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Abstract—Sparse representation has been widely used in 
various image restoration applications. The quality of image 
restoration mainly depends on whether the used sparse 
domain can represent well the underlying image. Since the 
contents representing the underlying image can vary 
significantly across different images or different patches in an 
image, we propose to learn various sets of bases from a pre-
collected dataset of example image patches and for processing 
a particular given patch, a suitable set of base is selected 
adaptively as local sparse domain. Here we introduce two 
adaptive regularization terms into the sparse representation 
framework. One is a set of auto regressive (AR) models are 
learned from the pre-collected dataset of example image 
patches and the best fitted AR model is adaptively selected for 
regularization. Second is image non-local self similarity 
regularization to regularize the image local structures. To 
make the sparse coding more accurate, a centralized sparsity 
constraint is introduced by exploiting the nonlocal image 
statistics. The local sparsity and the nonlocal sparsity 
constraints are unified into a variational framework for 
optimization. Extensive experiments on the proposed method 
of CSR method achieves convincing improvement over 
previous state-of-the-art methods in terms of PSNR and SSIM 
values. 
 
Keywords--------Image restoration, deblurring, super-
resolution, sparse representation, regularization 
 

INTRODUCTION 
Image restoration (IR) aims to recover a high-quality image 
from its degraded (e.g., noisy, blurred and/or downsampled) 
versions, which may be taken, for example, by a low-end 
camera and/or under limited conditions. For an observed 
image Y, the problem of IR can be expressed by 

vDHXY +=   ..(1) 
 
where X is the unknown image to be estimated, and H and 
Dare degrading operators and υ is additive noise. When H 
and D are identities, the IR problem becomes denoising; 
when D is identity and H is a blurring operator, IR becomes 
deblurring; when D is identity and H is a set of random 
projections, IR becomes compressed sensing[3]; when D is 
a down-sampling operator and H is a blurring operator, IR 
becomes (single-image) super-resolution. IR, a 
fundamental problem in image processing has been widely 
studied in the past three decades.In this paper, we focus on 
deblurring and single-image super-resolution. 
 
Due to the ill-posed nature of IR[2], the solution to (1) with 
an l2-norm fidelity constraint, i.e., 

2

2
minargˆ DHXYX

X
−= .is generally not unique. A 

prior knowledge of natural images can be used to regularize 
the IR problem for finding a better solution. One of the 
most commonly used regularization models is the total 
variation (TV) model  

}.
2

2
min{argˆ

1
XDHXYX

X
∇+−= λ  , 

where
1

X∇  is the l1-norm of the first-order derivative of 

X and λ  is a constant. 
The success of TV regularization validates the 

importance of good image prior models in solving the IR 
problems. In wavelet based image denoising the sparsity of 
wavelet coefficients can serve as good prior. This reveals 
the fact that many types of signals, e.g., natural images, can 
be sparsely represented (or coded) using a dictionary of 
atoms, such as DCT or wavelet bases, that is, denoting by  

Φ  the dictionary, we have αΦ≈X and most of the 

coefficients in α are close to zero. With the sparsity prior, 
the representation of X over Φ can be estimated from its 
observation Y by solving the following l0-minimization 
problem:  

}.
2

2
min{argˆ

0
αλαα

α
+Φ−= DHY , 

where the l0-norm counts the number of nonzero 

coefficients in vector α  . Once  we obtainα̂ , X can then 

be estimated as α̂Φ=X


 . The l0–minimization is an NP-
hard combinatorial search problem, and is usually solved 
by greedy algorithms. The l1-minimization, as the closest 
convex function to l0-minimization, is then widely used as 
an alternative approach to solving the sparse coding 

problem: }.
2

2
min{argˆ

1
αλαα

α
+Φ−= DHY . For 

better IR results the l1 –norm sparsity regularization term 
has been iteratively reweighted. Sparse representation has 
been successfully used in various image processing 
applications. 
The main issue in sparse representation modeling is the 
determination of dictionary Φ . Many dictionary learning 
(DL) methods aim at learning a universal and over-
complete dictionary to represent various image structures. 
However, sparse decomposition over a highly redundant 

IJCSET |September 2012 | Vol 2, Issue 9, 1386-1395 www.ijcset.net | ISSN:2231-0711

1386



dictionary is potentially unstable and tends to generate 
visual artifacts. In this paper, we propose an adaptive 
sparse domain selection (ASDS) scheme for sparse 
representation. A set of compact subdictionaries is learned 
from high-quality example image patches. The example 
image patches are clustered into many clusters. Since each 
cluster consists of many patches with similar patterns, a 
compact subdictionary can be learned for each cluster. 
Particularly, for simplicity, we use the principal component 
analysis (PCA) technique to learn the subdictionaries. For 
an image patch to be coded, the best subdictionary that is 
most relevant to the given patch is selected. Since the given 
patch can be better represented by the adaptively selected 
subdictionary, the whole image can be more accurately 
reconstructed than using a universal dictionary, which will 
be validated by our experiments. 
In addition to sparsity regularization, we introduce other 
regularization terms to further increase the IR performance. 
Here, we propose to use the piecewise autoregressive (AR) 
models, that are prelearned from the training dataset, to 
characterize the local image structures. For each given local 
patch, one or more AR models can be adaptively selected 
for regularization. On the other hand, considering the fact 
that there are often many repetitive image structures in an 
image, we introduce a nonlocal (NL) self-similarity 
constraint served as another regularization term, which 
preserves edge sharpness and suppresses noise.  
We use an efficient iterative shrinkage (IS) algorithm to 
solve the l1-minimization problem after adding ASDS and 
adaptive regularizations (AReg) into the sparse 
representation based IR framework. In addition, we 
adaptively estimate the image local sparsity to adjust the 
sparsity regularization parameters. In addition, we propose 
a centralized sparse representation (CSR) model to 
effectively reduce the sparse coding noise (SCN) 
(difference of original image and estimated image)and thus 
enhance the sparsity based IR performance. The basic idea 
is to integrate the image local sparsity constraint (i.e., a 
local patch can be coded by a few atoms sparsely selected 
from a dictionary) and the centralized sparsity constraint 
(i.e., the sparse coding coefficients should be close to their 
mean values) into a unified variational framework for 
optimization. Extensive experiments on IR are conducted, 
and the experimental results show that the proposed CSR 
algorithm outperforms significantly many state-of-the-art 
IR methods in terms of PSNR and SSIM values. 

 
PRIOR ART 

In recent years, sparse coding or sparse representation 
strategy has been widely studied to solve inverse problems, 
partially due to the progress of l0-norm and l1-norm 
minimization techniques . 

Let nX ℜ∈  is the target signal to be coded, and 
mn

m
×ℜ∈=Φ ],...,[ 1 φφ is a given dictionary of atoms 

(i.e., code set). The sparse coding of X over Φ  is to find a 

sparse vector ]á,...,á[ 1 m=α (i.e., most of the coefficients 

in α are close to zero) such that αΦ≈X  . If the sparsity 
is measured as the l0-norm of α , which counts the nonzero 
coefficients in α , the sparse coding problem becomes 

2

2
min α

α
Φ−X s.t. T≤

0
α  , where T is a scalar 

controlling the sparsity. Alternatively, the sparse vector can 
also be found by  
 

}.
2

2
min{argˆ

0
αλαα

α
+Φ−= X  (2) 

where λ  is a constant. Since the l0-norm is nonconvex, it is 
often replaced by either the standard l1-norm or the 
weighted l1–norm to make the optimization problem 
convex. 

The critical issue sparse representation modelling 
is the selection of dictionary Φ . Given a set of training 

image patches Nn
NssS ×ℜ∈= ],...,[ 1 , dictionary 

learning (DL) aims to jointly optimize the dictionary 
Φ and the representation coefficient matrix 

],...,[ 1 Nαα=Λ such that iis αΦ≈ and T
pi ≤α , 

where 0=p or 1. This can be formulated by the following 

minimization problem: 
 

F
S

2
minarg)ˆ,ˆ(

,
ΦΛ−=ΛΦ

ΛΦ
 s.t. ipi T ∀≤ ,α  (3) 

 

where
F

⋅  is the Frobenius norm. The above minimization 

problem is nonconvex even when 1=p . To make it 

tractable, approximation approaches, including MOD and 
K-SVD ,have been proposed to alternatively optimizing 
Φ and Λ  , leading to many state-of-the-art results in 
image processing. 

Regularization has been used in IR for a long time 
to incorporate the image prior information. As a classic 
method, the autoregressive (AR) modeling has been 
successfully used in image compression [33] and 
interpolation. Recently, the AR model was used for 
adaptive regularization in compressive image 

recovery :
2

2
min −

i iii
X

X αχ  s.t. AXY =  , where 

iχ  is the vector containing the neighboring pixels of pixel 

iX  within the support of the AR model, and ia is the AR 

parameter vector. In this paper, we propose a learning-
based adaptive regularization, where the AR models are 
learned from high-quality training images, to increase the 
AR modeling accuracy. 
 
In recent years, the nonlocal (NL) methods have led to 
promising results in various IR tasks, especially in image 
denoising. The idea of NL methods is very simple: the 
patches that have similar patterns can be spatially far from 
each other, and thus we can collect them in the whole 
image. This NL self-similarity prior was later employed in 
image deblurring and super-resolution as second 
regulariation term .  
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SPARSE REPRESENTATION WITH ADAPTIVE 

SPARSE DOMAIN SELECTION (ASDS) 
In this section, we propose an ASDS scheme, in which a 
series of compact subdictionaries are learned and assigns 
adaptively each local patch a subdictionary as the sparse 
domain. With ASDS, a weighted l1-norm sparse 
representation model will be proposed for IR tasks. 

Suppose that }{ kΦ , Kk ,....,2,1=  , is a set of 

orthonormal subdictionaries. Let X be an image vector, 

and , NiXRX ii ,...,2,1, == , be the ith patch 

(size: nn ×  ) vector of X, where iR is a matrix 

extracting patch iX  from X . For patch iX ,suppose that 

a subdictionary 
ikΦ is selected for it. Then, iX can be 

approximated as , TX iiki i
≤Φ=

1
,ˆ αα , via sparse 

coding. The whole image X can be reconstructed by 
averaging all of the reconstructed patches 

iX̂ , which can be 

mathematically written as  

).()(ˆ
1

1

1
ik

N

i

T
i

N

i
i

T
i i

RRRX αΦ= 
=

−

=

 (4) 

In (4), the matrix to be inverted is a diagonal matrix, and 
hence the calculation of (4) can be done in a pixel-by-pixel 
manner. Obviously, the image patches can be overlapped to 
better suppress noise and block artifacts. For the 
convenience of expression, we define the following 
operator “ ”: 

)()(ˆ
1

1

1
ik

N

i

T
i

N

i
i

T
i i

RRRX αα Φ=Φ= 
=

−

=

Δ
  (5) 

where Φ is the concatenation of all subdictionaries }{ kΦ  

and  α is the concatenation of all iα . 

Let vDHXY += be the observed degraded image, our 
goal is to recover the original image X  from Y . With 
ASDS and the definition in (5), the IR problem can be 
formulated as follows:  

}
2

2
{minargˆ

1
αλαα

α
+Φ−= DHY   (6) 

Clearly, one key procedure in the proposed ASDS scheme 

is the determination of 
ikΦ for each local patch. To 

facilitate the sparsity-based IR, we propose to learn offline 

the subdictionaries }{ kΦ , and select online from }{ kΦ the 

best fitted subdictionary to each patch iX . 

A. Learning the Subdictionaries 
In order to learn a series of subdictionaries to code the 
various local image structures, we need to first construct a 
dataset of local image patches for training. For this purpose, 
we collected a set of high-quality natural images and 
cropped from them a rich amount of image patches with 

size nn × . A cropped image patch, denoted by is , 

will be involved in DL if its intensity variance )( isVar is 

greater than a threshold Δ , i.e., Δ>)( isVar  . This patch 

selection criterion is to exclude the smooth patches from 

training and guarantee that only the meaningful patches 
with a certain amount of edge structures are involved in DL. 

Let M image patches ],....,,[ 21 MsssS =  are selected. 

Now our goal is to learn K compact subdictionaries }{ kΦ  

from S so that, for each given local image patch, the most 
suitable subdictionary can be selected. For this, we cluster 
the dataset S into K clusters, and learn a subdictionary from 
each of the K clusters. Apparently, the K clusters are 
expected to represent the K distinctive patterns in S. To 
generate perceptually meaningful clusters, we perform the 
clustering in a feature space. In the hundreds of thousands 
patches cropped from the training images, many patches 
are approximately the rotated version of the others. Since 
the human visual system is sensitive to image edges, which 
convey most of the semantic information of an image, we 
use the high-pass filtering output of each patch as the 
feature for clustering. It allows us to focus on the edges and 
structures of image patches without taking into account the 
pixel intensities and helps to increase the accuracy of 
clustering 

Consider ],....,,[ 21
h
M

hh
h sssS =  as the high-pass filtered 

dataset of S. We used the K-means algorithm to partition 

hS into K clusters },.....,,{ 21 KCCC  and denote by 

kμ the centroid of cluster kC . Once hS is partitioned, 

dataset S can then be clustered into K subsets 

KkSk ,....,2,1, = , and kS  is a matrix of dimension 

kmn× , where km  denotes the number of samples in kS . 

Now we focus on how to learn a subdictionary 

kΦ from the cluster kS such that all the elements in kS  

can be faithfully represented by kΦ . The design of kΦ  

can be intuitively formulated by the following objective 
function: 

}
2

{minarg)ˆ,ˆ(
1,

kkkkkk F
S

kk

Λ+ΛΦ−=ΛΦ
ΛΦ

λ  (7) 

where kΛ is the representation coefficient matrix of kS  

over kΦ Equation (7) is a joint optimization problem of 

kΦ and kΛ , and it can be solved by alternatively 

optimizing kΦ and , kΛ  like in the K-SVD algorithm . 

However, we do not directly use (7) to learn the 

subdictionary kΦ based on the following considerations. 

First, the 12 ll − joint minimization in (7) requires much 

computational cost. Second, we often assume that the 

dictionary kΦ is over-complete. Nonetheless, here kS is a 

subdataset after K-means clustering, which implies that, not 

only is the number of elements in kS limited, but also these 

elements tend to have similar patterns. Therefore, it is not 

necessary to learn an over-complete dictionary kΦ from 

kS . In addition, a compact dictionary will decrease much 

the computational cost of the sparse coding of a given 
image patch. For the above said reasons, we propose to 
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learn a compact dictionary while trying to approximate (7). 
So we choose PCA as good solution for this problem. 
PCA is a classical signal de-correlation and dimensionality 
reduction technique that is widely used in pattern 
recognition and statistical signal processing  In this paper, 

we apply PCA to each subdataset kS to compute the 

principal components, from which the dictionary kΦ is 

constructed. Denote by kΩ the co-variance matrix of 

dataset kS . By applying PCA to kΩ , an orthogonal 

transformation matrix kP can be obtained. If we set kP  as 

the dictionary and let k
T

kk SPZ = , we will then have 

0
22

=−=−
F

SPPS
F

ZPS k
T

kkkkkk . In other words, 

the approximation term in (7) will be exactly zero, yet the 

corresponding sparsity regularization term 
1kZ will have 

a certain amount because all the representation coefficients 

in kZ are preserved. 

For a better balance between the 1l -norm regularization 

term and 2l -norm approximation term in (7), we consider 

only the first r most important eigenvectors in kP to form a 

dictionary rΦ , i.e., ],......,,[ 21 rr ppp=Φ . Let 

k
T
rr SΦ=Λ . Clearly, since not all of the eigenvectors are 

used to form rΦ , the reconstruction error 

F
S rrk

2
ΛΦ− in (7) will increase with the decrease of 

r . However, the term 
1rΛ will decrease. Therefore, the 

optimal value of r , denoted by r , can be determined by  

}
2

{minarg
1rrrk

r F
Sr Λ+ΛΦ−= λ  (8) 

 Finally, the subdictionary learned from subdataset kS is 

],.....,[ 21 rk ppp=Φ . 

Applying the above procedures to all of the K subdatasets 

kS , we could get  K subdictionaries kΦ , which will be 

used in the ASDS process of each given image patch.  
 

B. Adaptive Selection of the Subdictionary 

We have learned a dictionary kΦ for each subset kS in the 

above subsection. Meanwhile, we have computed the 

centroid kμ of each cluster kC associated with kS . 

Therefore, we have K pairs },{ kk μΦ , with which the 

ASDS of each given image patch can be accomplished. 
In the proposed sparsity-based IR scheme, we assign 
adaptively a subdictionary to each local patch of X, 
spanning the adaptive sparse domain. Since X is unknown 
beforehand, we need to have an initial estimation of it. The 
initial estimation of X can be accomplished by taking 

wavelet bases as the dictionary and then solving (6) with 

the iterated shrinkage algorithm in [10]. Let X̂  be the 

estimate of X and iX̂ be a local patch of  X̂ . Recall that 

we have the centroid kμ of each cluster available, and 

hence we could select the best fitted subdictionary to 

iX̂ by comparing the high-pass filtered patch of  iX̂ , 

denoted by  h
iX̂ ,to the centroid kμ . For example, we can 

select the dictionary for iX̂  based on the minimum 

distance between h
iX̂  and  kμ , i.e., 

.ˆminarg
2

k
h
i

k
i Xk μ−= … (9) 

However, directly calculating the distance between 
h
iX̂ and kμ may not be robust enough because the initial 

estimate X̂ can be noisy. Here, we propose to determine 

the subdictionary in the subspace of kμ . Let 

],.....,[ 21 kU μμμ= be the matrix containing all the 

centroids. By applying SVD to the co-variance matrix of U , 
we can obtain the PCA transformation matrix of U. Let 

cΦ be the projection matrix composed by the first several 

most significant eigenvectors. We compute the distance 

between h
iX̂ and kμ in the subspace spanned by cΦ as  

2

ˆminarg kc
h
ic

k
i Xk μΦ−Φ=   (10) 

Compared with (9), (10) can increase the robustness of 

adaptive dictionary selection. By using (10), the ik th 

subdictionary 
ikΦ will be selected and assigned to patch 

iX̂ . Then, we can update the estimation X of by 

minimizing (6) and letting α̂ˆ Φ=X . With the updated 

estimate X̂ , the ASDS of X can be consequently updated. 
Such a process is iteratively implemented until the 

estimation X̂ converges. 
 

C. Adaptively Reweighted Sparsity Regularization 

In (6), the parameter λ is a constant to weight the 1l –norm 

sparsity regularization term .Here, we propose a new 
method to estimate adaptively the image local sparsity and 

then reweight the 1l -norm sparsity in the ASDS scheme. 

The reweighted 1l -norm sparsity regularized minimization 

with ASDS can be formulated as follows: 


= =

+Φ−=
N

i

n

j
jijiDHy

1 1
,, }

2

2
{minargˆ αλαα

α
  (11) 

where ji,α  is the coefficient associated with the jth atom 

of 
ikΦ and ji,λ  is the weight assigned to ji,α  . In [13], 

ji,λ  is empirically computed as )ˆ/(1 ,, εαλ += jiji , 

where ji,α̂  is the estimate of ji ,α  and ε is a small 
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constant. Here, we propose a more robust method for 

computing ji ,λ  by formulating the sparsity estimation as a 

maximum a posterior (MAP) estimation problem. Under 
the Bayesian framework, with the observation Y the MAP 
estimation of α is given by 

)}({logmaxargˆ YP αα
α

=  

    = }.)(log)(log{minarg αα
α

PYP −−  (12) 

 
By assuming Y is contaminated with additive Gaussian 

white noises of standard deviation nσ , we have 

)
2

1
exp(

2

1
)(

2

22
α

σσ
α Φ−−

Π
= DHYYP

nn

 (13) 

 
The prior distribution )(αP is often characterized by an 

i.i.d. zero-mean Laplacian probability model 

)
2

exp(
2

1
)( ,

,,11
ji

jiji

n

j

N

i

P α
σσ

α −= ΠΠ
==

 (14) 

 

where ji,σ is the standard deviation of ji,α . By plugging 

)( αYP and )(αP  into (12), we could readily derive the 

desired weight in (11) as jinji ,
2

, /22 σσλ = . For 

numerical stability,we compute the weights by 

 
εσ

σλ
+

=
ji

n
ji

,

2

,

22
   (15) 

where ji,σ is an estimate of ji,σ and ε is a small constant. 

Now, let us discuss how to estimate ji,σ . Let iX


be the 

estimate of iX and LlX l
i ,....2,1, =


, be the nonlocal 

similar patches to iX


. (The determination of nonlocal 

similar patches to iX


will be described in Section IV-C.) 

The representation coefficients of these similar patches 

over the selected subdictionary 
ikΦ is l

i
T
k

l
i X

i

 Φ=α . Then, 

we can estimate ji,σ by calculating the standard deviation 

of each element ji,α in l
iα .  

 
SPATIALLY ADAPTIVE REGULARIZATION 

In the above Section , we proposed to select adaptively a 
subdictionary to code the given image patch. To further 
improve the IR method we introduce two types of adaptive 
regularization (AReg) terms. A local area in a natural 
image can be viewed as a stationary process, which can be 
well modeled by the autoregressive (AR) models. Here, we 
propose to learn a set of AR models from the clustered high 
quality training image patches, and adaptively select one 
AR model to regularize the input image patch. Besides the 
AR models, which exploit the image local correlation, we 

propose to use the nonlocal similarity constraint as a 
complementary AReg term to the local AR models.  
 
Training the AR Models 
Recall that, in the above Section, we have partitioned the 

whole training dataset into K  subdatasets kS . For each 

kS , an AR model can be trained using all of the sample 

patches inside it. Here we let the support of the AR model 
be a square window, and the AR model aims to predict the 
central pixel of the window by using the neighboring pixels. 
Considering that determining the best order of the AR 
model is not trivial, and a high order AR model may cause 
data over-fitting, in our experiments a 3×3 window (i.e., 
AR model of order 8) is used. The vector of AR model 

parameters, denoted by ka , of the  kth  subdataset  Sk , can 

be easily computed by solving the following least square 
problem: 
 


∈

−=
ki Ss

i
T

i
a

k qasa 2)(minarg    (16) 

 
where si is the central pixel of image patch si and qi is the 
vector that consists of the neighboring pixels of si within 
the support of the AR model. By applying the AR model 
training process to each subdataset, we obtain a set of AR 

models },......,,{ 21 Kaaa that are used for adaptive 

regularization. 
 

A. Adaptive Selection of the AR Model for 
Regularization 

The adaptive selection of the AR model for each patch Xi is 
similar to the selection of a subdictionary for Xi described 
in Section Adaptive Selection of the sub-dctionary. With an 

estimation iX


 of Xi, we compute its high-pass Gaussian 

filtering output h
iX


. Let 

2
minarg kc

h
ic

k
i Xk μΦ−Φ=


, and then the kith AR 

model 
ika will be assigned to patch Xi . Denote by Xi the 

central pixel of patch Xi  and by iχ the vector containing 

the neighboring pixels of Xi within patch Xi. We can expect 

that the prediction error of Xi using 
ika and iχ should be 

small, i.e., 
2

2i
T
ki i

aX χ− should be minimized. By 

incorporating this constraint into the ASDS-based sparse 
representation model in (11), we have a lifted objective 
function as follows: 
 

}
2

2

2

2
{minarg

1 1
,, 

∈= =

−⋅++Φ−=
XX

i
T
ki

N

i

n

j
jiji

i

i
aXDHY χγαλαα

α


  (17) 

where γ is a constant balancing the contribution of the AR 

regularization term. For the convenience of expression, we 

 K.S.K.L.Priyanka et al IJCSET |September 2012 | Vol 2, Issue 9, 1386-1395 www.ijcset.net | ISSN:2231-0711

1390



write the third term 
∈

−
XX

i
T
ki

i

i
aX

2

2
χ as 

2

2
)( XAI − , 

where I is the identity matrix and  
 





=
.,0

,
),( otherwise

a
A i

ji ikiij aatofisanelemenifX ∈,χ  

 
Then, (17) can be rewritten as 

}
2

2
)(

2

2
{minarg

1 1
,, XAIDHY

N

i

n

j
jiji −⋅++Φ−= 

= =

γαλαα
α


  (18) 

 
B. Adaptive Regularization by Nonlocal Similarity 

The above discussed AR model-based AReg exploits the 
local statistics in each image patch. On the other hand, 
there are often many repetitive patterns throughout a 
natural image. Such nonlocal redundancy is very helpful to 
improve the quality of reconstructed images. As a 
complementary AReg term to AR models, we further 
introduce a nonlocal similarity regularization term into the 
sparsity-based IR framework. 
 
For each local patch Xi, we search for the similar patches to 
it in the whole image X(in practice, in a sufficiently large 

area around Xi). A patch l
iX  is selected as a similar patch 

to Xi if tXXe l
ii

l
i ≤−=

2

2
, where t is a preset 

threshold, and iX


and l
iX


 are the current estimates of Xi 

and l
iX , respectively, or we can select the patch l

iX


 if it 

is within the first L(L=10  in our experiments) closest 

patches to iX


. Let Xi be the central pixel of patch Xi, and 
l
iX  be the central pixel of patch l

iX . Then, we can use the 

weighted average of , l
iX  i.e.,

=

L

l

l
i

l
i Xb

1

 , to predict Xi, 

and the weight l
ib  assigned to l

iX  is set as 

i
l
i

l
i cheb /)/exp(−= , where h is a controlling factor of 

the weight and 
=

−=
L

l

l
ii hec

1

)/exp( is the normalization 

factor. Considering that there is much nonlocal redundancy 
in natural images, we expect that the prediction error 

2

2

1


=

−
L

l

l
i

l
ii XbX should be small. Let bi be the column 

vector containing all the weights l
ib and iβ be the column 

vector containing all l
iX . By incorporating the nonlocal 

similarity regularization term into the ASDS based sparse 
representation in (11), we have 
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where η is a constant balancing the contribution of 

nonlocal regularization. Equation (19) can be rewritten as 
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where I is the identity matrix and 
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  SUMMARY OF THE ALGORITHM 
Afetr including both the local AR regularization and the 
nonlocal similarity regularization into the ASDS-based 
sparse representation in (11), we have the following ASDS-
AReg-based sparse representation to solve the IR problem: 
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In (21), the first 2l -norm term is the fidelity term, 

guaranteeing that the solution α


Φ=X  can well fit the 
observation Y after degradation by operators H and D; the 

second 2l -norm term is the local AR model-based adaptive 

regularization term, requiring that the estimated image is 

locally stationary; the third 2l -norm term is the nonlocal 

similarity regularization term, which uses the nonlocal 
redundancy to enhance each local patch; and the last 

weighted 1l -norm term is the sparsity penalty term, 

requiring that the estimated image should be sparse in the 
adaptively selected domain. Equation (21) can be rewritten 
as  
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 By letting  
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(22) can be rewritten as  
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 (24)  

This is a reweighted 1l -minimization problem, which can 

be effectively solved by the iterative shrinkage algorithm 
[8]. We outline the iterative shrinkage algorithm for 
optimizing (24) in Algorithm 1. 
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Algorithm 1 

1) Initialization: 
a) By taking the wavelet domain as the sparse domain, we 

can compute an initial estimate, denoted by X


, of X 
by using the iterated wavelet shrinkage algorithm [8]; 

b) With the initial estimate X


, we select the subdictionary 

ikΦ and the AR model ai using (10), and calculate the 

nonlocal weight bi for each local patch iX


; 

c) Initialize A and B with the selected AR models and the 
nonlocal weights; 

d) Preset eP,,,ηγ  and the maximal iteration number, 

denoted by Max_Iter; 
e) Set k=0. 
 

2) Iterate on k until eNXX kk ≤− + /
2

2)1()(


 or 

IterMaxk _≥  is satisfied. 

a) 

)()
~

( )()()()()()2/1( kkkkTkk XVXUUYXXKYKXX


−−+=−+=+

, where DHDHU T)(= and 

)()()()( 22 BIBIAIAIV TT −−+−−= ηγ ; 

b)Compute 

],.....,[ )2/1()2/1(
1

)2/1(

1

+++ ΦΦ= k
N

T
k

kT
k

k XRXR
N


α , 

where N is the total number of image patches;  

c) ),( ,
)2/1(

,
)1(

, ji
k
ji

k
ji soft ταα ++ =

, where ),( , jisoft τ⋅ is a 

soft thresholding function with threshold ji,τ ; 

d) Compute )1()1( ++ Φ= kkX α


using (5), which can be 
calculated by first reconstructing each image patch 

with )1( +Φ= k
iki i

X α


and then averaging all the 

reconstructed image patches; 
e) If mod(k,P) = 0 , update the adaptive sparse domain of X 

and the matrices A and B using the improved estimate 
)1( +kX


. 

 
In Algorithm 1, e is a prespecified scalar controlling the 
convergence of the iterative process, and Max_Iter is the 
allowed maximum number of iterations. The thresholds 

ji,τ are locally computed as rjiji /,, λτ =  [8], where 

ji,λ are calculated by (15) and r is chosen such that 

2
)( ΦΦ> KKr T . Since the dictionary 

ikΦ varies 

across the image, the optimal determination of r for each 
local patch is difficult. Here, we empirically set r=4.7 for 
all of the patches .P is a preset integer, and we only update 

the subdictionaries 
ikΦ , the AR models ai and the weights 

bi in every P iterations to save computational cost. With the 
updated ai and bi, A and B can be updated, and then the 
matrix V can be updated. 
 
 

Centralised Sparse Representation: 
The equation for CSR model can be written as: 

p

N

i
ii

Y
Y lHY 

=

−++Φ−=
1

1

2

2
{minarg μαγαλαα 

where 

∈

=
iCj

jijii w ,, αμ
(where jiw , is the weight, 

jiw , can be set to be inverse proportional to the distance 
between patches i and j: 

WhXXw jiiji /)/exp(
2

2,,


−−=

where 

iiX α


Φ=
and jijiX ,, α


Φ=

are the estimates of patches 
i and j, W is a normalization factor and h is a 

predetermined scalar. ), pl
is l-norm and p=0 or 1, From 

above Eq we can more clearly see that the CSR model 

unifies the local sparsity (i.e. 1
α

) and nonlocal similarity 

induced sparsity (i.e. pii lμα −
) into a unified variational 

formulation. By exploiting both the local and nonlocal 
redundancy,better IR results can be expected. 
 

EXPERIMENTAL RESULTS 
To illustrate the robustness of the proposed method to the 
training dataset, we use two different sets of training 
images in the experiments, each set having five high-
quality images as shown in Fig. 1. We can see that these 
two sets of training images are very different in contents. 

We use Δ>)( isVar  with 16=Δ  to exclude the smooth 

image patches, and a total amount of 727 615 patches of 
size 7×  7 are randomly cropped from each set of training 
images. In the experiments of deblurring, two types of blur 
kernels, a Gaussian kernel of standard deviation 3 and a 9×  
9 uniform kernel, were used to simulate blurred images. 
Additive Gaussian white noises with standard deviations 

2  was then added to the blurred images, respectively. In 
the experiments of super-resolution, the degraded LR 
images were generated by first applying a truncated 7 ×7 
Gaussian kernel of standard deviation 1.6 to the original 
image and then down-sampling by a factor of 3. In both of 
the deblurring and super-resolution experiments, 7 ×  7 
patches (for HR image) with 5-pixel- width overlap 
between adjacent patches were used in the proposed 
methods. For color images, all of the test methods were 
applied to the luminance component only because human 
visual system is more sensitive to luminance changes, and 
the bi-cubic interpolator was applied to the chromatic 
components. Here we only report the PSNR and SSIM [12] 
results for the luminance component. To examine more 
comprehensively the proposed approach, we give three 
results of the proposed method: the results by using only 
ASDS (denoted by ASDS), by using ASDS plus AR 
regularization (denoted by ASDS-AR), and by using ASDS 
with both AR and nonlocal similarity regularization 
(denoted by ASDS-AR-NL),CSR. 
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Fig 1 Two sets of high-quality images used for training subdictionaries and AR models. (a) Training dataset 1. (b) Training dataset 2.We see that the two 

trainingdatasets are very different in the contents. 
 

 
Fig:2 Comparison of the deblurred images on barbara  by different methods on training dataset 1(Gaussian blur kernel and 2=nσ ). Original, 

degraded,ASDS  method 
(PSNR=26.85dB,SSIM=0.7791), the ASDS_AR method (PSNR= 27.14dB, SSIM=0.7934), the ASDS_AR_NL method 

(PSNR=27.92dB,SSIM=0.8263), the CSR method(PSNR=27.98 dB,SSIM=0.8216). 
 

 
Fig:3 Comparison of the deblurred images on hat  by different methods on training dataset 2(uniform blur kernel and 2=nσ ). Original, 

degraded,ASDS  method 
(PSNR=31.54dB,SSIM=0.8675), the ASDS_AR method (PSNR= 31.47dB, SSIM=0.8660), the ASDS_AR_NL method 

(PSNR=31.55dB,SSIM=0.8659), the CSR method(PSNR=31.95 dB,SSIM=0.8742). 
 

 
Fig:4 Comparison of the super-resolution images on plants  by different methods on training dataset 1(scaling factor=3). Original, degraded,ASDS  

method 
(PSNR=33.07dB,SSIM=0.9025), the ASDS_AR method (PSNR=33.02dB, SSIM=0.9019), the ASDS_AR_NL method 

(PSNR=33.40dB,SSIM=0.9072), the CSR method(PSNR= 34.11dB,SSIM=0.9217). 
 

 
Fig:5 Comparison of the super-resolution images on noisy girl  by different methods on training dataset 2(scaling factor=3). Original, degraded,ASDS  

method 
(PSNR=33.39dB,SSIM=0.8190), the ASDS_AR method (PSNR=33.40dB, SSIM=0.8192), the ASDS_AR_NL method 

(PSNR=33.47dB,SSIM=0.8200), the CSR method(PSNR= 33.68dB,SSIM=0.8258). 

 
The above figures gives the comparision results of 
deblurring and super-resolution reconstructed by using 
ASDS,ASDS_AR,ASDS_AR_NL and CSR methods and 
their PSNR,SSIM values.The tables below gives the results 

of deblurring and super-resolution for different images in 
terms of PSNR and SSIM values on Training dataset 1 and 
Training dataset 2 respectively. 
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Images ASDS-TD1 ASDS-TD2 ASDS-AR-TD1 ASDS-AR-TD2 ASDS-AR-NL-TD1 ASDS-AR-NL-TD2 CSR 

Barbara 
26.85 

0.7791 
26.80 

0.7765 
27.14 

0.7934 
27.09 
0.7925 

27.92 
0.8263 

27.90 
0.8258 

27.98 
0.8216 

Bike 
25.57 

0.8119 
25.53 

0.8103 
25.47 

0.8089 
25.43 
0.8072 

25.54 
0.8095 

25.50 
0.8075 

25.85 
0.8218 

Parrots 
31.27 

0.8997 
31.23 

0.8998 
31.15 

0.8988 
31.13 
0.8988 

31.20 
0.8984 

31.20 
0.8984 

32.05 
0.9111 

Baboon 
21.41 

0.5845 
21.41 

0.5840 
21.51 

0.5835 
21.50 
0.5824 

21.58 
0.5740 

21.58 
0.5741 

21.56 
0.5824 

Pentagon 
25.66 

0.7257 
25.65 

0.7242 
25.91 

0.7343 
25.91 
0.7332 

26.61 
0.7561 

26.60 
0.7548 

26.69 
0.7587 

Boats 
28.84 

0.8033 
28.80 

0.8010 
29.36 

0.8233 
29.33 
0.8221 

30.78 
0.8677 

30.76 
0.8671 

31.10 
0.8816 

Cameraman 
27.19 

0.7860 
27.15 

0.7838 
27.37 

0.8103 
27.37 
0.8137 

28.12 
0.8546 

28.10 
0.8548 

28.54 
0.8561 

Hat 
31.61 

0.8678 
31.54 

0.8675 
31.54 

0.8666 
31.47 
0.8660 

31.58 
0.8655 

31.55 
0.8659 

31.95 
0.8742 

Peppers 
28.09 

0.7670 
28.10 

0.7672 
28.47 

0.7883 
28.47 
0.7892 

29.44 
0.8344 

29.44 
0.8350 

29.66 
0.8406 

Straw 
22.32 

0.6681 
22.31 

0.6658 
22.41 

0.6667 
22.41 
0.6642 

22.54 
0.6570 

22.52 
0.6550 

22.76 
0.6705 

Table:1PSNR and SSIM results of Deblurred Images (Uniform Blur Kernel ,Noise Level 2=nσ ) 

 
Images ASDS-TD1 ASDS-TD2 ASDS-AR-TD1 ASDS-AR-TD2 ASDS-AR-NL-TD1 ASDS-AR-NL-TD2 CSR 

Barbara 
23.82 

0.6598 
23.81 

0.6593 
23.82 

0.6602 
23.81 
0.6597 

23.85 
0.6637 

23.84 
0.6632 

27.77 
0.8252 

Bike 
22.66 

0.6727 
22.63 

0.6707 
22.65 

0.6728 
22.63 
0.6708 

22.82 
0.6843 

22.81 
0.6831 

27.59 
0.8842 

Parrots 
27.78 

0.8629 
27.75 

0.8620 
27.84 

0.8631 
27.81 
0.8622 

27.95 
0.8676 

27.91 
0.8668 

33.45 
0.9361 

Baboon 
20.11 

0.3880 
20.09 

0.3874 
20.10 

0.3886 
20.08 
0.3880 

20.12 
0.3950 

20.11 
0.3933 

21.55 
0.5956 

Pentagon 
23.71 

0.5990 
23.71 

0.5978 
23.70 

0.5995 
23.71 
0.5987 

23.75 
0.6103 

23.74 
0.6088 

27.79 
0.8284 

Boats 
26.91 

0.7677 
26.93 

0.7675 
27.01 

0.7675 
27.01 
0.7672 

27.12 
0.7697 

27.13 
0.7696 

31.43 
0.8941 

Cameraman 
24.07 

0.7596 
24.06 

0.7603 
24.04 

0.7584 
24.04 
0.7595 

24.21 
0.7600 

24.21 
0.7605 

28.29 
0.8561 

Hat 
28.79 

0.8022 
28.83 

0.8034 
28.82 

0.8016 
28.83 
0.8030 

28.94 
0.8051 

28.94 
0.8064 

33.09 
0.9026 

Peppers 
26.29 

0.7822 
26.28 

0.7865 
26.25 

0.7874 
26.26 
0.7864 

26.38 
0.7890 

26.40 
0.7880 

30.20 
0.8673 

Straw 
20.74 

0.4757 
20.74 

0.4749 
20.76 

0.4781 
20.76 
0.4775 

20.86 
0.4881 

20.85 
0.4873 

25.47 
0.8383 

Table:2 PSNR and SSIM results of Deblurred Images (Gaussian Blur Kernel ,Noise Level 2=nσ ) 

 
Images ASDS(TD1) ASDS(TD2) 

ASDS-
AR(TD1) 

ASDS-AR(TD2) 
ASDS-AR-
NL(TD1) 

ASDS-AR-NL(TD2) CSR 

Parrot 
29.75 

0.9071 
29.75 

0.9066 
29.80 

0.9070 
29.80 
0.9065 

30.10 
0.9099 

30.09 
0.9100 

30.63 
0.9181 

Hat 
30.91 

0.8694 
30.82 

0.8681 
30.84 

0.8684 
30.76 
0.8671 

31.01 
0.8716 

30.99 
0.8713 

31.35 
0.8738 

Bike 
24.33 

0.7855 
24.60 

0.7959 
24.28 

0.7835 
24.31 
0.7844 

24.61 
0.7962 

24.26 
0.7826 

24.72 
0.8029 

Butterfly 
26.74 

0.8939 
26.69 

0.8923 
26.65 

0.8909 
26.59 
0.8893 

27.35 
0.9057 

27.30 
0.9048 

28.24 
0.9219 

Flower 
28.90 

0.8386 
28.89 

0.8377 
28.90 

0.8385 
28.88 
0.8375 

29.17 
0.8464 

29.17 
0.8462 

29.55 
0.8586 

Girl 
33.41 

0.8193 
33.39 

0.8190 
33.40 

0.8193 
33.40 
0.8192 

33.47 
0.8201 

33.47 
0.8200 

33.68 
0.8258 

Leaves 
26.25 

0.8947 
26.22 

0.8940 
26.17 

0.8927 
26.17 
0.8924 

26.92 
0.9094 

26.92 
0.9095 

27.59 
0.9273 

Parthenon 
26.74 

0.7322 
26.75 

0.7326 
26.73 

0.7317 
26.75 
0.7326 

26.89 
0.7367 

26.89 
0.7366 

27.23 
0.7524 

Plants 
33.07 

0.9025 
33.05 

0.9020 
33.02 

0.9019 
33.00 
0.9014 

33.40 
0.9072 

33.40 
0.9070 

34.11 
0.9217 

Raccoon 
29.13 

0.7650 
29.11 

0.7633 
29.14 

0.7653 
29.10 
0.7636 

29.25 
0.7669 

29.22 
0.7654 

29.30 
0.7677 

Table:3 PSNR and SSIM results of reconstructed HR images (Noise Level  0=nσ ) 
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Images ASDS(TD1) ASDS(TD2) 
ASDS-

AR(TD1) 
ASDS-

AR(TD2) 
ASDS-AR-
NL(TD1) 

ASDS-AR-
NL(TD2) 

CSR 

Noisy Parrot 
28.92 
0.8684 

28.90 
0.8679 

28.81 
0.8633 

28.78 
0.8633 

28.74 
0.8653 

28.72 
0.8655 

29.50 
0.8775 

Noisy Hat 
29.61 
0.8087 

29.61 
0.8097 

29.50 
0.8070 

29.50 
0.8084 

29.57 
0.8131 

29.57 
0.8147 

29.96 
0.8249 

Noisy Bike 
23.60 
0.7234 

23.58 
0.7222 

23.48 
0.7197 

23.48 
0.7186 

23.53 
0.7208 

23.52 
0.7197 

23.77 
0.7363 

Noisy Butterfly 
25.76 
0.8417 

25.78 
0.8406 

25.57 
0.8367 

26.02 
0.8604 

26.01 
0.8600 

26.01 
0.8603 

26.89 
0.8887 

Noisy Flower 
27.58 
0.7685 

27.54 
0.7665 

27.64 
0.7705 

27.62 
0.7700 

27.67 
0.7744 

27.66 
0.7742 

28.07 
0.7936 

Noisy Girl 
31.69 
0.7574 

31.72 
0.7591 

31.70 
0.7578 

31.72 
0.7591 

31.76 
0.7585 

31.77 
0.7589 

32.04 
0.7642 

Noisy Leaves 
25.22 
0.8471 

25.14 
0.8455 

25.09 
0.8430 

25.05 
0.8425 

25.47 
0.8628 

25.50 
0.8637 

26.24 
0.8949 

Noisy Parthenon 
26.09 
0.6842 

26.12 
0.6855 

26.06 
0.6819 

26.08 
0.6833 

26.07 
0.6803 

26.08 
0.6814 

26.42 
0.7008 

Noisy Plants 
30.94 
0.8288 

30.95 
0.8292 

30.89 
0.8285 

30.91 
0.8291 

31.06 
0.8348 

31.06 
0.8344 

31.81 
0.8606 

Noisy Raccoon 
27.99 
0.6883 

27.98 
0.6882 

28.00 
0.6880 

27.98 
0.6871 

28.00 
0.6815 

27.99 
0.6814 

28.02 
0.6812 

Table:4 PSNR and SSIM results of reconstructed HR images (Noise Level  5=nσ ) 

 
CONCLUSION 

Image restoration (IR) is a fundamental topic in image 
processing and computer vision applications, and it has 
been widely studied. In this paper, we investigated IR with 
the sparse coding techniques. A novel sparse 
representation-based image deblurring and (single-image) 
super-resolution method using adaptive sparse domain 
selection (ASDS) and adaptive regularization 
(AReg),Centralised Sparse Representation(CSR). Since the 
optimal sparse domains of natural images can vary 
significantly across different images and different image 
patches in a single image, we selected adaptively the 
dictionaries that were prelearned from a dataset of high-
quality example patches for each local patch. To further 
improve the quality of reconstructed images (reconstructed 
by using ASDS), we introduced two AReg terms into the 
ASDS based image restoration framework. One is a set of 
autoregressive (AR) models were learned from the training 
dataset and were used to regularize the image local 
smoothness. The image nonlocal similarity was 
incorporated as another regularization term to exploit the 
image nonlocal redundancies. An iterated shrinkage 
algorithm was proposed to implement the proposed ASDS 
algorithm with AReg. To further enhance the quality of the 
reconstructed images we introduced the concept of sparse 
coding noise (SCN), and it was empirically found that SCN 
follows Laplacian distributions. To suppress SCN and thus 
improve the quality of IR, the centralized sparse 
representation (CSR) model was proposed by exploiting the 
image nonlocal self-similarity. The experimental results on 
natural images showed that the proposed approach can 
significantly outperform other leading IR methods in both 
PSNR and visual quality(SSIM). 
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