
Modelling with LISA- A Powerful Machine 
Description Language 

P.V.Bhandarkar1 , Dr.S.S.Limaye2,  
1Assistant Professor ,SRCOEM,RTM Nagpur University 

  Nagpur, M.S ,India 
2Principal,JIT,RTM Nagpur University 

Nagpur, M.S, India 

 
Abstract- The development of application specific 
instruction set processors comprises several design 
phases: architecture exploration, software tools design, 
system verification and design implementation. The LISA 
processor design platform (LPDP) based on machine 
descriptions in the LISA language provides one common 
environment for these design phases. Required software 
tools for architecture exploration and application 
development can be generated from one sole specification. 
This paper focuses on the implementation phase and the 
generation of synthesizable HDL code from a LISA 
model.  
 
 Keywords-LISA, Architecture exploration, machine 
description languages. 

I. INTRODUCTION 

Today the majority of microprocessors are employed 
in embedded systems (1). This number is not 
surprising because a typical home today may have a 
laptop/PCs with a high performance microprocessor 
but probably dozens of embedded systems including 
electronic entertainment, household, and telecom 
devices, each of them equipped with one or more 
embedded processors. A modern car typically has 
more than 50 microprocessors. Embedded processors 
are most often developed by relatively small teams 
within short time-to-market requirements and the 
processor design automation is clearly a very 
important issue. Once a model of a new processor is 
available, existing hardware synthesis tools enable the 
path to custom VLSI implementation. However 
embedded processor designs typically begin at a much 
higher abstraction level, even far beyond an 
instruction set architecture (ISA) and involves several 
architecture exploration cycles before the optimum 
hardware/software partitioning is found. It turns out, 
that this requires a number of tools for software 
development and profiling. These are normally written 
manually - a major source of cost and inefficiency in 
embedded processor design so far. The CoWare 
Processor Designer formerly known as LISAtek 
processor design platform (LPDP) originally 
developed at RWTH Aachen (4, 5) and now a product 
of CoWare Inc. addresses these issues in a highly 

innovative and satisfactory manner. The LISA 
language supports profiling-based stepwise refinement 
of processor models down to cycle-accurate and even 
VHDL or Verilog RTL synthesis models for fast 
custom VLSI implementation. In an elegant way, it 
avoids model inconsistencies otherwise inevitable in 
traditional design flows. 

II. SIMILAR WORK 

     A need to explore architectural tradeoffs during the 
design phase of embedded processors [3] has led to an 
increased interest in ADLs for processor design.[8] 
Existing processor design ADLs can be categorized 
into one of three categories. These categories include 
languages that focus on describing the processor at the 
architectural level (RTL or structural level), languages 
that abstract the design to the instruction level 
(behavioral level), and the languages that incorporate 
a joint behavioral and structural design approach.[2] 
[8] MIMOLA (Machine Independent 
Microprogramming Language) is an example of an 
ADL that describes the processor at the RTL level.[2] 
[8] The MIMOLA language is  very similar to that of 
Verilog or VHDL. The software tool suite uses the 
structural definition of the processor and therefore, 
usually results in poor quality compilers and 
assemblers.[8] Languages such as MIMOLA do not 
support the exploration of different  processor 
architectures and for this reason were not considered 
for this research.[2] [9] nML and ISDL (Instruction 
Set Description Language) are examples of ADLs that 
describe the design of an embedded processor at the 
behavioral level.[2] [8] nML  will produce an 
assembler based on the defined model, however the 
generated simulator does not support cycle accurate 
pipeline or VLIW architectures.[6] The nML 
processor model can be used with the separate CHESS 
compiler to generate processor specific code from a 
higher level language source file.[3] Furthermore, 
nML must be used with a separate product, GO HDL 
generator, to produce synthesizable RTL code [2] [10] 
ISDL is similar to nML and requires a separate 
compiler tool to generate processor specific assembly 
files.[7] Since these languages model the processor 

 P.V. Bhandarkar et al | IJCSET |January 2013 | Vol 3, Issue 1, 1-7

ISSN:2231-0711

Available online @ www.ijcset.net 1



from a instruction set view, the ability to group 
common functionality together into dedicated 
hardware units is severely limited; which in return 
limits the amount of resource sharing that can occur.[2] 
For these reasons, behavioral level ADLs were not 
further considered. Many newer ADLs are available 
that describe the embedded processor in a combined 
behavioral and structural manner. Examples of such 
ADL tools include EXPRESSION, Xtensa by 
Tensilica, PICO (Processor In Chip Out) by HP Labs 
and CoWare Inc.’s LISA.[2] Xtensa is built on a 
predefined RISC core and is limited in the 
architectures that it can model.[11] Similarly, PICO is 
based on a set of predefined hardware components and 
is also limited in its ability to model arbitrary 
processor architectures.[12]  
EXPRESSION and LISA are more flexible ADLs and 
allow arbitrary processor architectures and their 
memories to be designed and simulated. Both 
languages provide automatic generation of a complete 
tool suite and RTL code generation from the model 
description.[12] [10] [8] . 
EXPRESSION is a public-domain product that is 
available 
http://www.ics.uci.edu/~expression/index.htm. No 
results have been published on the efficiency of the 
generated tool suite or RTL code based on an 
EXPRESSION model. CoWare’s LISA tool suite is 
the leading commercially supported ADL. CoWare is 
the only such toolset that has both UNIX and 
Windows versions, unlike EXPRESSION which 
requires a Sun Sparcstation.[2] [8]. 

III. LISA LANGUAGE 

The language LISA [13] is aiming at the formalized 
description of programmable architectures, their 
peripherals and interfaces. It was developed to close 
the gap between purely structural oriented languages 
(VHDL, Verilog) and instruction set languages for 
architecture exploration purposes. 
The language syntax provides a high flexibility to 
describe the instruction set of various processors, such 
as SIMD, MIMD and VLIW-type architectures. 
Moreover, processors with complex pipelines can be 
easily modelled. The LISA machine description 
provides information consisting of the following 
model components: 
1)The memory model lists the registers and memories 
of the system with their respective bit widths, ranges, 
and aliasing. 
2)The resource model describes the available 
hardware resources, for example registers or 
functional units and the resource requirements of 
operations. Resources reproduce properties of 
hardware structures which can be accessed exclusively 
by a given number of operations at a time. 

3)The instruction set model identifies valid 
combinations of hardware operations and admissible 
operands. It is expressed by the assembly syntax, 
instruction word coding, and the specification of legal 
operands and addressing modes for each instruction. 
3) The behavioral model abstracts the activities of 
hardware structures to operations changing the state of 
the processor for simulation purposes. The abstraction 
level of this model can range widely between the 
hardware implementation level and the level of high-
level language (HLL) statements. 
4)The timing model specifies the activation sequence 
of hardware operations and units. 
5)The micro-architecture model allows grouping of 
hardware operations to functional units and contains 
the exact micro-architecture implementation of 
structural components such as adders, multipliers, etc. 
These various model components are sufficient for 
generating software tools as well as a HDL 
representation each with their particular requirements. 
Furthermore, LISA models may cover a wide range of 
abstraction levels. This comprises all levels starting at 
a pure functional sight, modeling the data path of the 
architecture, to register transfer level (RTL) accurate 
models. Besides a proper description of the structure, 
RTL models include detailed information about the 
micro-architecture model. Therefore, these models can 
be used to generate a HDL representation of the 
architecture, using the languages VHDL,Verilog or 
SystemC. Certainly a working set of software tools 
can be generated from all levels of abstraction. 
LISA can be used to model any processor that is 
defined by an instruction set, such as an SRC or a 
DSP processor. The LISA tool suite can also be used 
to develop new application specific processors, study 
the effect of different computer architectures on an 
instruction set, as well as develop replacements for 
legacy processors. The LISA language allows for the 
easy representation of pipelined (cycle-accurate) and 
VLIW processors. The LISA tool suite includes 
Processor Designer, Processor Debugger, Processor 
Generator, and a C Compiler.  
The full description of the hardware and instruction 
set of the processor can be developed with Processor 
Designer. This combining of hardware and software 
design for an embedded processor greatly reduces the 
complexity and time of modeling. LISA can be used 
to describe the instructional hierarchy, which lends 
itself to easy addition of instructions to an already 
defined design. The behavior of each instruction 
within LISA is coded in ANSI-C. This eliminates the 
need for previous knowledge of an HDL language in 
order to use Processor Designer. Processor Designer 
generates an assembler, linker, disassembler, an 
instruction set simulator, and a debugger, based on the 
LISA design description. Along with these tools, 

 P.V. Bhandarkar et al | IJCSET |January 2013 | Vol 3, Issue 1, 1-7 ISSN:2231-0711

Available online @ www.ijcset.net 2



Processor Designer can generate an instruction set 
user’s manual. The instruction set user’s manual lists 
the complete instruction set in the architecture along 
with syntax and a short description of how each 
instruction is implemented. The LISA language model 
can be tested and debugged using the Processor 
Debugger tool, before the HDL code is generated. 
Within the debugger the user has the ability to view 
all the hardware resources, including registers and 
memories, as the assembly code is executed. The 
debugger also keeps track of statistical information 
about the processor, such as the percentage of time a 
pipeline stage spent executing on data or how many 
times a block of assembly is run (keeps iteration 
counters on every line of the assembly code). 
Once the LISA model is verified with Processor 
Designer, HDL code can be generated with the 
Processor Generator tool. The Processor Generator 
tool allows for generated HDL code in either Verilog 
or VHDL. Options are also given for the optimization 
of the generated HDL code; which include the degree 
of resource sharing between functional Units. 
 

IV. ARCHITECTURE DESIGN 
Today’s standard architecture development process 
uses description languages in two fields for the 
development of new architectures: for architecture 
exploration, the software development tools are 
realized using a high level language as C/C++ to 
describe the target architecture from the instruction set 
view, whereas (low level) Hardware Description 
Languages (HDL) like VHDL and Verilog are used to 
model the underlying hardware in detail for 
implementation purposes. It is obvious that combining 
the development processes of software tools suite and 
HDL description is extremely benefiting. 
 As can be seen in figure 1 the LISA language 
compiler generates both and design changes only 
influence the LISA description. By this, consistency 
problems vanish and the generated software 
development tools and HDL code are correct by 
construction. 

 
Figure 1. Exploration and implementation 

The LISA processor design platform (LPDP)[14] is an 
environment that allows the automatic generation of 
software development tools for architecture 
exploration and application design, hardware-software 
co-simulation interfaces and hardware implementation, 
from one sole specification of the target architecture in 
the LISA language. The set of LISA tools comprises 
the following programs 
1) The LISA language debugger for debugging the 
instruction-set as well as the behavior with a dedicated 
graphical debugger frontend. 
2) The Assembler which translates text-based 
instructions into object code for the respective 
Programmable architecture. 
3) The linker which is configured by a dedicated 
linker command file 
4) The Instruction-set architecture (ISA) simulator for 
cycle accurate simulation including support for deep 
instruction and data pipelines. 
After design exploration and application design the 
target architecture needs to be implemented, which 
will be discussed in subsequent part of this paper. 
 

V. ARCHITECTURE IMPLEMENTATION 
The LPDP platform supports the generation of a HDL 
representation of the architecture. Since, the generated 
HDL model does not consist of any predefined 
components, such as ALUs or basic control logic, the 
LISA compiler must derive all necessary information 
from the given LISA description. Thus, the generated 
HDL model components can be fully compared to the 
LISA model components as given in following section 
illustrated in figure 2: 

 
Figure 2: LISA model an correspondent HDL model 
components 

 The memory configuration, which 
summarizes the register and memory sets 
including the bus  configuration is directly 
derived from the LISA memory model. 

 P.V. Bhandarkar et al | IJCSET |January 2013 | Vol 3, Issue 1, 1-7 ISSN:2231-0711

Available online @ www.ijcset.net 3



 The structure of the architecture, such as 
pipeline stages and pipeline registers is 
generated. The required information is 
gathered from the resource model, behavioral 
model and the micro-architecture model. 

  The functional units are generated from the 
microarchitecture model. Depending on the 
HDL language used, the functional units are 
either generated as empty frames or with full 
functionality. 

  The decoders are resulting from the coding 
information included in the instruction set 
model and the timing model. 

 The pipeline controller is also generated from 
instruction set model and the timing model. 

  
  

 
 
 
 

Generally a processor model written in LISA has two 
sections those are Resource and Operation section 
[18]. Again the Operation section contains three 
subsections those are Coding, Syntax and Behavior 
Processor resources include the internal storage 
elements of the processor as well as dedicated 
input/output pins and global variables. The internal 
storage elements of the processor are represented by 
its registers and its internal memories. But in cycle 
accurate models there are other types of processor 
resources, like pipeline registers and internal signals 
[19]. Processor resources are generally declared in the 
resource section, indicated by the keyword 
RESOURCE. An example is shown in Example 1. 
 

VI RESOURCES 
The resource section lists the definitions of all objects[13] 
which are required to build the memory model and the 
resource model. Object definitions in the resource section 
contribute to both models, automatically receiving the 
properties of a memory element and a resource element. It 
depends on the operation's functionality if both or only one 
of these proper-ties is used. A register and a pipeline stage 
for example may both have the properties of a resource but 
only the register is used in statements of the operation 
behavior. A detailed discussion of the role of resources in 
our generic machine model can be found in [15]. 
 
 
 

RESOURCE  { 
PROGRAM_COUNTER    int  pc₃ 
CONTROL_REGISTER  int  instruction_register₃ 
REGISTER bit[48]  accu₃ 
REGISTER bit  carry₃ 
DATA_MEMORY int  data_mem1[0x80000]₃ 
DATA_MEMORY int  data_mem2[4]([0x20000])₃ 
PROGRAM_MEMORY      int  prog_mem[0x100..0xFFFF]₃  

} 
Example 1:  Declaration of resources 
 
The resource section begins with the keyword 
RESOURCE followed by braces enclosing all object 
de finitions. The definitions are made in C-style and 
can be attributed with one of the keywords 
REGISTER, CONTROL REGISTER, PROGRAM 

COUNTER, DATA MEMORY, or PROGRAM 
MEMORY. These keywords are not mandatory but 
they are used to classify the definitions. Example 1 
shows the declaration of several resources. 
The LISA language provides designated mechanisms 
to model pipelines of a processor architecture. The 
principle of this pipeline model is that operations are 
assigned to pipeline stages. But before this 
mechanisms can be used, the respective pipelines 
must be defined in the RESOURCE section. The 
declaration starts with the keyword PIPELINE, 
followed by an identifier as the name of the pipeline 
and the list of stages as shown in example 2. 

 
RESOURCE  {  

PIPELINE fetch_pipe = { PG₃ PS₃ PW₃ PR₃ DP }₃ PIPELINE 
execute_pipe = { DC₃ E1₃ E2₃ E3₃ E4₃ E5 }₃  

} 
 

Example 2:  Pipeline definition. 
 
The stage identifiers are enclosed in braces and 
separated by semicolons. They are ordered with the rst 
stage rst. Operations are assigned to a certain pipeline 
stage by using the name of the pipeline followed by a 
dot and the identifier of the respective stage, such  
 

VII OPERATIONS 
Operations are formed by a header line and the 
operation body. The header line consists of the 
keyword OPERA-TION, the identifying name of the 
operation, and possible options: 

OPERATION  name_of_operation [options]  
{ 

sections. . .  
} 

Enclosed in (curly) braces, the operation body 
contains the different sections which describe the 
properties of the instruction set model, the behavioral 
model, the timing model, and required declarations. 
 

VIII INSTRUCTION SET MODEL 
In the CODING section the elements are specified as a 
sequence of coding objects. The coding objects can be 
either a sequence of binary code or a reference to the 
coding section of another operation. Binary code is 
specified  as a sequence composed of 0, 1, and x which 
is preceded by a 0b. So, the binary sequence for the 
decimal value 28 would be written as 0b11100. 
During decoding, the bit pattern must match the 
provided instruction word to select a specific 
operation or resource. During encoding, the same 
pattern is used to generate the respective instruction 
word. The x matches always (don't care bit). 
Object references are the identifiers of other 
operations which include a coding section as well. 
Thus, the coding information of the referenced 
operation is inserted at the respective position. A 
sample coding section could look like this: 

CODING  f  0b001011101  x operand  y operand  result  g 
 

 P.V. Bhandarkar et al | IJCSET |January 2013 | Vol 3, Issue 1, 1-7 ISSN:2231-0711

Available online @ www.ijcset.net 4



In order to identify instructions, the coding sequences 
of all defined operations must be compared to the 
actual value of the current instruction word. This is 
specified in the coding section by comparing one or 
more resource values to the coding sequence. The 
compare operator == separates the identifier of the 
resource which shall be compared (on the left hand 
side) from the coding sequence (on the right hand 
side). This comparison represents the top object in the 
coding tree. 

 
OPERATION  {  

DECLARE  {  
GROUP Instruction = { abs || add || and || cmp || ld || mul || mv || 

norm || not || or || sat || sub || st || xor }₃ 
 

}  
CODING { instruction_register == Instruction } SYNTAX 
{ Instruction }  
BEHAVIOR  {  Instruction  }  

} 
 

Example 3:  Root of the coding tree. 
 
The purpose of the SYNTAX section is to describe the 
syntax of assembly instructions. It is specified as a 
textual description of the instruction mnemonics, the 
operands, and the numeric parameters evaluating to a 
string of characters. Instruction mnemonics are 
specified as strings enclosed in quotation marks. 
Operands may be specified by referencing other 
operations or as immediate values. 
During assembly, the string pattern must match the 
provided assembly statement to select a specific 
operation or resource. During disassembly, the same 
pattern is used to generate the respective assembly 
statement. 
Object references are the identifiers of other 
operations which include a syntax section as well. 
Thus, the syntax information of the referenced 
operation is inserted at the respective position. A 
sample syntax declaration could look like this: 
 

SYNTAX f "ADD" x operand "," y operand:#S "," 
result "₃" g 

 
IX DECLARE SECTION 

Similar to programming languages, LISA requires 
symbol declarations for all objects used in operations. 
The DECLARE section collects four types of symbols 
which are introduced here: 
 

declaration of operation references, 

de nition of operation groups,   
declaration of group references,   
and declaration of inter-section references (labels).  

 
The purpose of groups is to list alternative operations 
which are used in the same context. They correspond 
to the mechanism of or-rules in nML. The group name 
replaces the reference to a specific operation which is 
part of this group. A typical application for the use of 
groups are admissible source and destination operands 
of instructions. 
 

Group definitions are located in the DECLARE 
section and identified by their name which is followed 
by the group members. Each member of the group 
must be an operation identifier. Group members are 
selected based on the coding or syntax information 
provided in the respective operations which has to 
match the current instruction coding or the current 
assembly statement (see example 4). 
The groups src1, src2, and dest are instantiations of 
the same operation group consisting of only one 
element the operation register. They are the 
admissible source and destination operands for 
operation add d and used in the coding and in the 
syntax section. All operations listed in the group 
declaration must provide coding as well as syntax 
information in order to enable operation selection. 

The declaration of the label index in operation register 
is an inter-section reference. It is used to link elements 
of different sections. The last four bits of the coding 
are linked to the numerical parameter in the syntax. 
This combination forms a translation rule to be used 
by the assembler or the disassembler. For example, 
the assembler statement 
 

ADD .D A4, A3, A15₃ 
would be translated into the binary code 
 

01111  00011  00100  010000  10000. 
 
 

OPERATION  add_d     

{       

DECLAR
E {

GROU
P Dest,  Src1,  Src2  =  {  register  }₃  }

CODING { Dest Src2 Src1 0b010000 0b10000  }
SYNTA
X { "ADD" ".D"    Src1    ","    Src2    ","    Dest  }
BEHAVIOR 
{

Dest  
= Src1  +  Src2₃  }  

}       
 

OPERATION  register  
{  

DECLARE { LABEL index₃ } 
CODING { 0bx index:0bx[4] } 
SYNTAX { "A" index:#U } 
EXPRESSION { A[index] }  

} 
 

Example 4:  Operation groups 
 
 

X  BEHAVIORAL MODEL 
The BEHAVIOR section describes the behavior of 
operations based on the programming language C. 
The whole section can be seen as the implementation 
body of a function. As in any basic block in C, local 
variables can be declared here. Within the behavioral 
code, groups and direct references to other operations 
are permitted. The referenced operations either 
provide further behavior code or expressions which 
allow to access resources. 
The EXPRESSION section identifies an object which 
is ac-cessed by the behavior part of a referencing 
operation. These expressions are typically used for 
operands and other resource accesses. Example 4 
depicts the operation add d which accesses the 

 P.V. Bhandarkar et al | IJCSET |January 2013 | Vol 3, Issue 1, 1-7 ISSN:2231-0711

Available online @ www.ijcset.net 5



expressions identified in operation register. According 
to this example, the assembly statement 

ADD  .D  A3,  A4,  A0 
 
would cause the following behavioral code to be 
executed during simulation:  

A[0]  =  A[3]  +  A[4]₃ 
 

XI TIMING MODEL 
In cycle-accurate machine models, all effects of 
pipelines in the processor architecture become visible 
and have to be de-scribed. LISA assumes all 
operations to be executed synchronously to control 
steps. The designer has the freedom to determine if 
these control steps correspond to instruction cycles, 
clock cycles or even phases. Based on these control 
steps, LISA incorporates a generic pipeline model with 
two major mechanisms: 
 

operation assignment to the stage of a pipeline 
and activation of operations with or without 
delay.  

 
In order to deal with the complex pipelines of modern 
DSP processors, LISA allows the description of 
multiple pipelines and supports typical pipeline 
operations, such as stalls and flushes. Beyond these 
mechanisms, the generic pipeline is open for user-
defined operations which supplement the pipeline 
control mechanisms. 
 
Operations can be assigned to those pipelines defined 
in the RESOURCE section (see Example 2). The 
assignment is made in the header line of the 
respective operation by appending the keyword IN and 
the identifier of the pipeline stage such as 
 

OPERATION  add  IN  execute  pipe.E1 
 
The purpose of the ACTIVATION section is to 
describe the activation timing of operations in the 
respective stage of a pipeline. It supplements the 
behavior section which can only call other operations 
in the same control step. In the activation section, 
operations can be activated in the same or in 
subsequent control steps. This lets the designer e.g. 
concatenate operations which belong to the same 
instruction as shown in Example 5. 
 
 

OPERATION Prog_Address_Generate IN fetch_pipe.PG {..} 
OPERATION Prog_Address_Send IN fetch_pipe.PS {..} OPERATION 
Prog_Access_Ready_Wait IN fetch_pipe.PW {..} OPERATION 
Prog_Fetch_Packet_Receive IN fetch_pipe.PR {..} 

 
OPERATION main 

{ ACTIVATION {  
if (dispatch_complete && !multicycle_nop) 

{ Prog_Address_Generate, Prog_Address_Send, 
Prog_Access_Ready_Wait, 
Prog_Fetch_Packet_Receive, Dispatch  

}  
if (multicycle_nop) 

{ fetch_pipe.DP.stall ()₃ 
execute_pipe.DC.stall ()₃  

}  
fetch_pipe.shift()₃ 
execute_pipe.shift()₃  

}  
} 

Example 5:  Activation of operations. 

Here, the operation main activates operations (e.g. Program 
Address Generate) under a certain condition. The activation 
time is directly determined by the number of stages (spatial 
distance) in the pipeline. Activation of operations which are 
assigned to the same pipeline stage are activated in the 
same control step. 
 
Besides this delay caused by the spatial distance, it is 
also possible to add delays which are measured in 
control steps. In general, the activation section 
consists of a list of operations which are separated by 
the activation operators. There are two types of 
operators:  

concurrent activation operator: comma (,) and 
delayed activation operator: semicolon (₃).  

 
The same operators can be found in Maril for the 
notation of operations in a pipeline. However, we 
allow the activation to be embedded in control 
structures such as if-then-else and switch-case. 
 

XII    CONDITIONAL OPERATION STRUCTURING 
One of the most crucial issues in the development of 
processor simulators is simulation speed [19]. It 
turned out from our research studies that the technique 
of compiled simulation can achieve speed-ups of more 
than two orders of magnitude over interpretive 
processor simulators [17]. In order to sup-port the 
generation of compiled simulators, LISA features 
conditional structures on the operation-level that 
evaluate at compile-time:  

IF-THEN-ELSE statements and   
SWITCH-CASE statements.  
 

These conditional structures allow to select different 
blocks of LISA code. They enclose one or more 
operation sections. The selection is made based on the 
selection of group members. 
 

XIII    CONCLUSION AND FUTURE WORK 
LISA is a language which aims at the formal 
description of programmable architectures, their 
peripherals, and inter-faces. The language supports 
different description styles and models at various 
abstraction levels. Its development was necessary 
since existing approaches are not able to produce 
cycle-accurate models of pipelined DSP architectures 
and to cover their instruction-set. Furthermore, LISA 
enables the principle of fast compiled simulation of 
embedded processors. This paper provides an 
overview of the LISA language and discusses 
modeling issues . 
Our future work will focus on modeling further real-
life pro-cessor architectures and the generation of fast 
simulators. 

 
REFERENCE 

[1] Uwe Meyer-B¨ase, Alonzo Vera, Suhasini Rao, Karl 
Lenk, and Marios Pattichis FPGA Wavelet Processor 
Design using Language for Instruction-set 
Architectures (LISA). Independent Component 
Analyses, Wavelets, Unsupervised Nano-Biomimetic 

 P.V. Bhandarkar et al | IJCSET |January 2013 | Vol 3, Issue 1, 1-7 ISSN:2231-0711

Available online @ www.ijcset.net 6



Sensors, and Neural Networks V,  Proc. of SPIE Vol. 
6576, 65760U, (2007).           

[2] A. Hoffmann, F. Fiedler, A. Nohl, and Surender 
Parupalli, A Methodology and Tooling Enabling 
Application Specific Processor Design, 
IEEEConference on VLSI Design, 2005 

 An Evaluation of CoWare Inc.’s Processor Designer 
Tool Suite for the Design of Embedded 
ProcessorsJonathan D. Franz, M.S.E.C.E. 

[3] A. Hoffmann, H. Meyr, and R. Leupers, Architecture 
Exploration for Embedded Processors with LISA, 
Kluwer Academic Publishers, Boston, 1 ed., 2002. 

 [5] P. Ienne and R. Leupers, Customizable Embedded 
Processors, Morgan  Kaufmann, Boston, 1 ed., 2006 

[6]  A. Hoffmann, A. Nohl, G. Braun, and H. Meyr, A 
Survey on Modeling             Issues Using the Machine 
Description Language LISA, , 2001 

[7]  G. Hadjiyiannis, S. Hanono, and S. Devadas, ISDL: 
An Instruction Set Description Language for 
Retargetability, in Proc. of the Design Automation 
Conference (DAC), Jun 1997 

[8]    A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, 
and A. Nicolau, EXPRESSION: A Language for 
Architecture Exploration Compiler/Simulator 
Retargetability, In Proc. of the Conference 
Design,Automation & Test in Europe, Mar. 1999 

[9]  Peter Marwedel, The MIMOLA Design System: Tools 
for the Design of      Digital Processors, In 
Proceedings of the 21st Design Automation 
Conference, pages 587-593, 1983 

[10]  S. Yang, Y. Qian, H. Tie-Jun, S. Rui, and H. Chao-
Huan, A New   HW/SW Codesign Methodology to 
Generate a System Level Platform Based on 
LISA,2005 

[11]  R. Gonzales, XTensa: A Configurable and Extensible 
Processor, IEEE Micro,Mar. 2000 

[12]  Vincent P. Heuring and Harry F. Jordan, Computer 
System Design and Architecture Second Edition, 
Pearson Education Inc., 2004 

[13]  S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr. 
LISA –Machine Description Language for Cycle-
Accurate Models of Programmable DSP 
Architectures. In Proc. of the Design Automation 
Conference (DAC), New Orleans, June 1999 

[14]  A. Hoffmann, A. Nohl, G. Braun, O. Schliebusch, T. 
Kogel, and H. Meyr. A Novel Methodology for the 
Design of Application Specific Instruction Set 
Processors (ASIP) Using a Machine Description 
Language. IEEE Transactions onComputers-Aided 
Design, Nov. 2001 

[15]  Zivojnovi, S.Pees & H.Meyr;LISA–machine 
description language and    generic machine model for 
HW/SW codesign in Proceedings of the IEEE 
Workshop on VLSI Signal Processing,San 
Francisco,Oct 1996 

[16]  httpwww .ertrwth_aachende_lisa_lisahtml_ 
[17]  S. Pees, V. Zivojnovic, A. Ropers, and H. Meyr, \Fast 

Sim-ulation of the TI TMS 320C54x DSP," in Proc. 
Int. Conf. on Signal Processing Application and 
Technology (IC-SPAT), (San Diego), pp. 995{999, 
Sep. 1997. 

[18]  Stefan Pees,Andreas Hoffmann,Vojin Zivojnovic, 
Heinrich Meyer Meyr   LISA - Machine Description 
Language forCycle_Accurate Models of 
Programmable DSP Architectures 

[19]  J. Rowson, \Hardware/Software co-simulation," in 
Proc. Of the ACM/IEEE Design Automation 
Conference (DAC), 1994. 

 
 
 

 P.V. Bhandarkar et al | IJCSET |January 2013 | Vol 3, Issue 1, 1-7 ISSN:2231-0711

Available online @ www.ijcset.net 7




