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Abstract-- In this paper we construct a new efficient simple 
algorithm to generate all permutations of a finite set. And then we 
extend the algorithm for generating all iterative permutations of a 
multi-set. Applying the parallelizing method based on output 
decomposition we parallelize this algorithm. Further, we use the 
parallel algorithm to solve an optimal problem of task 
arrangement. 
 
Keywords-- complexity, multi-set, optimal arrangement, parallel 
algorithm, permutation  
 

I. INTRODUCTION 
Permutations of a set are frequently used in many 

areas of computer science such as scheduling problems, 
system controls and data mining… There are some good 
algorithms for generating permutations of a set such as the 
(adjacent) transposition algorithm [4], the algorithm 
determining a permutation from its set of reductions [1], the 
algorithm generating permutations by factorial digits [3], the 
algorithm reconstructing permutations from cycle minors [5], 
the algorithm reconstructing permutations from ascending and 
descending blocks [7], the algorithm generating permutations 
by inversion vectors [9]… Construction of a fast, simple 
algorithm for generating permutations of a set and its 
applications attract many researchers.   

The notion of set was extended to multi-set. It is a set 
to which elements may belong more than once. This extension 
sets up many new researches. The notion of multi-set becomes 
a good manner for proving program correctness. It is often 
used in information processing [6] and many other problems. 
Significant notions of combinatorics such as permutations, 
combinations and partitions of a (standard) set are being 
transformed for multi-sets.  

In this paper we first construct a new algorithm for 
generating all permutations of a standard set. Then we extend 
the notion of permutation into iterative permutation, 
investigate its properties and construct an efficient algorithm to 
generate all iterative permutations of a multi-set. Applying the 
parallelizing technique based on the output decomposition 
presented in [8,9] we parallelize this algorithm. To do that, the 
sequence of desirable iterative permutations of a multi-set is 
divided into subsequences with ‘nearly’ equal lengths by 
appropriate choice of pivots. Using a common algorithm 

(program) with corresponding input and termination condition, 
processors will execute in parallel to generate iterative 
permutations of these subsequences. Furthermore, we apply 
the algorithm above presented to finding an optimal solution of 
a task arrangement problem.  
 

The rest of this paper is organized as follows. In part 
2 we propose a new algorithm based on the lexicographical 
order for generating all permutations of a standard set. Part 3 
presents notions of multi-set and iterative permutation and a 
new algorithm for generating all iterative permutations of a 
multi-set by lexicographical order. Part 4 is devoted to the 
parallelism of this algorithm. Part 5 presents its application in 
solving an optimal problem of task arrangement. Some 
developing directions are proposed in conclusion.   
 

II. SET PERMUTATIONS  
 Let X be an n-element set. Each permutation of the 
set X is a checklist of X. It is indeed a bijection from X to 
itself.   

Identify the set X ≡ {1, 2, ..., n}. Thus, a permutation 
of X is an integer sequence of the length n, consisting of all 
integers in X. Each integer sequence may be considered as a 
word on the alphabet X. Thus, we sort the words increasingly 
by the lexicographical order.  

- The first word (the least) is: 1 2 ... n-1 n. It is an 
increasing sequence. 

- The last word (the most) is: n n-1 ... 2 1. It is an 
decreasing sequence and is the reverse of the first one.   

 
Starting with the first word, our algorithm repeats a 

loop to find remaining words. To do so, we use the inheritance 
principle: the next word is inherited a left part as long as 
possible of the preceding one.   

Assume that t = a1a2 ... an-1an is a just found word. 
We have to find a word t’ = a’1a’2 ... a’n-1a’n 

By the lexicographical order, the changing position p 
is the maximal index i, where a

next to t in the 
sorted sequence.  

i < ai+1
 

. Thus: 

p = max { i  |  1 ≤ i ≤ n-1  ∧  ai < ai+1
 

 } 
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                                            (p) 
t a1                   ...               ap-1 ap ap+1          ...             an  

 t’ a1                   ...                       ap-1 a’p a’p+1         ...             a’n 
 

Fig. 2.1. Inheritance of permutations  
 

The desirable word t’ inherits a left part of the word t 
from a1 to ap-1. It is easy to see that the subsequence                
< ap+1, ap+2, ..., an

The changing part in the word t’ from the position p 
to the last is determined as follows:  

 > is a decreasing sequence.  

1) a’p is the least among all elements in the 
subsequence < ap+1, ap+2, ... , an > but greater than ap. We 
swap ap

 
 for this element: 

ap  ↔  min{ ai  |  p+1 ≤ i ≤ n  ∧  ai > ap
 

 } 

It ensures that after swapping the subsequence          < 
ap+1, ap+2, ... , an

2) Reverse the subsequence < a
 > still is a decreasing sequence.  

p+1, ap+2, ... , an >. The 
result is an increasing sequence and is the least among all 
permutations of the set {ap+1, ap+2, ... , an}. It is indeed the 
subsequence < a’p+1, a’p+2, ... , a’n
 

 > in the word t’.   

 Our algorithm terminates when the last permutation 
has been generated. At that time we have:  
 

p = 0 
 

This is a termination condition for our algorithm. As 
the above analysis we have the following simple algorithm to 
generate all permutations of a set.  

 
Algorithm 2.1 
Input: An integer n 
Output: A sequence of all permutations of the set {1, 2, ..., n}, 
sorted increasingly by the lexicographical order.  
 
1   Begin 
2      input an integer n ; 
3      for  i  ← 1  to  n  do  A[i]  ← i  ; 
4      repeat 
5            print the array A[1..n] ; 
6            p  ← n - 1 ; 
7    while  A[p] > A[p+1]  do  p ← p - 1; 
8            if  p > 0 then 
9            {   i  ←  p +1 ; 
10                 while  A[i] > A[p] do  i  ←  i +1 ; 
11                 swap A[p] for A[i-1]  ; 
12                 reverse the subarray A[p+1..n]  ;  }  
13     until  p = 0 ; 
14  End . 
 
Complexity of the algorithm: 

As above presented, generating and printing a 
permutation with the linear complexity O(n). So the total 
complexity of Algorithm 2.1 is O(n!.n). The complexity is 

least. Hence, this algorithm becomes the best amongst 
algorithms for generating permutations of a set. 
 

III. MULTI-SET AND ITERATIVE PERMUTATION  
 
3.1. Multi-set: Multi-set is an extended notion of set [4,6] and 
defined as follows. 
 
Definition 3.1: A multi-set is an unordered collection of 
elements in which elements are allowed to repeat.  
 
 For example, a set of values of all variables in a 
program, a marking of a net system… are typical illustrations 
of multi-set.  
 A multi-set is written as follows: 
 
X = (k1 * x1, k2 * x2, ..., kn * xn) , where ki

 

 ≥ 1 with i = 1,2, ..., 
n. 

 It means, there are k1 elements x1, k2 elements x2, … 
and kn elements xn
  Elements x

 in the multi-set X.   
1, x2, ... xn are called basic elements of the 

multi-set X, and k1, k2, ..., kn

 The cardinality of a multi-set is the sum of of its all 
basic element’s multiplicity,   

 as the multiplicity of the 
corresponding element. 

|X| ∑
=

=
n

i
ik

1

 

3.2. Iterative permutation 
 We extend the notion of permutation of a multi-set as 
follows. 
 
Definition 3.2: An iterative permutation of a multi-set is a 
checklist of its all elements.  
 
Example 3.3: Given a multi-set X = (1*a , 2*b, 1*c). 
  

Iterative permutations of the multi-set X are sorted by 
lexicographical order in the following table. 
 

No Repesentative integer 
sequences 

Iterative permutations 

1 1 2 2 3 a b b c 
2 1 2 3 2 a b c b 
3 1 3 2 2 a c b b 
4 2 1 2 3 b a b c 
5 2 1 3 2 b a c b 
6 2 2 1 3 b b a c 
7 2 2 3 1 b b c a 
8 2 3 1 2 b c a b 
9 2 3 2 1 b c b a 
10 3 1 2 2 c a b b 
11 3 2 1 2 c b a b 
12 3 2 2 1 c b b a 
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It is easy to show that the number of all iterative 
permutations of a multi-set X = (k1 * x1, k2 * x2, ..., kn * xn

!!...!
!

21 n
m kkk

mc =

) is 
, where m is the cardinality of the multi-set X. 

 
3.3. Iterative permutation generation algorithm 

 
Given a multi-set X = (k1 * x1, k2 * x2, ..., kn * xn

Problem: Find all iterative permutations of X.  
).  

 
In other words, we have to construct an efficient 

algorithm to generate all iterative permutations of this multi-
set.  

 
It is easy to see that bijection is not suitable to 

represent iterative permutation. So we have to find another 
representation.  

Identify the element x1 ≡ 1, element x2 ≡ 2, ..., 
element xn ≡ n. Each iterative permutation of the multi-set X is 
represented by an integer sequence of the length m, where 
there are k1 integers 1, k2  integers 2, ... and kn

Each integer sequence may be considered as a word 
on the alphabet {1, 2, ... , n}. So we sort these words 
increasingly by the lexicographical order.   

 integers n. 
Now we find all the integer sequences. 

- The first word (the least) is 


nkkk

nnn ......2...221...11
21

. 

It is a nondecreasing sequence. 
- The last word (the most) is 

  
11

1...11...1...11...
kkk nn

nnnnnn
−

−−− . 

It is a nonincreasing sequence and is indeed the reverse of the 
first one.    

 
Starting with the first iterative permutation, our 

algorithm repeats a loop to find remaining iterative 
permutations.    

As in Part 2, we assume that t = a1a2 ... am-1am is a 
just found iterative permutation. We have to find an iterative 
permutation t’ = a’1a’2 ... a’m-1a’m next to t in the sorted 
sequence. By the lexicographical order, the changing position 
p is the maximal index i, where ai < ai+1

 
. Thus: 

p = max { i  |  1 ≤ i ≤ m-1  ∧  ai < ai+1
 

 }. 

The desirable iterative permutation t’ inherits a left 
part of the iterative permutation t from a1 to ap-1. It is easy to 
see that the subsequence < ap+1, ap+2, ... , am

1) a’

 > is a 
nonincreasing sequence. The changing part in the word t’ from 
the position p to the last is determined as follows:  

p is the least among all elements in the 
subsequence < ap+1, ap+2, ... , am > but greater than ap. We 
swap ap

 
 for this element: 

ap  ↔  min{ ai  |  p+1 ≤ i ≤ m  ∧  ai > ap
 

 } 

Note that, if there are several least elements we 
choose the element with the greatest index. It ensures that after 

swapping the subsequence < ap+1, ap+2, ... , am

2) Reverse the subsequence < a

 > still is a 
nonincreasing sequence.  

p+1, ap+2, ... , am >. 
The result is a nondecreasing sequence. It is indeed the 
subsequence < a’p+1, a’p+2, ... , a’m

 

 > in the iterative 
permutation t’.   

 Our algorithm terminates when the last iterative 
permutation was generated. At that time the changing position 
p = 0. 

 
We have the following detail algorithm.  

 
Algorithm 3.1 
Input: An integer n and multiplicities k1, k2, ..., k
Output: A sorted sequence of all iterative permutations of the 
multi-set (k

n 

1 * x1, k2 * x2, ... , kn * xn
 

)  

1   Begin 
2      input the number of basic elements n ; 
3      input multiplicities ki

4      m  ← 

 , i = 1, 2, ..., n ; 

∑
=

n

i
ik

1
 ; 

5      A[1..m]  ← 


nkkk

nnn ......2...221...11
21

  ; 

6      repeat 
7            print the array A[1..m] ; 
8            p  ←  m - 1 ; 
9            while  A[p] ≥ A[p+1]  do  p ← p - 1; 
10          if  p > 0 then 
11         {   i  ←  p + 1 ; 
12              while  A[i] > A[p] do  i  ←  i + 1 ; 
13              swap A[p] for A[i-1]  ; 
14              reverse the subsequence A[p+1..m]  ;  }  
15      until  p = 0 ; 
16  End . 
   
Complexity of the algorithm: 
 

- Instructions 2-3 input data with the complexity O(n). 
- Instructions 4-5 calculate the number of elements 

and assign the first iterative permutation with the complexity 
O(m). 

- The loop 7-14 computes and prints an interative 
permutation, where: 

      Instruction 7 prints an interative permutation with 
the complexity O(m). 

      Loop 9 locates the changing position p with the 
complexity O(m). 

      Instructions 11-13 find the element a’p and swap 
it for ap 

      Instruction 14 reverses the subsequence               
< a

with the complexity O(m). 

p+1, ap+2, ... , am
So the complexity of generating an iterative 

permutation is O(m).  

 > with the complexity O(m). 

 
The total complexity of Algorithm 3.1 is O(cm.m).  
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IV. PARALLEL ALGORITHM GENERATING                             
ITERATIVE PERMUTATIONS  

 
Applying the parallelizing technique based on the 

output decomposition presented in [8,9] we parallelize 
Algorithm 3.1. To do so, we split the sequence of all desirable 
iterative permutations of a multi-set into k subsequences (k ≥ 
2), such that lengths of the subsequences are ‘nearly’ equal. 
The number k depends on the number of processors the 
computing system devotes to computing. Each subsequence 
will be generated by one computing process executed on one 
processor. So input and termination condition for each 
computing process must be already determined. The input of 
the first process is just the input of the problem and the 
termination condition of the last process is the one of the 
algorithm. These k processes use a common algorithm 
(program) to generate concurrently iterative permutations of 
the subsequences as the following scheme. 

 
  

 
 

Fig. 4.1. The scheme of a parallel computing organization for generating  
all iterative permutations 

 
This parallelizing method is an illustration of the 

output decomposition technique in parallel computing [2].  
For simplicity of presentation we perform with k = 3. 

With k greater, one can do analogously.  
Assume that n ≥ 3. This assumption makes our 

splitting realistic. We split the sequence of all sorted diserable 
iterative permutations into three subsequences with ‘nearly’ 
equal lengths by appropriate choice of the two following basic 
elements:    

r = max (1, max{ q  | 
31

mk
q

i
i ≤∑

=

 })  and 

s = max (r+1, max{ q  | 
31

mk
q

ri
i ≤∑

+=

 }). 

 
The first pivot chosen is the first iterative permutation 

of a block, whose first element is r+1. It is: 
 

    
nrrr kkkkkk

nnnrrrrrrrrrr ......2221...11......2...221...111
2121 1 ++

+++++++
−

 

 
It becomes the input of the second computing 

process. The second pivot chosen is the first iterative 
permutation of a block, whose first element is s+1. It is: 

    
nsss kkkkkk

nnnssssssssss ......2221...11......2...221...111
2121 1 ++

+++++++
−

 

 
And it becomes the input of the third computing 

process. The last iterative permutation of the first subsequence 
is indeed the last in a block, whose first element is r. Then it is 
the following iterative permutation: 

      
1111

1...11...1...11...1...11...1...11...
1 kkkkkk rrrnn

rrrrrrrrrnnnnnnr
−+−

−−−+++−−−
−

 

 
So the termination for the first computing process is:  

A[1] = r  ∧  p = 1.      
 
The last iterative permutation of the first subsequence 

is indeed the last in a block, whose first element is s. It is just 
the following iterative permutation: 

      
1111

1...11...1...11...1...11...1...11...
1 kkkkkk sssnn

sssssssssnnnnnns
−+−

−−−+++−−−
−

 

 
Thus, the termination for the second computing 

process is:  A[1] = s  ∧  p = 1.  
 
 The sequence of all iterative permutations of the 

multi-set X is divided into three subsequences as in the 
following table.  

 
 

Sub 
sequ
ence 

Iterative permutations 

 
 

1 


ni kkkk

nnniii ............2...221...11
21

 
. . . . . 

      
1111

1...11...1...11...1...11...1...11...
1 kkkkkk rrrnn

rrrrrrrrrnnnnnnr
−+−

−−−+++−−−
−

 
 
 

2 
    

nrrr kkkkkk

nnnrrrrrrrrrr ......2221...11......2...221...111
2121 1 ++

+++++++
−

 
. . . . . 

      
1111

1...11...1...11...1...11...1...11...
1 kkkkkk sssnn

sssssssssnnnnnns
−+−

−−−+++−−−
−

 

 
 

3 
    

nsss kkkkkk

nnnssssssssss ......2221...11......2...221...111
2121 1 ++

+++++++
−

 

. . . . . 

  
11

1...11.........1...11...
kkkk inn

iiinnnnnn
−

−−−

 
 

These three subsequences are generated concurrently 
by three parallel computing processes, with corresponding 
input and termination condition, executed concurrently on 
three processors P1, P2 and P3

 
 as follows.  
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P1 
1   Begin 
2      input the number of basic elements n ; 
3      input multiplicities  ki

4      m  ← 

 , i = 1, 2, ..., n ; 

∑
=

n

i
ik

1
 ; 

5      r  ← max (1, max{ q  | 
31

mk
q

i
i ≤∑

=

})  ;   

6      s ← max (r+1, max{ q  |
31

mk
q

ri
i ≤∑

+=

}) ; 

7      A[1..m]  ←  


ni kkkk

nnniii ............2...221...11
21

 ; 

8      repeat 
9              print the array A[1..m] ; 
10            p  ← m - 1 ; 
11   while  A[p] >= A[p+1]  do  p ← p - 1; 
12            if  p > 0 then 
13         {   i  ←  p +1 ; 
14              while  A[i] > A[p]  do  i  ←  i +1 ; 
15              swap A[p] for A[i-1]  ; 
16              reverse the subsequence A[p+1..m]  ;  }  
17      until  A[1] = r  ∧  p = 1 ; 
18  End . 

Generating iterative permutations of the first subsequence  
 

P2 
1   Begin 
2      input the number of basic elements  n ; 
3      input multiplicities ki

4      m  ← 

 , i = 1, 2, ..., n ; 

∑
=

n

i
ik

1
 ; 

5      r  ← max (1, max{ q  | 
31

mk
q

i
i ≤∑

=

})  ;   

6      s ← max (r+1, max{ q  |
31

mk
q

ri
i ≤∑

+=

}) ; 

7      A[1..m]  ← 
    

nrrr kkkkkk

nnnrrrrrrrrrr ......2221...11......2...221...111
2121 1 ++

+++++++
−

  ; 

8      repeat 
9              print the array A[1..m] ; 
10            p  ← m - 1 ; 
11  while  A[p] >= A[p+1]  do  p ← p - 1; 
12            if  p > 0 then 
13         {   i  ←  p +1 ; 
14              while  A[i] > A[p]  do  i  ←  i +1 ; 
15              swap A[p] for A[i-1]  ; 
16              reverse the subsequence A[p+1..m]  ;  }  
17      until  A[1] = s  ∧  p = 1 ; 
18  End . 
Generating iterative permutations of the second subsequence  

 

P3 
1   Begin 
2      input the number of basic elements n ; 
3      input multiplicities ki

4      m  ← 

 , i = 1, 2, ..., n ; 

∑
=

n

i
ik

1
 ; 

5      r  ← max (1, max{ q  | 
31

mk
q

i
i ≤∑

=

})  ;   

6      s ← max (r+1, max{ q  |
31

mk
q

ri
i ≤∑

+=

}) ; 

7      A[1..m]  ←     
nsss kkkkkk

nnnssssssssss ......2221...11......2...221...111
2121 1 ++

+++++++
−

  ; 

8      repeat 
9              print the array A[1..m] ; 
10            p  ← m - 1 ; 
11   while  A[p] >= A[p+1]  do  p ← p - 1; 
12            if  p > 0 then 
13         {   i  ←  p +1 ; 
14              while  A[i] > A[p]  do  i  ←  i +1 ; 
15              swap A[p] for A[i-1]  ; 
16              reverse the subsequence A[p+1..m]  ;  }  
17      until  p = 0 ; 
18  End . 
Generating iterative permutations of the third subsequence  

 
So the time for generating all iterative permutations 

of a multi-set reduces to one third.  
 

V. AN APPLICATION: OPTIMAL ARRANGEMENT OF TASKS 
Given k1 tasks e1, k2 tasks e2, ... and kn tasks en with 

the same time for performance, e.g. one day. The tasks are 
performed uninterruptedly. At a moment only one task is 
being performed. For each task ei (i = 1,2,...,n), di is the 
deadline, xi is the award money per day as early finish and yi

  

 
is the mandate money per day as late finish. Arrange these 
tasks, such that the money obtained is as most as possible.  

 This problem is an extention of the job arrangement 
problem presented in [4], which is solved by a matroid. For 
our problem, we can not create any matroid.    

 Denote ∑
=

=
m

i
ikm

1

. We have m tasks. The set of tasks 

may be represented by a multi-set: 
 

X = (k1 * e1, k2 * e2, ..., kn * en

Identify the task e
). 

1 ≡ 1, task e2 ≡ 2, ..., task en ≡ n. 
Each arrangement of the tasks is indeed an iterative 
permutation of X. It is represented by an integer sequence           
< a1 a2 ... am-1 am > of the length m, with k1 integers 1, k2 
integers 2, ... and kn

  
 integers n. 
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Construct an award/mandate function for the task aj





−
−

=
ii

ii
j yjd

xjd
atp

)(
)(

)(

 
as follows: 

 

 
With an arrangement as the iterative permutation      

< a1 a2 ... am-1 am 

∑
=

=
m

j
jatptg

1
)(

> the total  money obtained is: 
 

The optimal problem of task arrangement is derived 
to the problem of finding an iterative permutation with the 
most tg.  

 
Combining Algorithm 3.1 and the greatest number 

finding algorithm we have an algorithm for optimal 
arrangement of tasks.   

We may use the parallel algorithm presented in Part 3 
to get result more quickly, if the computing system allows. 

 
Example 5.1:  Given tasks as in the following table: 
 

Task  
e

Quantity 
ki 

Deadline 
di 

Award 
 xi 

Mandate 
yi i 

1 2 5 3 2 
2 3 4 5 3 
3 2 2 10 4 

 
 We have a multi-set X = (2 * e1, 3 * e2, 2 * e3

VI. CONCLUSION 

). The 
set has 210 iterative permutations. It is all possible variants to 
arrange the tasks.   

Computing by the above algorithm we get the 
following optimal variant: 3  2  2  3  2  1  1, after which the 
greatest money obtained is 8. 
 

 In this paper we proposed a new algorithm to generate 
all permutations of a standard set. Then we extended the notion 
of permutation to iterative permutation and have constructed a 
new simple algorithm to generate all iterative permutations of 
a multi-set.  

 Applying the parallelizing method based on output 
decomposition, we parallelized this new algorithm by splitting 
the sequence of all iterative permutations into subsequences 
with ‘nearly’ equal lengths as our approach presented in [8,9]. 
Therefore, the amount of time required for finding all the 
iterative permutations of a multi-set will be drastically 
decreased by the number of subsequences. The computing 
organization is an association of the bottom-up design and the 
divide and conquer one. We applied this algorithm to solve an 
optimal problem of task arrangement. 

We keep investigating combinatories on multi-sets 
and apply them to huge computing problems in data mining, 
time-series data matching as well as in system controls. 
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