
Secure Messaging System using ZKP

Mahmood Khalel Ibrahem, Tamara Alaa M. Ali

Networks Engineering Department, College of Information

Engineering, Al-Nahrain University, Baghdad, Iraq

Abstract- In this paper, a web-based messaging system is
presented with implementing a new version of Diffie-Hellman
protocol, to insure mutual authentication between client and
server along with exchanging key securely without sending it
through the channel.

The proposed messaging system provides the major security
services which are Authenticity, Integrity and Confidentiality,
by implementing Zero Knowledge Proof (ZKP) and password
authentication for authenticity, Hmac for integrity and AES for
Confidentiality.

Keywords—Security services (Authenticity, Integrity and
Confidentiality), Zero Knowledge Protocol, Diffie-Hellman, AES,
Hmac .

I. INTRODUCTION

Websites are now the number one target of choice for
attacks by hackers. Their attacks have moved from the well-
defended network layer to the more accessible Web
application layer that people use every day to manage their
lives and transact business. The sites where consumers shop,
bank, manage their healthcare, pay insurance, book travel and
apply to college are now under a near-constant barrage of
attacks intent upon stealing their credit card numbers and
other personal private information [1].

II. WEB SECURITY CONSIDERATIONS

The World Wide Web is fundamentally a client/server
application running over the Internet and TCP/IP intranets.
Web presents new challenges not generally appreciated in the
context of computer and network security:

A. The Internet is two way. The Web is vulnerable to attacks
on the Web servers over the Internet.

B. The Web is increasingly serving as a highly visible outlet
for corporate and product information and as the platform for
business transactions.

C. Although Web browsers are very easy to use, Web servers
are relatively easy to configure and manage, and Web content
is increasingly easy to develop, the underlying software is
extraordinarily complex. This complex software may hide
many potential security flaws.

D. A Web server can be exploited as a launching pad into the
corporation's or agency's entire computer complex. Once the
Web server is subverted, an attacker may be able to gain

access to data and systems not part of the Web itself but
connected to the server at the local site.

E. Casual and untrained (in security matters) users are
common clients for Web-based services. Such users are not
necessarily aware of the security risks that exist and do
not have the tools or knowledge to take effective
countermeasures [2].

III. ZERO KNOWLEDGE AUTHENTICATION

Zero knowledge authentication protocols are one of the
most trusted authentication protocols. In zero knowledge
authentications, the claimant does not reveal anything that
might endanger the confidentiality of the secret. The claimant
proves to the verifier that he/she knows a secret, without
revealing it. The interactions are so designed that they cannot
lead to revealing or guessing the secret. After exchanging
messages, the verifier only know that the claimant does or
does not have the secret, nothing more. The result is a yes/no
situation, just a single bit of information [3].

“Proof system”, is an interactive protocol by which one
party (called the prover) wishes to convince another party
(called the verifier) that a given statement is true. In ZKP, the
prover proves that he/she knows a secret without revealing it.

ZKP model of computation defined as an interactive
proof system (P,V), where P is a prover and V is a verifier.
Protocol (P,V) is for proving a language membership
statement for a language over {0.1}. Let L be a language over
{0,1}*, for a membership instance x∈L, P and V must share
the common input x, Proof instance is denoted as (P,V)(x)
[4].

P and V are linked by a communication channel over
which they exchange a sequence, called proof transcript a1,
b1, a2, b2... an, bn. Proof transcript interleaves prover’s
transcript and verifier’s transcript. Each element ai, bi
exchanged is bounded by polynomial in |x| and Proof instance
(P,V)(x) must terminate in polynomial time in |x|. Upon
completing the interaction, the output of the protocol should
be of form (P,V)(x)∈{Accept, Reject} representing V’s
acceptance or rejection of P’s claim that x∈L [5].

Three properties are expected from a zero-knowledge
proof [6]:

A. Completeness: An interactive proof (protocol) is complete
if, given an honest prover and an honest verifier (that is,
one following the protocol properly), the protocol

Mahmood Khalel Ibrahem et al | IJCSET | November 2013 | Vol 3, Issue 11, 388-393 www.ijcset.net | ISSN:2231-0711

388

succeeds with overwhelming probability (i.e., the verifier
accepts the prover’s claim).

B. Soundness: An interactive proof (protocol) is sound if
there exists an expected polynomial time algorithm M
with the following property: if a dishonest prover
(impersonating P) can with non-negligible probability
successfully execute the protocol with V, then M can be
used to extract from this prover knowledge (essentially
equivalent to P’s secret) which with overwhelming
probability allows successful subsequent protocol
executions.

C. Zero-Knowledge: a protocol has zero-knowledge property
if it is simulate-able in the following sense; there exists an
expected polynomial-time algorithm (simulator) which
can produce, upon input of the assertion(s) to be proven
but without interacting with the real prover, transcripts
indistinguishable from those resulting from interaction
with the real prover.

IV. USED ZKP PROTOCOL

The Used ZKP based on Diffie-Hellman key exchange
algorithm in the sense that both parties (the prover and the
verifier) exchange non secret information without revealing
secret information to get one identical secret key. This means
that the prover can prove to the verifier that he knows the
secret [7].

The verifier needs to prove to the prover that he is honest
by sending his reply R1 together with encrypted R1, then the
verifier decrypt R1' by his key and match R1 and R1', if they
matched then the verifier is honest. The prover (Alice) needs
to prove to the verifier (Bob) that she knows a secret by
calculating the key (K) and resend Bob’s reply (R2) to the
verifier (Bob) encrypted with the generated secret key (K).
Bob will encrypt his own reply (R2) with the generated secret
key (K) and match the two encrypted information, if matched
then Alice is verified, otherwise it is rejected.

The used algorithm has been developed to resists the
man-in-the-middle attack. For more details refer to [7]. Figure
1 shows the procedure of the used ZKP protocol. The protocol
performed as follows:

1. Alice (the prover) chooses a large random number x, such that

0< x < p and calculate R1 = gx mod p.
2. Alice sends R1 to Bob.
3. Bob (the verifier) chooses another large random number y, such

that 0< y < p and calculate R2 = gy mod p, KBob= (R1)
y mod p,

and C1 = E(K Bob, R2).
4. Bob sends (R2 | C1) to Alice.
5. Alice, calculates KAlice = (R2)

xmod p, decrypt (R2' = D(KAlice,
C1)) and verify (R2 = R2') . If they matched then she proceeds;
otherwise the verifier is dishonest.

6. Alice encrypt (C2 = E(KAlice, R1|R2) and send it to Bob.
7. Bob decrypt C2 to get R1' and R2'
8. Bob verify (R1 = R1'); if they are equal then Alice is verified

(Accepted), otherwise it is a dishonest prover (rejected).

Fig. 1: Used ZKP protocol procedure

V. PROPOSED SYSTEM ARCHITECTURE

To achieve the system robustness, flexibility and resistance
to potential changes, the popular three-tier (layer) architecture
is deployed in the proposed system. The architecture is a web-
based system composed of three layers: the user interface
layer, the application logic layer and the database layer. The
three-layer architecture aims to make the application
development and implementation easier and more efficient.
The interface layer in the three-layer architecture offers the
user a friendly and convenient entry to communicate with the
system while the application logic layer performs the
controlling functionalities and manipulating the underlying
logic connection of information flows; finally, the data
modeling job is conducted by the database layer, which can
store, index, manage and model information needed for this
application [8].

Figure 2 shows a block diagram which illustrates the
structure of the proposed system; in the next sections these
components will be described in detail.

Fig. 2 General structure of the proposed system (3-tier architecture model)

Mahmood Khalel Ibrahem et al | IJCSET | November 2013 | Vol 3, Issue 11, 388-393 www.ijcset.net | ISSN:2231-0711

389

The proposed system architecture is presented in figure 3
below, illustrate all the functions implemented in the
architecture.

Fig. 3 Proposed system architecture

VI. CLIENT TIER

First step in the proposed security model is to load the
home web-page (http://localhost/home.html), where the
applicant should enter any random number x as a secret
number which will be used in performing authentication and
key exchange function.
Home page will pass the secret number to the authentication
and key exchange module, which an implementation of the
zero-knowledge proof that accomplish the authentication
procedure with the addition to key exchange.

After a successful authentication of the user, the
system will prompt a message informing the client for being
authenticated, and displaying the available applications asking
the client to select one of them, at the application web page
Otherwise, if the client is not authenticated, an error message
will appear to the user that illustrate he should try again.
Application Page is responsible of controlling the access to
the enterprise network and application.
 At this step, the client is a legitimate client of the
enterprise network. However, to access any application on the
network server, the client will need additional authentication
dedicated to each individual application.

Case study application (which is a messaging system) has
been developed to demonstrate the access of the client to the
enterprise application with addition to the security services.

 The user name and password will get hashed and
encrypted by means of HMAC and AES encryption algorithm
respectively, beside that the user password will be scrambled
by MD5.

Otherwise if the client does not have one, he should sign up in
order to be able to get access at Sing-Up page.

Personal messages Pages, Messages related pages are; create
a new message page, list of messages page and reading/
replying messages page.

 This system provides to the user the ability of
sending/receiving messages, in a secure way. Integrity and
encryption modules need a key, which in this system is the
key resulted from implementing ZKP authentication and key
exchange protocol. These features will be achieved through
the collaboration of the four modules which ZKP, messages,
integrity, and encryption modules. Figure 4 shows the four
modules collaboration.

Fig. 4 Four modules collaboration

The figure above represents stages that each message
should be through in order to be send to the precipitant, where
each message will get through a hash function to get its
Hmac, and then the resulted Hmac will be concatenated with
the original message, the resulted data block will be encrypted
using AES encryption algorithm. Both of hash function and
AES encryption algorithm will use the key resulted from
ZKP.

On the other side the receiver will do the reverse order of
these steps with a kind of differences, where the receiver will
do the decryption operation first on the receiver data, then
from the resulted data Hmac function result will be extracted,
and compute it for the received message. The system than will
check if the receiver message is as same as it send by
comparing Hmac values of the send one and the computed
one, to accept it or not.

Fig. 5 Receiving a message steps

Mahmood Khalel Ibrahem et al | IJCSET | November 2013 | Vol 3, Issue 11, 388-393 www.ijcset.net | ISSN:2231-0711

390

VII. SERVER TIER:

The server logic is moved out of the client code and
placed in the middle tier (server tier). The basic concept of the
three tier model is partitioning the system functionality in
layers, so applications gain scalability and security. This tier
presents the application logic layer, which bridges the gap
between the user interfaces and the underlying database,
hiding technical details from the users. Components in this
layer receive requests coming from the interface layer and
interpret the requests into apropos actions controlled by the
defined work flow in accordance with certain pre-defined
rules. Application logic layer consists of a controller module
and four functional modules.

The modules are as described briefly in the following
sections: Control module controls the flow of functions
execution and transferring required information between them
and the database tier, Figure 6 shows how the control module
works.

Fig. 6 Control module work chart

The functional modules are:

A. ZKP Authentication and Key Exchange Module

For illustration purpose figure 7 presents the Diffie-
Hellman mathematical module. The client should enter his
own secret number, which is x, at the same time the server
will enter his own secret number which is y, the implemented
protocol which is the modified Diffie-Hellman will calculate
at each side R1, R2 at client and server side respectively, R1
will passes the server side using the formula: ܴଵୀ݃௑	݉݀݋	݌

R2 will also pass to the client side along with C1, in the
following formula: ܴଶୀ݃௒	݉݀݋	ܥ ݌ଵ ൌ ,ଵܭሺܧ ܴଶሻ

Next step is calculating K at each side using the following
formula respectively at the server and client side: ܭଵ ൌ 	 ሺܴଵሻ௬݉݀݋	ܭ ݌ଶ ൌ 	 ሺܴଶሻ௫݉݀݋	݌

The same value of K will be established in both sides.
This value is the secret key, which will be used in
implementing the integrity and confidentiality security
services.

The interactions are designed in a way that cannot lead to
revealing or guessing the secret of both of the interconnected
parties. After exchanging values the prover will be either
accepted, or rejected and halt the system. Exchanged
messages between prover and verifier are encrypted by AES
encryption algorithm using the generated key.

Fig. 7 Diffie-Hellman arithmetical module

B. Integrity Module

The third module is responsible of calculating messages
hash, and attaching it to message after that, according to
attached message hash, the client will make sure that these
messages had not been altered anywhere in a not authorized
way. This function is accomplished using hash function.

C. Encryption Module

The fourth module is the encryption module, which is
responsible for:

I. Encrypting password by means of using MD5 function,
in order to store it in its encrypted version to reduce security
risks.

II. Encrypting user name and password in both sign-up,
log-in process, and messages between the client and server in
the messages system (case study application). It uses AES
encryption algorithm along with the key resulted from the
ZKP protocol.

For illustrative purpose figure 8 below demonstrates the
implementation of encryption using AES encryption
algorithm and integrity using HMAC in the Log-In process,
where both of them represent the confidentiality and integrity
services.

Mahmood Khalel Ibrahem et al | IJCSET | November 2013 | Vol 3, Issue 11, 388-393 www.ijcset.net | ISSN:2231-0711

391

Fig. 8 Confidentiality and integrity implementation in the system

example

In order to clarify the implementation of the
confidentiality and integrity functions in messages related
issues, Figure 4-16 below for illustrative purpose
demonstrates the steps required to implement integrity and
confidentiality respectively, assuming the message is "TEST
MESSAGE", its HMAC will be "
96d572176b5a59bcc4ebff8d4640b6ee7fc05b77", after
concatenation the message with its HMAC, the resulted string
will be encrypted through AES (advanced encryption
standard) which will be:

"��nB��@�5S����)G�����g����.
V����M�b+ʹ �e ◌֑v�q����Y@���Y".

Fig.9
Messages related integrity and confidentiality implementation example

VIII. DATABASE TIER

This tier is responsible for modeling and storing
information needed for the system and for optimizing the data
access. Data needed by the messaging system logic layer will
be retrieved from the database. The data-base of the proposed
system consists of two tables in order to store information
related to the client (Personal messages and account related
information).

IX. SECURITY OF DIFFIE-HELLMAN KEY EXCHANGE

ALGORITHM

The Diffie-Hellman algorithm is susceptible to two
attacks; the discrete logarithm attack and the man-in-the-
middle attack [9].

A. Discrete Logarithm Attack

An interceptor (Eve) can intercept R1 and R2 [2, 9];

Find x from (R1 = gx mod p);

Find y from (R2 = gy mod p);

Then she can calculate (K = gxy mod p). The secret key is
not secret anymore. To make Diffie-Hellman safe from the
discrete logarithm attack, the following are recommended:

1) The prime number p must be very large (more than
300digits).

2) The generator g must be chosen from the group <Zp*, x>.

3) The numbers x and y must be large random numbers of at
least 100 digits long, and used only once (destroyed
after being used).

Still, no algorithm for the discrete logarithm problem
exists with computational complexity O (xr) for any r; all are
infeasible [2, 10].

B. Man-in-the-Middle Attack

Diffie-Hellman algorithm is vulnerable to the man-in-the
middle attack, in which the attacker is able to read and modify
all messages between Alice and Bob. As g is not secret, the
attacker can easily create his own power of g and send that to
Bob. When Bob replies, the attacker intercepts the message
and will share his key with Bob. Eve, the interceptors can
create two keys; one between herself and Alice, and another
between herself and Bob. Figure 10 shows the man-in-the
middle attack. The attack can be performed as follows [2, 9]:

 The proposed system is resists man-in-the-middle attack
as long as it use the modified version of the Diffie_Hellman
protocol, since Eve cannot calculate two secret keys; (K1 =
R1 x mod p) and (K2 = R2 y mod p) to be shared with Alice
and Bob.

Fig. 10 Man in the middle attack

1) Alice chooses x, and calculate R1 = gx mod p and sends R1 to
Bob.

2) Eve, the intruder, intercept R1, chooses z, calculates R2 = gz mod
p, send R2 to both Alice and Bob.

3) Bob chooses y, and calculate R3 = gy mod p and sends R3 to
Alice. R3 is intercepted by Eve and never reaches Alice.

4) Alice and Eve calculate K1 = gxz mod p, which becomes shared
key between them.

5) Eve and Bob calculate K2 = gzy mod p, which becomes shared
key between them.

Mahmood Khalel Ibrahem et al | IJCSET | November 2013 | Vol 3, Issue 11, 388-393 www.ijcset.net | ISSN:2231-0711

392

XII. CONCLUSIONS

In this paper, the security of an enterprise network was the
major concern. The security issue has been discussed and
considered in the design and implementation of the system
into two categories;

The first category is the mutual authentication between the
prover and the verifier which is an important issue as a
security service requirement.

The second category is the integrity and confidentiality of
the system which is another crucial issue to keep the data
transmitted over unsecure channel unrevealed and unchanged.

The following points have been concluded throughout the
work of the research:

1. The proposed protocol for Zero-knowledge proof is a
deterministic algorithm with bounded values.

2. Implementing the proposed security model on Apache
Web Server is much cheaper and easier than implementing
it on Microsoft server where it’s free.

3. On theoretical basis Man-In-the Middle attack and
Discrete Logarithm attack for this system is not an issue
any more.

4. It resists man-in-the-middle attack, since Eve cannot
calculate two secret keys; (K1 = R1 x mod p) and (K2 =
R2 y mod p) to be shared with Alice and Bob.

5. The major security goals (CIA) are satisfied and give
confidence to users to communicate securely.

REFERENCES
[1] Jeremiah Grossman, “10 Important Facts About Website Security and

How They Impact Your Enterprise”, white paper, WhiteHat
Security,January 2011.

[2] Stallings, William, "Cryptography and Network Security", Prentice Hall,
5th Ed. 2010.

[3] John E. Canavan, "Fundamentals of Network Security", first edition,
Artech House, 2001.

[4] Dowd P.Winy; McHenry J.Time, "Network security: it's time to take it
seriously", IEEE Computer Security Society 31(9):24-28, 1998

[5] Lum Jia Jun, Brandon, "Implementing Zero-Knowledge Authentication
with Zero Knowledge (ZKA_wzk)", the Python Papers Monograph
Proceedings of PyCon Asia-Pacific 2010. Vol. 5, issue 3, p1

[6] Ijayan Jaikumar. "Web Application Security Is Growing Problem for
Enterprises,http://www.infoworld.com/d/securitycentral/webapplications
ecurity-growing-problem-enterprises-843, last visited 1/5/2013.

[7] Mahmood Khalel Ibrahem, "Modification of Diffie–Hellman Key
Exchange Algorithm for Zero Knowledge Proof", ICFCN' 12, conf.
baghdad, 2012.

[8] E. Trichkova, "Application of PHP and MySQL for Search and Retrieval
Web Services in Web Information Systems" Proceedings of First
International Conference on Information Systems & Datagrids, Sofia,
Bulgaria, February 2005.

[9] Forouzan, Behrouz A., "Cryptography and Network Security", McGraw
Hill, Int. Ed. 2008.

[10] Back, Amanda, "The Diffe-Hellman Key Exchange",
http://129.81.170.14/~erowland/courses/2009-2/projects/Back.pdf,
December 2, 2009.

Mahmood Khalel Ibrahem et al | IJCSET | November 2013 | Vol 3, Issue 11, 388-393 www.ijcset.net | ISSN:2231-0711

393

