

From Permutations to Iterative Permutations

Hoang Chi Thanh # 1, Nguyen Thi Thuy Loan * 2, Nguyen Duy Ham

^ 3

Department of Computer Science, VNU University of Science, Hanoi, Vietnam
1 thanhhc@vnu.vn

* Department of Computer Science, College of Broadcasting II, HoChiMinh City, Vietnam
2 nguyenthithuyloan@vov.org.vn

^ Department of Computer Science, University of People’s Security, HoChiMinh City, Vietnam
3 duyhaman@yahoo.com

Abstract-- In this paper we construct a new efficient simple
algorithm to generate all permutations of a finite set. And then we
extend the algorithm for generating all iterative permutations of a
multi-set. Applying the parallelizing method based on output
decomposition we parallelize this algorithm. Further, we use the
parallel algorithm to solve an optimal problem of task
arrangement.

Keywords-- complexity, multi-set, optimal arrangement, parallel
algorithm, permutation

I. INTRODUCTION
Permutations of a set are frequently used in many

areas of computer science such as scheduling problems,
system controls and data mining… There are some good
algorithms for generating permutations of a set such as the
(adjacent) transposition algorithm [4], the algorithm
determining a permutation from its set of reductions [1], the
algorithm generating permutations by factorial digits [3], the
algorithm reconstructing permutations from cycle minors [5],
the algorithm reconstructing permutations from ascending and
descending blocks [7], the algorithm generating permutations
by inversion vectors [9]… Construction of a fast, simple
algorithm for generating permutations of a set and its
applications attract many researchers.

The notion of set was extended to multi-set. It is a set
to which elements may belong more than once. This extension
sets up many new researches. The notion of multi-set becomes
a good manner for proving program correctness. It is often
used in information processing [6] and many other problems.
Significant notions of combinatorics such as permutations,
combinations and partitions of a (standard) set are being
transformed for multi-sets.

In this paper we first construct a new algorithm for
generating all permutations of a standard set. Then we extend
the notion of permutation into iterative permutation,
investigate its properties and construct an efficient algorithm to
generate all iterative permutations of a multi-set. Applying the
parallelizing technique based on the output decomposition
presented in [8,9] we parallelize this algorithm. To do that, the
sequence of desirable iterative permutations of a multi-set is
divided into subsequences with ‘nearly’ equal lengths by
appropriate choice of pivots. Using a common algorithm

(program) with corresponding input and termination condition,
processors will execute in parallel to generate iterative
permutations of these subsequences. Furthermore, we apply
the algorithm above presented to finding an optimal solution of
a task arrangement problem.

The rest of this paper is organized as follows. In part
2 we propose a new algorithm based on the lexicographical
order for generating all permutations of a standard set. Part 3
presents notions of multi-set and iterative permutation and a
new algorithm for generating all iterative permutations of a
multi-set by lexicographical order. Part 4 is devoted to the
parallelism of this algorithm. Part 5 presents its application in
solving an optimal problem of task arrangement. Some
developing directions are proposed in conclusion.

II. SET PERMUTATIONS
 Let X be an n-element set. Each permutation of the
set X is a checklist of X. It is indeed a bijection from X to
itself.

Identify the set X ≡ {1, 2, ..., n}. Thus, a permutation
of X is an integer sequence of the length n, consisting of all
integers in X. Each integer sequence may be considered as a
word on the alphabet X. Thus, we sort the words increasingly
by the lexicographical order.

- The first word (the least) is: 1 2 ... n-1 n. It is an
increasing sequence.

- The last word (the most) is: n n-1 ... 2 1. It is an
decreasing sequence and is the reverse of the first one.

Starting with the first word, our algorithm repeats a

loop to find remaining words. To do so, we use the inheritance
principle: the next word is inherited a left part as long as
possible of the preceding one.

Assume that t = a1a2 ... an-1an is a just found word.
We have to find a word t’ = a’1a’2 ... a’n-1a’n

By the lexicographical order, the changing position p
is the maximal index i, where a

next to t in the
sorted sequence.

i < ai+1

. Thus:

p = max { i | 1 ≤ i ≤ n-1 ∧ ai < ai+1

 }

Hoang Chi Thanh et al IJCSET |July 2012| Vol 2, Issue 7,1310-1315

1310

http://mail.vnu.vn/webmail/src/compose.php?send_to=duyhaman%40yahoo.com�
http://en.wikipedia.org/wiki/Combinations�
http://en.wikipedia.org/wiki/Partition_of_a_set�

 (p)
t a1 ... ap-1 ap ap+1 ... an

 t’ a1 ... ap-1 a’p a’p+1 ... a’n

Fig. 2.1. Inheritance of permutations

The desirable word t’ inherits a left part of the word t
from a1 to ap-1. It is easy to see that the subsequence
< ap+1, ap+2, ..., an

The changing part in the word t’ from the position p
to the last is determined as follows:

 > is a decreasing sequence.

1) a’p is the least among all elements in the
subsequence < ap+1, ap+2, ... , an > but greater than ap. We
swap ap

 for this element:

ap ↔ min{ ai | p+1 ≤ i ≤ n ∧ ai > ap

 }

It ensures that after swapping the subsequence <
ap+1, ap+2, ... , an

2) Reverse the subsequence < a
 > still is a decreasing sequence.

p+1, ap+2, ... , an >. The
result is an increasing sequence and is the least among all
permutations of the set {ap+1, ap+2, ... , an}. It is indeed the
subsequence < a’p+1, a’p+2, ... , a’n

 > in the word t’.

 Our algorithm terminates when the last permutation
has been generated. At that time we have:

p = 0

This is a termination condition for our algorithm. As
the above analysis we have the following simple algorithm to
generate all permutations of a set.

Algorithm 2.1
Input: An integer n
Output: A sequence of all permutations of the set {1, 2, ..., n},
sorted increasingly by the lexicographical order.

1 Begin
2 input an integer n ;
3 for i ← 1 to n do A[i] ← i ;
4 repeat
5 print the array A[1..n] ;
6 p ← n - 1 ;
7 while A[p] > A[p+1] do p ← p - 1;
8 if p > 0 then
9 { i ← p +1 ;
10 while A[i] > A[p] do i ← i +1 ;
11 swap A[p] for A[i-1] ;
12 reverse the subarray A[p+1..n] ; }
13 until p = 0 ;
14 End .

Complexity of the algorithm:

As above presented, generating and printing a
permutation with the linear complexity O(n). So the total
complexity of Algorithm 2.1 is O(n!.n). The complexity is

least. Hence, this algorithm becomes the best amongst
algorithms for generating permutations of a set.

III. MULTI-SET AND ITERATIVE PERMUTATION

3.1. Multi-set: Multi-set is an extended notion of set [4,6] and
defined as follows.

Definition 3.1: A multi-set is an unordered collection of
elements in which elements are allowed to repeat.

 For example, a set of values of all variables in a
program, a marking of a net system… are typical illustrations
of multi-set.
 A multi-set is written as follows:

X = (k1 * x1, k2 * x2, ..., kn * xn) , where ki

 ≥ 1 with i = 1,2, ...,
n.

 It means, there are k1 elements x1, k2 elements x2, …
and kn elements xn
 Elements x

 in the multi-set X.
1, x2, ... xn are called basic elements of the

multi-set X, and k1, k2, ..., kn

 The cardinality of a multi-set is the sum of of its all
basic element’s multiplicity,

 as the multiplicity of the
corresponding element.

|X| ∑
=

=
n

i
ik

1

3.2. Iterative permutation
 We extend the notion of permutation of a multi-set as
follows.

Definition 3.2: An iterative permutation of a multi-set is a
checklist of its all elements.

Example 3.3: Given a multi-set X = (1*a , 2*b, 1*c).

Iterative permutations of the multi-set X are sorted by
lexicographical order in the following table.

No Repesentative integer
sequences

Iterative permutations

1 1 2 2 3 a b b c
2 1 2 3 2 a b c b
3 1 3 2 2 a c b b
4 2 1 2 3 b a b c
5 2 1 3 2 b a c b
6 2 2 1 3 b b a c
7 2 2 3 1 b b c a
8 2 3 1 2 b c a b
9 2 3 2 1 b c b a
10 3 1 2 2 c a b b
11 3 2 1 2 c b a b
12 3 2 2 1 c b b a

Hoang Chi Thanh et al IJCSET |July 2012| Vol 2, Issue 7,1310-1315

1311

It is easy to show that the number of all iterative
permutations of a multi-set X = (k1 * x1, k2 * x2, ..., kn * xn

!!...!
!

21 n
m kkk

mc =

) is
, where m is the cardinality of the multi-set X.

3.3. Iterative permutation generation algorithm

Given a multi-set X = (k1 * x1, k2 * x2, ..., kn * xn

Problem: Find all iterative permutations of X.
).

In other words, we have to construct an efficient

algorithm to generate all iterative permutations of this multi-
set.

It is easy to see that bijection is not suitable to

represent iterative permutation. So we have to find another
representation.

Identify the element x1 ≡ 1, element x2 ≡ 2, ...,
element xn ≡ n. Each iterative permutation of the multi-set X is
represented by an integer sequence of the length m, where
there are k1 integers 1, k2 integers 2, ... and kn

Each integer sequence may be considered as a word
on the alphabet {1, 2, ... , n}. So we sort these words
increasingly by the lexicographical order.

 integers n.
Now we find all the integer sequences.

- The first word (the least) is

nkkk

nnn2...221...11
21

.

It is a nondecreasing sequence.
- The last word (the most) is

11

1...11...1...11...
kkk nn

nnnnnn
−

−−− .

It is a nonincreasing sequence and is indeed the reverse of the
first one.

Starting with the first iterative permutation, our

algorithm repeats a loop to find remaining iterative
permutations.

As in Part 2, we assume that t = a1a2 ... am-1am is a
just found iterative permutation. We have to find an iterative
permutation t’ = a’1a’2 ... a’m-1a’m next to t in the sorted
sequence. By the lexicographical order, the changing position
p is the maximal index i, where ai < ai+1

. Thus:

p = max { i | 1 ≤ i ≤ m-1 ∧ ai < ai+1

 }.

The desirable iterative permutation t’ inherits a left
part of the iterative permutation t from a1 to ap-1. It is easy to
see that the subsequence < ap+1, ap+2, ... , am

1) a’

 > is a
nonincreasing sequence. The changing part in the word t’ from
the position p to the last is determined as follows:

p is the least among all elements in the
subsequence < ap+1, ap+2, ... , am > but greater than ap. We
swap ap

 for this element:

ap ↔ min{ ai | p+1 ≤ i ≤ m ∧ ai > ap

 }

Note that, if there are several least elements we
choose the element with the greatest index. It ensures that after

swapping the subsequence < ap+1, ap+2, ... , am

2) Reverse the subsequence < a

 > still is a
nonincreasing sequence.

p+1, ap+2, ... , am >.
The result is a nondecreasing sequence. It is indeed the
subsequence < a’p+1, a’p+2, ... , a’m

 > in the iterative
permutation t’.

 Our algorithm terminates when the last iterative
permutation was generated. At that time the changing position
p = 0.

We have the following detail algorithm.

Algorithm 3.1
Input: An integer n and multiplicities k1, k2, ..., k
Output: A sorted sequence of all iterative permutations of the
multi-set (k

n

1 * x1, k2 * x2, ... , kn * xn

)

1 Begin
2 input the number of basic elements n ;
3 input multiplicities ki

4 m ←

 , i = 1, 2, ..., n ;

∑
=

n

i
ik

1
 ;

5 A[1..m] ←

nkkk

nnn2...221...11
21

 ;

6 repeat
7 print the array A[1..m] ;
8 p ← m - 1 ;
9 while A[p] ≥ A[p+1] do p ← p - 1;
10 if p > 0 then
11 { i ← p + 1 ;
12 while A[i] > A[p] do i ← i + 1 ;
13 swap A[p] for A[i-1] ;
14 reverse the subsequence A[p+1..m] ; }
15 until p = 0 ;
16 End .

Complexity of the algorithm:

- Instructions 2-3 input data with the complexity O(n).
- Instructions 4-5 calculate the number of elements

and assign the first iterative permutation with the complexity
O(m).

- The loop 7-14 computes and prints an interative
permutation, where:

 Instruction 7 prints an interative permutation with
the complexity O(m).

 Loop 9 locates the changing position p with the
complexity O(m).

 Instructions 11-13 find the element a’p and swap
it for ap

 Instruction 14 reverses the subsequence
< a

with the complexity O(m).

p+1, ap+2, ... , am
So the complexity of generating an iterative

permutation is O(m).

 > with the complexity O(m).

The total complexity of Algorithm 3.1 is O(cm.m).

Hoang Chi Thanh et al IJCSET |July 2012| Vol 2, Issue 7,1310-1315

1312

IV. PARALLEL ALGORITHM GENERATING
ITERATIVE PERMUTATIONS

Applying the parallelizing technique based on the

output decomposition presented in [8,9] we parallelize
Algorithm 3.1. To do so, we split the sequence of all desirable
iterative permutations of a multi-set into k subsequences (k ≥
2), such that lengths of the subsequences are ‘nearly’ equal.
The number k depends on the number of processors the
computing system devotes to computing. Each subsequence
will be generated by one computing process executed on one
processor. So input and termination condition for each
computing process must be already determined. The input of
the first process is just the input of the problem and the
termination condition of the last process is the one of the
algorithm. These k processes use a common algorithm
(program) to generate concurrently iterative permutations of
the subsequences as the following scheme.

Fig. 4.1. The scheme of a parallel computing organization for generating
all iterative permutations

This parallelizing method is an illustration of the

output decomposition technique in parallel computing [2].
For simplicity of presentation we perform with k = 3.

With k greater, one can do analogously.
Assume that n ≥ 3. This assumption makes our

splitting realistic. We split the sequence of all sorted diserable
iterative permutations into three subsequences with ‘nearly’
equal lengths by appropriate choice of the two following basic
elements:

r = max (1, max{ q |
31

mk
q

i
i ≤∑

=

 }) and

s = max (r+1, max{ q |
31

mk
q

ri
i ≤∑

+=

 }).

The first pivot chosen is the first iterative permutation

of a block, whose first element is r+1. It is:

nrrr kkkkkk

nnnrrrrrrrrrr2221...11......2...221...111
2121 1 ++

+++++++
−

It becomes the input of the second computing

process. The second pivot chosen is the first iterative
permutation of a block, whose first element is s+1. It is:

nsss kkkkkk

nnnssssssssss2221...11......2...221...111
2121 1 ++

+++++++
−

And it becomes the input of the third computing

process. The last iterative permutation of the first subsequence
is indeed the last in a block, whose first element is r. Then it is
the following iterative permutation:

1111

1...11...1...11...1...11...1...11...
1 kkkkkk rrrnn

rrrrrrrrrnnnnnnr
−+−

−−−+++−−−
−

So the termination for the first computing process is:

A[1] = r ∧ p = 1.

The last iterative permutation of the first subsequence

is indeed the last in a block, whose first element is s. It is just
the following iterative permutation:

1111

1...11...1...11...1...11...1...11...
1 kkkkkk sssnn

sssssssssnnnnnns
−+−

−−−+++−−−
−

Thus, the termination for the second computing

process is: A[1] = s ∧ p = 1.

 The sequence of all iterative permutations of the

multi-set X is divided into three subsequences as in the
following table.

Sub
sequ
ence

Iterative permutations

1

ni kkkk

nnniii2...221...11
21

.

1111

1...11...1...11...1...11...1...11...
1 kkkkkk rrrnn

rrrrrrrrrnnnnnnr
−+−

−−−+++−−−
−

2

nrrr kkkkkk

nnnrrrrrrrrrr2221...11......2...221...111
2121 1 ++

+++++++
−

.

1111

1...11...1...11...1...11...1...11...
1 kkkkkk sssnn

sssssssssnnnnnns
−+−

−−−+++−−−
−

3

nsss kkkkkk

nnnssssssssss2221...11......2...221...111
2121 1 ++

+++++++
−

.

11

1...11.........1...11...
kkkk inn

iiinnnnnn
−

−−−

These three subsequences are generated concurrently
by three parallel computing processes, with corresponding
input and termination condition, executed concurrently on
three processors P1, P2 and P3

 as follows.

Hoang Chi Thanh et al IJCSET |July 2012| Vol 2, Issue 7,1310-1315

1313

P1
1 Begin
2 input the number of basic elements n ;
3 input multiplicities ki

4 m ←

 , i = 1, 2, ..., n ;

∑
=

n

i
ik

1
 ;

5 r ← max (1, max{ q |
31

mk
q

i
i ≤∑

=

}) ;

6 s ← max (r+1, max{ q |
31

mk
q

ri
i ≤∑

+=

}) ;

7 A[1..m] ←

ni kkkk

nnniii2...221...11
21

 ;

8 repeat
9 print the array A[1..m] ;
10 p ← m - 1 ;
11 while A[p] >= A[p+1] do p ← p - 1;
12 if p > 0 then
13 { i ← p +1 ;
14 while A[i] > A[p] do i ← i +1 ;
15 swap A[p] for A[i-1] ;
16 reverse the subsequence A[p+1..m] ; }
17 until A[1] = r ∧ p = 1 ;
18 End .

Generating iterative permutations of the first subsequence

P2
1 Begin
2 input the number of basic elements n ;
3 input multiplicities ki

4 m ←

 , i = 1, 2, ..., n ;

∑
=

n

i
ik

1
 ;

5 r ← max (1, max{ q |
31

mk
q

i
i ≤∑

=

}) ;

6 s ← max (r+1, max{ q |
31

mk
q

ri
i ≤∑

+=

}) ;

7 A[1..m] ←

nrrr kkkkkk

nnnrrrrrrrrrr2221...11......2...221...111
2121 1 ++

+++++++
−

 ;

8 repeat
9 print the array A[1..m] ;
10 p ← m - 1 ;
11 while A[p] >= A[p+1] do p ← p - 1;
12 if p > 0 then
13 { i ← p +1 ;
14 while A[i] > A[p] do i ← i +1 ;
15 swap A[p] for A[i-1] ;
16 reverse the subsequence A[p+1..m] ; }
17 until A[1] = s ∧ p = 1 ;
18 End .
Generating iterative permutations of the second subsequence

P3
1 Begin
2 input the number of basic elements n ;
3 input multiplicities ki

4 m ←

 , i = 1, 2, ..., n ;

∑
=

n

i
ik

1
 ;

5 r ← max (1, max{ q |
31

mk
q

i
i ≤∑

=

}) ;

6 s ← max (r+1, max{ q |
31

mk
q

ri
i ≤∑

+=

}) ;

7 A[1..m] ←
nsss kkkkkk

nnnssssssssss2221...11......2...221...111
2121 1 ++

+++++++
−

 ;

8 repeat
9 print the array A[1..m] ;
10 p ← m - 1 ;
11 while A[p] >= A[p+1] do p ← p - 1;
12 if p > 0 then
13 { i ← p +1 ;
14 while A[i] > A[p] do i ← i +1 ;
15 swap A[p] for A[i-1] ;
16 reverse the subsequence A[p+1..m] ; }
17 until p = 0 ;
18 End .
Generating iterative permutations of the third subsequence

So the time for generating all iterative permutations

of a multi-set reduces to one third.

V. AN APPLICATION: OPTIMAL ARRANGEMENT OF TASKS
Given k1 tasks e1, k2 tasks e2, ... and kn tasks en with

the same time for performance, e.g. one day. The tasks are
performed uninterruptedly. At a moment only one task is
being performed. For each task ei (i = 1,2,...,n), di is the
deadline, xi is the award money per day as early finish and yi

is the mandate money per day as late finish. Arrange these
tasks, such that the money obtained is as most as possible.

 This problem is an extention of the job arrangement
problem presented in [4], which is solved by a matroid. For
our problem, we can not create any matroid.

 Denote ∑
=

=
m

i
ikm

1

. We have m tasks. The set of tasks

may be represented by a multi-set:

X = (k1 * e1, k2 * e2, ..., kn * en

Identify the task e
).

1 ≡ 1, task e2 ≡ 2, ..., task en ≡ n.
Each arrangement of the tasks is indeed an iterative
permutation of X. It is represented by an integer sequence
< a1 a2 ... am-1 am > of the length m, with k1 integers 1, k2
integers 2, ... and kn

 integers n.

Hoang Chi Thanh et al IJCSET |July 2012| Vol 2, Issue 7,1310-1315

1314

Construct an award/mandate function for the task aj

−
−

=
ii

ii
j yjd

xjd
atp

)(
)(

)(

as follows:

With an arrangement as the iterative permutation

< a1 a2 ... am-1 am

∑
=

=
m

j
jatptg

1
)(

> the total money obtained is:

The optimal problem of task arrangement is derived
to the problem of finding an iterative permutation with the
most tg.

Combining Algorithm 3.1 and the greatest number

finding algorithm we have an algorithm for optimal
arrangement of tasks.

We may use the parallel algorithm presented in Part 3
to get result more quickly, if the computing system allows.

Example 5.1: Given tasks as in the following table:

Task
e

Quantity
ki

Deadline
di

Award
 xi

Mandate
yi i

1 2 5 3 2
2 3 4 5 3
3 2 2 10 4

 We have a multi-set X = (2 * e1, 3 * e2, 2 * e3

VI. CONCLUSION

). The
set has 210 iterative permutations. It is all possible variants to
arrange the tasks.

Computing by the above algorithm we get the
following optimal variant: 3 2 2 3 2 1 1, after which the
greatest money obtained is 8.

 In this paper we proposed a new algorithm to generate
all permutations of a standard set. Then we extended the notion
of permutation to iterative permutation and have constructed a
new simple algorithm to generate all iterative permutations of
a multi-set.

 Applying the parallelizing method based on output
decomposition, we parallelized this new algorithm by splitting
the sequence of all iterative permutations into subsequences
with ‘nearly’ equal lengths as our approach presented in [8,9].
Therefore, the amount of time required for finding all the
iterative permutations of a multi-set will be drastically
decreased by the number of subsequences. The computing
organization is an association of the bottom-up design and the
divide and conquer one. We applied this algorithm to solve an
optimal problem of task arrangement.

We keep investigating combinatories on multi-sets
and apply them to huge computing problems in data mining,
time-series data matching as well as in system controls.

ACKNOWLEDGEMENT
The authors would like to acknowledge Vietnam

National University, Hanoi as the sponsors for the research
project.

REFERENCES
[1] J. Ginsburg, Determining a permutation from its set of reductions, Ars

Combinatoria, No. 82, 2007, pp. 55-57
[2] A. Grama, A. Gupta and G. Karypis, V. Kumar, Introduction to

Parallel Computing, Addison-Wesley, 2003
[3] T. Kuo, A new method for generating permutations in lexicographic

order, Journal of Science and Engineering Technology, Vol. 5, No. 4,
2009, pp. 21-20

[4] W. Lipski, Kombinatoryka dla programistów, WNT, Warszawa,
1982

[5] M. Monks, Reconstructing permutations from cycle minors, The
Electronic Journal of Combinatorics, No. 16, 2009, #R19

[6] D. Singh, A.M. Ibrahim, T. Yohanna and J.N. Singh, An Overview of
the applications of Multisets, Novi Sad Journal of Mathematics, Vol.
37, No. 2, 2007, pp. 73-92

[7] J. Steinhardt, Permutations with ascending and descending blocks,
The Electronic Journal of Combinatorics, No. 17, 2010, #R14

[8] H.C. Thanh and N.Q. Thanh, An Efficient Parallel Algorithm for the
Set Partition Problem, Studies in Computational Intelligence,
Springer, Vol. 351, 2011, pp. 25-32

[9] H.C. Thanh, Parallel Generation of Permutations by Inversion
Vectors, Proceedings of IEEE-RIVF International Conference on
Computing and Communication Technologies, IEEE, 2012, pp. 129-
132

, if aj = ei and j < di
, if aj = ei and j > di

Hoang Chi Thanh et al IJCSET |July 2012| Vol 2, Issue 7,1310-1315

1315

