 and 3 for angle 4. The numbering and location of the 
groups are shown below: 

 

 
Fig 4: Numbering and location of groups 
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Angles one and three are nearly identical in the 
frequencies of occurrences, and the same can be seen for 
angles two and four. This is because when considering a 
ridge as a line in a 360° space, the direction forward and 
direction backwards is a 180° degree difference. This 
reflects these similarities because angles one and three have 
180 degrees of separation, as do angles two and four.  
B.  Entropy Calculations 

The first step in calculating the entropy was to define the 
key space, which is the total number of possible 
combinations of minutiae occurrence, type, and orientation 
angle. To determine this total number of possible values, 
the space was categorized into two main parameters. The 
first was the possible pixel locations on the two-
dimensional plane and is denoted by L, which is the surface 
area of the image with dimensions x and y. The second 
parameter was the possible characteristics about a minutiae 
point and is denoted by C, which comprises the minutiae 
type and minutiae orientation angle. L and C together are 
the basis for determining the key space for fingerprint 
images. Based on the definition of key space, the total 
number of possible values of keys in a cryptographic 
algorithm or other security measure such as a password, the 
generic equation for key space used in this study is:  

Σ𝐿 = Σ𝑋Σ𝑌 
 

Σ𝐶 = Σ𝑇Σ𝐷 
 

𝐾𝑒𝑦𝑠𝑝𝑎𝑐𝑒 = Σ𝐿Σ𝐶 
These parameters of L (pixel locations) and C (minutiae 

characteristics) are the same two parameters used to 
calculate joint entropy. The x dimension of 248 pixels and 
the y dimension of 292 pixels provide 72,416 possible 
values for L. For an individual point, type is one of two 
values (either a ridge ending or ridge bifurcation); and angle 
is one of four options (either angle 1, 2, 3, or 4). These 
options provide eight possible values within C. Therefore, 
the key space for a single image is calculated using the 
following values below, which take into account all 
possible values for the x dimension (x), y dimension (y), 
type (t), and angle (d).  
 

Σ1
𝐿

74216 = Σ1
𝑋

248Σ1
𝑌

292 
 

Σ1
𝐶

8 = Σ1
𝑇

2Σ1
𝐷

4  
 

579,328 = Σ1
𝐿

74216Σ1
𝐶

8 
 

 
Fig 5: differences in frequency of occurrence for all of the 72,416 pixels in 

a two-dimensional image plane 

Figure 5 shows the differences in frequency of 
occurrence for all of the 72,416 pixels in a two-dimensional 
image plane. Using the color-coded scale to the right of the 
diagram, the frequency of occurrence for minutiae is higher 
in the pixels towards the center of the image as opposed to 
the corner and outer edges. The combined probabilities for 
angles and types are shown below. 

 
The joint entropy equation is shown below: 

 

𝐻(𝐿,𝐶) = Σ1
𝐿

74216Σ1
𝐶

8 P(l,c) 𝑙𝑜𝑔2 �
1

𝑃(𝑙,𝑐)
� 

 
The result of the joint entropy equation is 55.02 bits of 

entropy for the two dimensional plane across the entire 
dataset. The average number of minutiae present in each 
image was 28.02. Therefore, dividing the entropy of 55.02 
bits by the average minutiae of 28.02, each minutia 
provides 1.963 bits of entropy. Table II illustrates the 
calculated entropy in bits and the conversion to the 
estimated length of a secret-based authentication credential. 
This is analogous to table A.1 from as shown in NIST 
SP800-63 - Electronic Guidelines for Federal Agencies [8] 
which used character length to estimate entropy.  Figure 6 
represents a similar linear relationship to the one presented 
by Ratha [1], however, the table presented above goes a 
step further to convert the bit strength to an estimated 
character length for a randomly chosen password, user-
chosen password, or user-chosen PIN using the NIST 
methodology.  

 
 TABLE II 

ESTIMATED SECRET LENGTH 

 User Chosen Randomly Chosen    

  94 char Alphabet 
 

 10 
char 
Alpha 

94 char 
Alpha 

Minutiae 
Present 

Bits No 
checks 

Dict. 
Checks 

Dict & 
Complex
ity 
Checks 

   

15 29 15 13 8 24 8.9 4.5 
20 39 23 23 17 34 11.9 5.9 
25 49 33 33 27 44 14.9 7.4 
28.02 55 39 39 33 50 16.7 8.3 
30 59 43 43 37 54 17.8 8.9 
35 69 53 53 47 64 20.8 10.4 

 

 

 
Fig 6:  minutiae matched and character length relationship 
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The bottom line represents the randomly chosen 
password; the middle line represents the user-chosen 
password, and the top line is the user-chosen PIN. A 
randomly chosen password was used based on the rationale 
that while users can choose the nature and order of the 
characters in their password, users have no discretionary 
ability to choose the nature and order of the minutiae on 
their fingerprint. Using the average number of 28.02 
minutiae present in a single image from the dataset, an 
equivalent randomly chosen password would be 8.3 
characters in length. A user-chosen password using the 
same number of minutiae would be 33 characters in length. 
A user-chosen PIN would be 50 characters in length. Figure 
6 shows that the randomly generated password does not 
increase in estimated character length at the same rate as the 
user-chosen password and PIN. The rationale behind this is 
that users are not likely to choose all of the possible values 
equally in the key space (94-character alphabet for 
passwords, 10-character alphabet for PINs). Therefore, each 
additional character in the estimated length for the 
password or PIN accounts for less entropy than if the values 
were chosen at random. A greater number of estimated 
characters are needed to achieve the same amount of 
entropy in a user-chosen password or PIN compared to a 
randomly chosen password.  

The results for hypothesis four showed a lower 
calculated value of entropy in this study compared to that of 
previous work. However, it can be said that the entropy 
value calculated in this study is more precise because it is 
based on observed frequencies of occurrences of minutiae. 
Furthermore, the methodology for estimating character 
lengths for passwords and PINs developed by NIST was 
used to cross-compare the number of minutiae present and 
the estimated password and PIN character length. Due to 
their relation with the U.S. National Standards and 
government initiatives such as e-government, the NIST 
methodology provides further credibility to the results of 
this study.  
C.  Summary of Findings 

Almost all of the groups tested had statistically 
significant results, which led to the rejection of the null 
hypothesis for hypotheses one through three. In total, 170 
of the groups tested were statistically significant. These 
results show that, overall, the variables of minutiae 
occurrence, type, and angles are statistically significant 
97.14% of the time based on location in the two-
dimensional image plane.  

III.  CONCLUSIONS 
As interest in biometrics for user authentication in both 
physical and logical access control environments grows, it 
is necessary to understand how biometrics relates to 
traditional authentication principles. This is important for 
not only biometric system developers and integrators, but 
also the end user of the system. Correlating Bishop’s 
Authentication Model to that of the Components of the 
General Biometric System is one instance of accomplishing 
this task. The considerations for implementing biometric 
authentication are often driven by cost. Additionally, a 
comparative analysis of authentication mechanism 
effectiveness must also be contemplated. To do this, a 
straightforward comparison of secrets and biometrics is 
needed. Currently, means of comparing authentication 
mechanisms based on fundamentals are scarce, which has 
even led to the exclusion of biometrics for some 
environments, as shown in NIST SP800-63 [8], which 
stated, “Biometrics do not constitute secrets suitable for use 
in the conventional remote authentication protocols 
addressed in this document” (p.2). This work observed the 
frequency of occurrence of minutiae within a two-
dimensional plane and utilized the concepts of Information 
Theory [2]. The result was a representation of biometric 
entropy in the same way entropy of secrets is represented. 
This allowed for analysis of the relationship between 
fingerprint entropy and password and PIN entropy 
according to NIST SP800-63 Appendix A.1. 
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