
Flexible Provisioning and Integrated Load
Balancing of Resources in the Cloud

Pranav Kurbet, Poornima A.B

Dayananda Sagar College of Engineering, Bangalore
pranavkurbet@yahoo.com.
poornima.dsce@gmail.com.

Abstract— Computing services that are provided by
datacenters over the internet are now commonly referred to as
cloud computing. Cloud computing promises virtually
unlimited computational resources to its users, while letting
them pay only for the resources they actually use at any given
time.
Our goal is to build the next generation of resource
management in cloud computing. We propose “Flexible
Provisioning and Integrated Load Balancing of Resources in
Cloud” where the cloud (provider) and the users build a
symbiotic relationship. Instead of renting a set of specific
resources, the user simply presents the job to be executed to
the cloud. The cloud has an associated pricing model to quote
prices of the user jobs executed.
Keywords— Greedy Scheduler, Deadline Division Scheduler,
Central Monitor, Resource Allocator, Cloud Infrastructure.

I. INTRODUCTION

Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort
or service provider interaction.
We question that the existing cloud computing solutions
can effectively deliver on this promise. Cloud computing
services such as Amazon EC2 and Google App Engine are
built to take advantage of the already existing infrastructure
of their respective company. This development leads to
non-optimal user interfaces and pricing models for the
existing services. It either puts an unnecessary burden on
the user or restricts the class of possible application.
For instance, Amazon EC2 exposes a low-level interface to
its datacenters where the user needs to decide which and
how many virtual machines he/she should rent to execute a
given job. This does not only pose a high burden on the
user, but also leads to non-optimal utilization of the cloud:
once a user rents a virtual machine, the cloud cannot run
other computation on that machine. Similarly, the existing
pricing models are too rigid to foster good utilization. For
instance, both Amazon EC2 and Microsoft Windows Azure
charge fixed prices for compute usage, storage, and data
transfer. Recently Amazon added the possibility to bid for
instances whose price depends on supply and demand.
Therefore, a flexible pricing model that, for example,
discounts compute usage during non-peak hours seems
adequate.
In our proposal we assume that each computation node has
a computation price and possibly an initial setup price.
Additionally, each link may have an associated data transfer
price. The pricing models in Flexible Provisioning and

integrated load balancing of resources in the cloud also
allow to discount delayed execution of jobs. The cloud
works out multiple possibilities to execute the job, then
presents to the user a price curve which is a relation
between time and price.

II. LITERATURE SURVEY

In Flexible provisioning and integrated load balancing of
resources we assume that each computation node has a
computation price and possibly an initial setup price.
Additionally, each link may have an associated data transfer
price. The pricing models also allow to discount delayed
execution of jobs. The cloud works out multiple
possibilities to execute the job, then presents to the user a
price curve which is a relation between time and price. A
fast computation, which can be due to high end processors
or highly parallelized computation, may price more than
slow or delayed computation. The user observes the price
curve and chooses a point on the curve according to his/her
requirements on the latest completion time of the job
(deadline) and the maximum price she is willing to pay
(budget). After the user expresses her requirement, the
cloud is bound to schedule the job such that the users’
requirements are satisfied.

The design is motivated by the following principles:
1) A simpler view of the cloud to the user: Today’s cloud
services vary in the abstraction presented to the user. On
one hand, services like Amazon EC2 provide the users with
complete freedom to control and configure the entire
software stack and thus do not limit the type of applications
that can be hosted. On the other hand, Google App Engine,
Force.com, provide highly application-specific cloud
services. Thus, the user is either left with a responsibility to
optimize execution as in the first case, or is limited in the
type of applications he/she can run on the cloud as in the
second case.
We advocate a method where a user submits a user program,
called a job, to the cloud for execution. A job corresponds
to what has to be done, and a schedule, which is computed
by the cloud, corresponds to how the job is done. The cloud
generates multiple schedules, where each schedule has a
corresponding finish time and a price. In other words,
letting the cloud optimize the computing resources allows
the user to transparently view an abstraction of the cloud.

2) Optimization of resource allocation by the cloud: Many
jobs of different users are simultaneously executed in a
cloud. A cloud is in a position to optimize the allocation of

Pranav Kurbet et al IJCSET |May 2012| Vol 2, Issue 5,1226-1230

1226

computing resources depending upon the current utilization.
A cloud can choose from a range of different pricing
models and scheduling policies as required at a particular
time. This enables the cloud to adapt itself to the incoming
stream of jobs from all users. For example, in peak hours,
the cloud can postpone the execution of a job to later
periods as long as it satisfies the requirements of the user.
Even at the individual user level it is unrealistic to expect a
user to make optimal choice in term of resources allocation.
Since one of the selling point of cloud computing is hiding
the inner complexity of a datacenter the information
necessary to make optimal choices are not provided. Proper
scheduling algorithm is the basis for cloud scheduling. In
our project we need the scheduling algorithm to give
different schedules and their associated price is less time
without impacting the users waiting time.
Most of the optimization problems in the domain of
scheduling are NP-hard. For example, finding time-optimal,
respectively, cost-optimal schedules, and finding the
cheapest schedule for a given deadline, respectively, the
fastest schedule for a given budget are all shown to be NP-
hard problems. Instead of computing optimal schedules we
therefore employ scheduling heuristics that produce good
approximations of the optimal schedules.
In this paper, we use two schedulers for scheduling the jobs
and arriving at the price curve.

1. Greedy Scheduler
2. Deadline Division Scheduler

Greedy Scheduler works for the tasks which are not related.
Deadline Division Scheduler works for the tasks which has
dependency information.
In order to construct the price curve from the computed set
of sample schedules, we first remove all schedules from the
set that violate the monotonicity property. We then fit a
price curve of a predefined shape to the points that are
determined by the remaining set of schedules.

3) Benefit to Users and the Cloud: Conventional resource
allocation schemes do not provide a choice on the price
curve to the user. For example, a fastest execution scheme
would minimize the finish time of a job, and a cheapest
execution scheme would minimize the price of a job. Given
a job to be executed on a cloud, our framework returns a
range of schedules as described by the price curve. We
model the specific choice of a user by different distributions
on the range of prices in the price curve. The cloud
available for the next job depends on the choice of the first
user. Intuitively, as the cloud becomes more constrained,
the number of possible schedules for a given job reduces.
This, in turn, leads to a shift in the price curve. This shift in
the price curve can be thought of as interference to the price
a user has to pay for a job in the presence of other jobs. In
other words, a cloud offers robust price if the shift in the
price curve with respect to the price curves of the empty
cloud is small. We show that Flexible provisioning and
integrated load balancing of resources, gives robust price
curves. Note that robust price curves imply that a cloud can
meet stringent deadlines and thus satisfy more users

III. DESIGN AND IMPLEMENTATION

This chapter discusses importance of high level design its
scope, description of dataflow diagrams (DFD’s) function
wise, for Flexible allocation and integrated load balancing
of resources.
A. Architecture

The system consists of two important software
components Central monitor and Daemon process.

Fig.1 gives the architecture of the Central monitor which
basically consists of the Graphical User Interface, where the
user’s selects the operations he/she wants to perform in the
cloud. From Fig.1 the selected operation by the user is set
as an input to the Task Schedulers which uses the
algorithms such as Greedy Scheduler, Deadline Division
Scheduler and Domain Clustering Scheduler. The output is
generated using the Price Curve Generator which displays
the results of the best case allocation of resources and how
one can save the resources for execution of other tasks.
B. Greedy Scheduler algorithm

The greedy algorithm always makes the choice that
looks the best at that time. That is, it tries to make a locally
optimal choice that could lead to the final global optimal
solution in the hope. However, the greedy algorithms rarely
find the globally optimal solution consistently as expected,
since they usually don't operate exhaustively on all the data.
The dynamic programming algorithms (or backtracking
algorithms) always produce the optimal global solution, but
its performance is unfavourable, especially for a large
number of jobs to be scheduled Therefore, Greedy task-
scheduling algorithm outstands because it is useful in real
applications and it is quick to think up and often come up
with good approximations to the optimum. Of course, the
main benefit of greedy algorithms lies in both their
conceptual simplicity and their computational efficiency. If
a greedy algorithm can be proven to yield the global
optimum for a given problem class, it typically becomes the
actual method of choice. The combinatorial structures,
known as matroids, are useful in determining when greedy
method yields optimal solutions.
Let us consider a job set J which is a set of unit-time tasks
with deadlines, and each J

i
(1,2,…n) is independent from

the other jobs, the (J, J
i
) system is a matroid. Also, M=(J, J

i
)

is a weighted matroid with weight function w, so the
Greedy-task scheduling (M, w) returns an optimal subset.
By this theorem, this algorithm can be used to find a
maximum weight independent job set. This method is an
efficient algorithm for scheduling unit-time tasks with
deadline and penalties for a single processor α=1. Its
running time is O(n2) no matter what kind of sorting
algorithm applied in the process of scheduling. The strategy
of the Greedy task-scheduling algorithm:

Initite n time slots empty
Sort the n waiting for scheduling jobs by their weights

For (time=1; time<=n; time++)
Schedule the highest weighted job J

i
(1,2,…n) in the

currently waiting queue
If (J

i
deadline time slot is empty)

then assign J
i
at that time slot

Pranav Kurbet et al IJCSET |May 2012| Vol 2, Issue 5,1226-1230

1227

else if (before J
i
deadline time slots available)

then assign the latest available time slot in deadline to J
i

Otherwise pick the most end time slot to J
i.

C. Deadline Division Scheduler
In order to give the user a guarantee of service, we tag
every query with a deadline. This deadline refers to the
latest point in time the query has to be assigned to a server
for execution as soon as the deadline of a query expires.
The scheduler has no other choice than assigning this very
query to a server.
We tag all queries with a time stamp according to their
arrival. In other words queries are not forced by deadlines
to overtake others, though it is often beneficial. As a result
we need to only check the first query of the current top n
batch for deadline expiration. If the first query’s deadline is
expired we do not need to examine any other query in the
batch but have to assign the first immediately to a server.
Otherwise, if the first query’s deadline is not expired, no
other deadline can be due. Testing for expiration after the
first query has been checked against all servers ensures the
best assignment in case the deadline is expired. The strategy
of Deadline Division algorithm is as followed,

while queue not empty do
 Cmin <- ∞
for each query d in topn (queue) do
for i=1 to number of servers do
 C=d (Q,Si)+ W (Q)+ J(Si)
if C< Cmin do
 q <- Q
 s <- Si
 Cmin <- C
done
done
if expired (Q) then break
done
assign query q to server s
remove q from queue
done

Fig .1 Architecture of Central Monitor

D. Workflow

The workflow of the system and user interaction with the
system is given as shown in the Fig.2.

Fig.2 Workflow

In Fig.2 the user writes a program for the execution which
he/she later submits the program to the cloud for the
computation of the execution plan. The cloud computes the
price curve that displays all the possible schedules with
respect to the user’s request, which are then presented to the
user. The user then selects the possible deadline on the
price curve and submits it to the cloud. The selection from
the user is optimized as long as it meets the user’s deadline.

E. State Diagram and Sequence Diagram
The state diagram when user interacts with system is
documented below,

Fig.3 Resource Allocator

Pranav Kurbet et al IJCSET |May 2012| Vol 2, Issue 5,1226-1230

1228

Initially the system state is idle where the user will be
displayed with an interface and from where he/she can
submit a job. Once the job is submitted the system (also can
be referred to as cloud) goes into the waiting state where it
finds for the availability of resources in accordance to the
submitted job. If the resources are available in the system,
the system goes into the ready state where it schedules the
job using the task scheduling algorithms as discussed above.
After the scheduling is completed it displays the price curve
and sends it to the user. The user selects the price that he is
intended to execute the job with and submits it to the cloud.
The system prepares itself for the payment from the user
and once the payment is received the particular resources
selected by the user for job execution is dispatched and the
job is executed. It returns back the executed job to the user
with the possible outputs.
The sequence diagram for the following flow between the
user and the job is shown in Fig.4, which displays all the
possible interactions.

Fig.4 Sequence Diagram

IV IMPLEMENTATION RESULTS
There are two kinds of users Admin and the Cloud
customer.

Admin has the following requirements.
 Admin will start the central managed cloud server
 Admin will be able to install price daemon on any node.

 Admin will register the price daemon to the process
central managed server.

 Admin will define the setup price in terms of CPU,
Memory and Bandwidth cost for each node.

 Admin will define the tasks which can be executed on
the cloud.

Cloud User has the following requirements.

 Cloud user can submit the jobs to execute.
 The system must provide the price chart with different

schedules for different execution time and cost.
 User can execute the schedule on the price chart.

The requirements can be documented in a use case diagram
as shown in Fig.5.

Fig. 5 Use Case Diagram

The cloud first listens to the port that the server is trying to
connect with as shown in Fig.6.

Fig.6 Server listens to the port the server is trying to connect

Once the server connects it displays all the resources such
as CPU usage the task is going to take the Memory usage
and the Bandwidth usage, it has to the cloud user as shown
in Fig. 7.

Fig. 7 Task Window

We model the specific choice of a user by different
distributions on the range of prices in the price curve. The
cloud available for the next job depends on the choice of

Pranav Kurbet et al IJCSET |May 2012| Vol 2, Issue 5,1226-1230

1229

the first user. Intuitively, as the cloud becomes more
constrained, the number of possible schedules for a given
job reduces. This, in turn, leads to a shift in the price curve.
The shift in the price curve can be thought of as interference
to the price a user has to pay for a job in the presence of
other jobs. price to available resources as shown in Fig. 8.
The user then chooses the needed resources to execute the
task where each resource is assigned a price. Once the user
selects the amount of resources that he/she needs to execute
and pays the price for those resources the cloud releases
those resources and assigns them to that particular port as
shown in Fig. 9.

Fig.8 Price Chart

Fig.9 Registered Resources for Users

The experiments are conducted on Windows platform with
programming language as JAVA.

IV. CONCLUSIONS

Scheduling is fundamental to the achievement of high
performance in parallel and distributed systems. The classic
work on multiprocessor scheduling dates back to 1977,
where the problem of scheduling a directed acyclic graph of
tasks to two processors is solved using network flow
algorithms. As multiprocessor scheduling of directed task
graphs to find an optimal schedule is an NP-complete
problem, heuristics in scheduling have been employed. In
utility computing and grid computing, scheduling
optimization problems with given user requirements of
deadline and budget have been studied.
Various programming models for data oriented and
computation oriented programs have also been developed.
Data oriented programming models include the MapReduce
framework. These models minimize the transfer of data,

and maximize the parallel execution of independent tasks.
The MapReduce model has been widely studied.
In an effort to unify these programming models, our work is
partly inspired by these models. However, our work focuses
on allocation of resources across tasks using scheduling
heuristics. The question of creating a job from a given user
program remains to be answered.
Although in its inception, the cloud computing research has
gained momentum recently. There are various platforms
and technologies available which differ in the services
made available to the users. Amazon EC2, Google App
Engine, Microsoft Azure, and Force.com are few popular
services. Cloud era offers commercial support to Hadoop
enterprise-level users. The various research perspectives in
this direction can be observed in Microsoft’s workshop on
declarative datacenter. All these efforts study datacenter
management as a programming problem and related issues.
This project presents a flexible and transparent pricing
model such that the burden of price optimization and
scheduling is taken off the user, and the cloud resources are
efficiently utilized.
We have motivated a vital requirement of a suitable
abstraction between the users of the cloud and the cloud
provider. This transparency establishes a symbiosis
between the cloud and its users. We introduced a novel
framework Flexible Provisioning and Integrated Load
Balancing of Resources which achieves this transparency.
We have also designed and implemented PRICES in which
we model clouds, the pricing models and the user jobs. We
validate the usefulness of our proposal across various
experiments representing realistic and plausible scenarios.
In particular, we used our project to study the robustness of
price curves in a scenario where a cloud executes many
simultaneous jobs.

ACKNOWLEDGMENT

This paper would not have existed without my guide Mrs.
Poornima A B. I also would like to thank our head of the
department Dr. D. R. Ramesh Babu, Prof. Bhaskar Rao,
Prof. Manjunath S. S and my colleague Ajay Kumar V.

REFERENCES
[1] Internet Assigned Numbers Authority. (2011, July) IANA Internet

Protocol Port Numbers. http://www.iana.org/assignments/port-
numbers.

[2] Wikipedia, ‘Cloud Computing’ available at
http://en.wikipedia.org/wiki/Cloud_computing.

[3] “Enterprise Cloud Computing”, http://salesforce.com/platform.
[4] “Cloudera”, http://www.cloudera.com/.
[5] “Apache Hadoop”, http://wiki.apache.org/hadoop.
[6] “Amazon Elastic ompute Cloud”, http://aws.amazon.com/ec2.
[7] “Amazon EC2 Spot Instances”, http://aws.amazon.com/ec2/spot-

instances.
[8] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kielstra, K.

Ebcioglu, C. von Praun, and V. Sarkar, “X10: An object-oriented
approach to non-uniform cluster computing,” in ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, 2005, pp. 519–538.

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Communications of the ACM, pp. 107–113,
2008.

Pranav Kurbet et al IJCSET |May 2012| Vol 2, Issue 5,1226-1230

1230

