
Comparison on Different Load Balancing
Algorithms of Peer to Peer Networks

K.N.Sirisha *, S.Bhagya Rekha

M.Tech,Software Engineering

Noble college of Engineering & Technology for Women
Web Technologies

Aurora’s Engineering College.
sirishalenin@gmail.com

bhagyarekha2001@gmail.com

Abstract— Load balancing is the process of improving the
performance of a peer to peer networks through a
redistribution of load among the processors. In this paper we
present the performance analysis of various load balancing
algorithms based on different parameters, considering two
typical load balancing approaches static and dynamic. The
analysis indicates that static and dynamic both types of
algorithm can have advancements as well as weaknesses over
each other. Deciding type of algorithm to be implemented will
be based on type of parallel applications to solve. The main
purpose of this paper is to help in design of new algorithms in
future by studying the behavior of various existing algorithms.

Keywords- Peer to Peer networks, Load Balancing Algorithms.
Distributed systems

I. INTRODUCTION

Parallel and distributed systems more than one processor
processing parallel programs. The amount of processing
time needed to execute all processes assigned to a
processor is called workload of a processor. A system of
distributed computers with tens or hundreds of computers
connected by high speed networks has many advantages
over a system that has the same standalone computers. A
distributed system provide the resource sharing as one of its
major advantages, which provide the better performance
and reliability than any other traditional system in the same
conditions. One of the research issues in parallel and
distributed systems is the development of effective
techniques for distributing workload on multiple
processors. The main goal is to distribute the jobs among
processors to maximize throughput, maintain stability,
Resource utilization and should be fault tolerant in nature.
Local scheduling performed by the operating system
consists of the distribution of processes to the time-slices of
the processor. On the other hand Global scheduling is the
process of deciding where to execute a process in a
multiprocessor system.
Global scheduling is further classified into static and
dynamic scheduling categories. In static scheduling
processes are assigned to processors before the executions
starts. On the other hand dynamic scheduling can reassign
the processes to the processors during the execution. Load
sharing and load balancing are the further classifications of
dynamic scheduling. Load sharing struggle to avoid the
unshared state in processors which remain idle while tasks
compete for service at some other processor. Load
balancing also do the same but it goes one step ahead of

load sharing by attempting to equalize the loads at all
processors. Load balancing is to ensure that every
processor in the system does approximately the same
amount of work at any point of time. Processes may
migrate from one node to another even in the middle of
execution to ensure equal workload. Algorithms for load
balancing have to rely on the assumption that the on hand
information at each node is accurate to prevent processes
from being continuously circulated about the system
without any progress. Load balancing is one of
prerequisites to utilize the full resources of parallel and
distributed systems. Load balancing may be centralized in a
single processor or distributed among all the processing
elements that participate in the load balancing Process.
Several tasks are scheduled for separate processors, based
on the current load on each CPU. Many researchers have
been carried out on load balancing for many years with the
aim is to find the load balancing schemes with overhead as
low as possible.

II . PAPER ORGANIZATION
There are different load balancing algorithms and study of
six load balancing algorithms; various parameters are used
to check the results.

III .Gives the brief Introduction of static load balancing

algorithms
IV. Gives introduction of dynamic load balancing

algorithms.
V. More load balancing algorithms.
VI. Parameters
VII .Comparison
VIII. Conclusion

III. STATIC LOAD BALANCING
In this method the performance of the processors is
determined at the beginning of execution. Then depending
upon their performance the work load is distributed in the
start Performance Analysis of Load Balancing Algorithms
The slave processors calculate their allocated work and
submit their result to the master. A task is always executed
on the processor to which it is assigned that is static load
balancing methods are non-preemptive. The goal of static
load balancing method is to reduce the overall execution
time of a concurrent program while minimizing the
communication delays. A general disadvantage of all static
schemes is that the final selection of a host for process

K.N.Sirisha et al IJCSET |July 2012| Vol 2, Issue 7,1333-1337

1333

allocation is made when the process is created and cannot
be changed during process execution to make changes in
the system load.

A. Round Robin and Randomized Algorithms
In the round robin processes are divided evenly between all
processors. Each new process is assigned to new processor
in round robin order. The process allocation order is
maintained on each processor locally independent of
allocations from remote processors. With equal workload
round robin algorithm is expected to work well. Round
Robin and Randomized schemes work well with number of
processes larger than number of processors. Advantage of
Round Robin algorithm is that it does not require inter-
process communication. Round Robin and Randomized
algorithm both can attain the best performance among all
load balancing algorithms for particular special purpose
applications. In general Round Robin and Randomized are
not expected to achieve good performance in general case.

B. Central Manager Algorithm
In this algorithm a central processor selects the host for
new process. The minimally loaded processor depending on
the overall load is selected when process is created. Load
manager selects hosts for new processes so that the
processor load confirms to same level as much as possible.
From then on hand information on the system load state
central load manager makes the load balancing judgment.
This information is updated by remote processors, which
send a message each time the load on them changes. This
information can depend on waiting of parent’s process of
completion of its children’s process, end of parallel
execution the load manager makes load balancing decisions
based on the system load information, allowing the best
decision when of the process created. High degree of inter-
process communication could make the bottleneck state.
This algorithm is expected to perform better than the
parallel applications, especially when dynamic activities
are created by different hosts.

C. Threshold Algorithm
According to this algorithm, the processes are assigned
immediately upon creation to hosts. Hosts for new
processes are selected locally without sending remote
messages. Each processor keeps a private copy of the
system’s load. The load of a processor can characterize by
one of the three levels: underloaded, medium and
overloaded. Two threshold parameters under and upper can
be used to describe these levels.

Under loaded - load < under
Medium - under ≤ load ≤ upper
Overloaded - load > upper

Initially, all the processors are considered to be under
loaded. When the load state of a processor exceeds a load
level limit, then it sends messages regarding the new load
state to all remote processors, regularly updating them as to
the actual load state of the entire system. If the local state is
not overloaded then the process is allocated locally.
Otherwise, a remote under loaded processor is selected, and

if no such host exists, the process is also allocated locally.
Thresholds algorithm have low inter process
communication and a large number of local process
allocations. The later decreases the overhead of remote
process allocations and the overhead of remote memory
accesses, which leads to improvement in performance. A
disadvantage of the algorithm is that all processes are
allocated locally when all remote processors are
overloaded. A load on one overloaded processor can be
much higher than on other overloaded processors, causing
significant disturbance in load balancing, and increasing the
execution time of an application.
.

IV. DYNAMIC LOAD BALANCING
It differs from static algorithms in that the work load is
distributed among the processors at runtime. The master
assigns new processes to the slaves based on the new
information collected. Unlike static algorithms, dynamic
algorithms allocate processes dynamically when one of the
processors becomes under loaded. Instead, they are
buffered in the queue on the main host and allocated
dynamically upon requests from remote hosts.

I. Central Queue Algorithm
Central Queue Algorithm works on the principle of
dynamic distribution. It stores new activities and unfulfilled
requests as a cyclic FIFO queue on the main host. Each
new activity arriving at the queue manager is inserted into
the queue. Then, whenever a request for an activity is
received by the queue manager, it removes the first activity
from the queue and sends it to the requester. If there are no
ready activities in the queue, the request is buffered, until a
new activity is available. If a new activity arrives at the
queue manager while there are unanswered requests in the
queue, the first such request is removed from the queue and
the new activity is assigned to it. When a processor load
falls under the threshold, the local load manager sends a
request for a new activity to the central load manager. The
central load manager answers the request immediately if a
ready activity is found in the process-request queue, or
queues the request until a new activity arrives.

II. Local Queue Algorithm
Main feature of this algorithm is dynamic process
migration support. The basic idea of the local queue
algorithm is static allocation of all new processes with
process migration initiated by a host when its load falls
under threshold limit, is a user-defined parameter of the
algorithm. The parameter defines the minimal number of
ready processes the load manager attempts to provide on
each processor.
Initially, new processes created on the main host are
allocated on all under loaded hosts. The number of parallel
activities created by the first parallel construct on the main
host is usually sufficient for allocation on all remote hosts.
From then on, all the processes created on the main host
and all other hosts are allocated locally. When the host gets
under loaded, the local load manager attempts to get several
processes from remote hosts. It randomly sends requests
with the number of local ready processes to remote load
managers. When a load manager receives such a request, it

K.N.Sirisha et al IJCSET |July 2012| Vol 2, Issue 7,1333-1337

1334

compares the local number of ready processes with the
received number. If the former is greater than the latter,
then some of the running processes are transferred to the
requester and an affirmative confirmation with the number
of processes transferred is returned.

V. MORE LOAD BALANCING ALGORITHMS

A. Random walk algorithm
B. Simple efficient load balancing algorithm
C. Load Balancing in Structured P2P Systems
D.Simple Load Balancing for Distributed Hash Tables

A. Random walk algorithm
We quantify the effectiveness of random walks for
searching and construction of unstructured Peer-to-peer
(P2P) networks. For searching, we argue that random walks
achieve improvement over _ooding in the case of clustered
overlay topologies and in the case of re-issuing the same
request several times. For construction, we argue that an
expander can be maintained dynamically with constant
operations per addition. The key technical ingredient of our
approach is a deep result of stochastic processes indicating
that samples taken from consecutive steps of a random
walk can achieve statistical properties similar to
independent sampling (if the second Eigen value of the
transition matrix is bounded away from 1, which translates
to good expansion of the network; such connectivity is
desired, and believed to hold, in every reasonable network
and network model). This property has been previously
used in complexity theory for construction of
pseudorandom number generators. We reveal another facet
of this theory and translate savings in random bits to
savings in processing overhead.
In every case where uniform sampling from the set of
nodes of a P2P network would have been a good
algorithmic approach, the random walk method is an
excellent candidate (i) to simulate uniform sampling,
moreover, (ii) the number of simulation steps required can
be as low as the number of samples in independent uniform
sampling, which translates to constant network overhead,
independent of the size of the network.

B. Simple efficient load balancing algorithm
Load balancing is a critical issue for the efficient operation
of peer-to-peer networks. We give two new load- balancing
protocols whose provable performance guarantees are
within a constant factor of optimal. Our proto- cols refine
the consistent hashing data structure that underlies the
Chord (and Koorde) P2P network. Both pre- serve Chord’s
logarithmic query time and near-optimal data migration
cost. Our first protocol balances the distribution of the key
address space to nodes, which yields a load-balanced
system when the DHT maps items “randomly” into the
address space. To our knowledge, this yields the first P2P
scheme simultaneously achieving O(logn) degree, O(logn)
look-up cost, and constant-factor load balance (previous
schemes settled for any two of the three). Our second
protocol aims to directly balance the distribution of items
among the nodes. This is useful when the distribution of
items in the address space cannot be randomized—for

example, if we wish to support range- searches on
“ordered” keys. We give a simple protocol that balances
load by moving nodes to arbitrary locations “where they
are needed.” As an application, we use the last protocol to
give an optimal implementation of a distributed data
structure for range searches on ordered data.

C. Load Balancing in Structured P2P Systems
Most P2P systems that provide a DHT abstraction
distribute objects among “peer nodes” by choosing random
identifiers for the objects. This could result in an O(log N)
imbalance. Besides, P2P systems can be highly
heterogeneous, i.e. they may consist of peers that range
from old desktops behind modem lines to powerful servers
connected to the Internet through high-bandwidth lines. In
this paper, we address the problem of load balancing in
such P2P systems. We explore the space of designing load-
balancing algorithms that uses the notion of “virtual
servers”. We present three schemes that differ primarily in
the amount of information used to decide how to re-arrange
load. Our simulation results show that even the simplest
scheme is able to balance the load within 80% of the
optimal value, while the most complex scheme is able to
balance the load within 95% of the optimal value.

D. Simple Load Balancing for Distributed Hash
Tables
Distributed hash tables have recently become a useful
building block for a variety of distributed applications.
However, current schemes based upon consistent hashing
require both considerable implementation complexity and
substantial storage overhead to achieve desired load
balancing goals. We argue in this paper that these goals can
be achieved more simply and more cost effectively. First,
we suggest the direct application of the “power of two
choices” paradigm, whereby an item is stored at the less
loaded of two (or more) random alternatives. We then
consider how associating a small constant number of hash
values with a key can naturally be extended to support
other load balancing strategies, including load-stealing or
load-shedding, as well as providing natural fault-tolerance
mechanism

VI. PARAMETERS
The performance of various load balancing algorithms is
measured by the following parameters.

A. Overload Rejection
If Load Balancing is not possible additional overload
rejection measures are needed. When the overload situation
ends then first the overload rejection measures are stopped.
After a short guard period Load Balancing is also closed
down.

B. Fault Tolerant
It enables an algorithm to continue operating properly in
the event of some failure. If the performance of algorithm
decreases, the decrease is proportional to the seriousness of
the failure, even a small failure can cause total failure in
load balancing.

K.N.Sirisha et al IJCSET |July 2012| Vol 2, Issue 7,1333-1337

1335

C. Forecasting Accuracy
Forecasting is the degree of conformity of calculated results
to its actual value that will be generated after execution.
The static algorithms provide more accuracy than of
dynamic algorithms as in former most assumptions are
made during compile time and in later this is done during
execution.

D. Stability
Stability can be characterized in terms of the delays in the
transfer of information between processors and the gains in
the load balancing algorithm by obtaining faster
performance by a specified amount of time.

E. Centralized or Decentralized
Centralized schemes store global information at a
designated node. All sender or receiver nodes access the
designated node to calculate the amount of load-transfers
and also to check that tasks are to be sent to or received
from. In a distributed load balancing, every node executes
balancing separately. The idle nodes can obtain load during
runtime from a shared global queue of processes.

F. Nature of Load Balancing Algorithms
Static load balancing assigns load to nodes probabilistically
or deterministically without consideration of runtime
events. It is generally impossible to make predictions of
arrival times of loads and processing times required for
future loads. On the other hand, in a dynamic load
balancing the load distribution is made during run-time
based on current processing rates and network condition. A
DLB policy can use either local or global information.

G. Cooperative
This parameter gives that whether processors share
information between them in making the process allocation
decision other are not during execution. What this

parameter defines is the extent of independence that each
processor has in concluding that how should it can use its
own resources. In the cooperative situation all processors
have the accountability to carry out its own portion of the
scheduling task, but all processors work together to achieve
a goal of better efficiency. In the non-cooperative
individual processors act as independent entities and arrive
at decisions about the use of their resources without any
effect of their decision on the rest of the system.

H. Process Migration
Process migration parameter provides when does a system
decide to export a process? It decides whether to create it
locally or create it on a remote processing element. The
algorithm is capable to decide that it should make changes
of load distribution during execution of process or not.

I. Resource Utilization
Resource utilization include automatic load balancing A
distributed system may have unexpected number of
processes that demand more processing power. If the
algorithm is capable to utilize resources, they can be moved
to under loaded processors more efficiently.

VII. COMPARISION
The comparison of various load balancing algorithms on
behalf of the different parameters is shown in table I

VIII. CONCLUSION
Load balancing algorithms work on the principle that in
which situation workload is assigned, during compile time
or at runtime. The above comparison shows that static load
balancing algorithms are more stable in compare to
dynamic and it is also ease to predict the behavior of static,
but at a same time dynamic distributed algorithms are
always considered better than static algorithms.

K.N.Sirisha et al IJCSET |July 2012| Vol 2, Issue 7,1333-1337

1336

IX. REFERENCES
[1] Derek L. Eager, Edward D. Lazowska , John Zahorjan, “Adaptive

load sharing in homogeneous distributedsystems”, IEEE
Transactions on Software Engineering, v.12 n.5, p.662-675, May
1986.

[2] S. Malik, “Dynamic Load Balancing in a Network of Workstation”,
95.515 Research Report, 19 November, 2000.

[3] H.S. Stone, “Critical Load Factors in Two-Processor Distributed
Systems,” IEEE Trans. Software Eng., vol. 4, no. 3, May 1978

[4] Zhong Xu, Rong Huang, "Performance Study of Load Balancing
Algorithms in Distributed Web Server Systems", CS213 Parallel and
Distributed Processing Project Report

[5]] R. Motwani and P. Raghavan, “Randomized algorithms”, ACM
Computing Surveys (CSUR), 28(1):33-37, 1996

[6] Y.Wang and R. Morris, "Load balancing in distributed systems,"
IEEE Trans. Computing. C-34, no. 3, pp. 204-217, Mar. 1985

[7] M. Zaki, W. Li, and S. Parthasarathy. “Customized dynamic load
balancing for a network of workstations”. Journal of Parallel and
Distributed Computing: Special Issue on Performance Evaluation,
Scheduling, and Fault Tolerance, June 1997

[8] S.P. Dandamudi, “Sensitivity evaluation of dynamic load sharing in
distributed systems”, IEEE Concurrency 6 (3) (1998) 62-72

[9] S.P. Dandamudi, “Sensitivity evaluation of dynamic load sharing in
distributed systems”, IEEE Concurrency 6 (3) (1998) 62-72

[10] L. Rudolph, M. Slivkin-Allalouf, E. Upfal. A Simple Load
Balancing Scheme for Task Allocation in Parallel Machines. In
Proceedings of the 3rd ACM Symposium on Parallel Algorithms and
Architectures, pp. 237-245, July 1991.

[11] William Leinberger, George Karypis, Vipin Kumar, "Load
Balancing Across Near-Homogeneous Multi-Resource Servers", 0-
7695-0556

AUTHORS
K.N.Sirisha completed B.tech (Computer
science engineering) in 2003.Worked as
Senior Project Engineer in WIPRO. Now
pursuing M. Tech (Software Engineering)
in Noble college of Engineering &
Technology for Women. Contact her at
sirishalenin@gmail.com

S. BhagyaRekha completed my M.Tech
from Aurora’s Engineering College,
Bhongir. Contact her at
bhagyarekha2001@gmail.com.

K.N.Sirisha et al IJCSET |July 2012| Vol 2, Issue 7,1333-1337

1337

