
Dynamic Learning Machine Using
Unrestricted Grammar

 Dr. P. Dinadayalan*1 Dr. Gnanambigai Dinadayalan*2

* Department of Computer Science
K.M.Centre for P.G. Studies, Puducherry

pdinadayalan@hotmail.com

* Department of Computer Science
Indira Gandhi College of Arts and Science, Puducherry

dgnanambigai@hotmail.com

Abstract— This paper shows a Dynamic Network Learning for
performing unrestricted grammar trained Recurrent Neural
Network and proves the relationship between Recurrent Neural
Network and Turing machine. Dynamic Network Learning
employs bi-directional neural network which has feedback path
from their outputs to the inputs, the response of such network is
dynamic. Turing machine is a finite-state machine associated
with an external storage. It prevents indefinite lengthy training
sessions. The Dynamic Network Learning architecture is a
Recurrent Neural Network and its working principle is related
to Turing machine structure. This work exhibits how Turing
machine recognizes recursive language and it is also elucidated
that Dynamic Network Learning is a stable network.

Keywords— Finite State Machine, Formal languages,
Perceptron, Recurrent Neural Network

I. INTRODUCTION

 A Neural Network [1][2][6][9][11] is a mathematical
model or computational model that tries to simulate the
structure and functional aspects of biological neural
networks. The basic building block of a brain and the neural
network is the neuron. An artificial neuron consists of many
inputs and one output. It has an interconnected group of
artificial neurons and processes information using a
connectionist approach to computation. The neural network
demonstrates the behaviour of the feedforword network and
feedback network[1][3][6][7]. In feedforward networks,
neurons are organized into different layers that have
unidirectional connections between them. Feedforward
networks are static in the sense that the outputs depend only
on the present input. Feedback neural networks have
feedback path from their outputs to the inputs, the response of
such network is dynamic or recursive. There are many
different types of neural networks, each of which has
different strengths particular to their applications.
 Finite State Technology describes Finite State Machines
and their languages[4][5][6][10]. Each language has its own
grammar; based on these grammars the Finite-State Machines
behave. Finite-State Machines have four divisions namely
Finite State Automaton, Push-down Automaton, Linear

Bounded Automaton and Turing Machines. Finite State
Automaton accepts regular grammar or type3 grammar. Push-
down Automaton generates Context free grammar or type2
grammar. Linear bounded Automaton produces Context
sensitive grammar or type1 grammar. Turing Machine
generates unrestricted grammar or type0 grammar. Every
regular grammar is Context free and every Context -free
grammar is Context sensitive and every Context sensitive is
unrestricted grammar. Neural network architecture is trained
to perform the same computation from a set of examples to
recognize a language from a set of examples. Viewing finite
state machine as language generators or language acceptors
allows to view examples as input strings (of symbols from an
appropriate alphabet), belonging or not to the language, to the
computation, that is to be learned by the neural network.
Section 2 briefly analyses the background work. Section 3
proposes Dynamic Network Learning illustration. Section 4
demonstrates Dynamic Network Learning as Recurrent
Neural Network with illustration. Section 5 summarizes the
paper.

II. BACKGROUND WORK

 The conventional Neural Network Structure
[1][4][6][8][13] used for Formal Language Recognizers is
Feedforward Recurrent Neural Network. It uses two types of
Neural Finite State Machines such as Dynamical Language
Recognizer using Regular Grammars and Dynamical
Language Recognizer using Context-Free Grammars.
Dynamical Language Recognizer using Regular Grammars
are less powerful than other Dynamical Language
Recognizers. The grammars used in Regular Languages are
left-linear and right-linear which takes more number of rules
(productions) to generate the language [4][6][13][15]. It
solves the problem using regular expression. Some examples
of regular expressions are a*, b* ,a*b* and (a+b)* where *
(Kleene star or looping) denotes indefinite loop symbol.
 The conventional Dynamical Language Recognizer using
Context-Free Grammar [6][7][13] is an improved model over
Dynamical Language Recognizer using Regular Grammar. It

P. Dinadayalan et al IJCSET |April 2012| Vol 2, Issue 4,1118-1123

1118

generates context-free language. Every regular language is a
context free language. It generates the problems like anbn and
wcwR and solves some definite formal language problems. It
does not solve non-context-free languages like anbnan, anbncn
and ambncm+n. It does not solve halting problem and cannot
process recursive languages. Thus the structure of Dynamical
Language Recognizer using Regular Grammar and
Dynamical Language Recognizer using Context-Free
Grammar are mostly unstable. Most of the conventional
Dynamical Language Recognizer [1][4][6][7][8][13][15] are
used as Feedforward Recurrent Neural Network like
Perceptron and Backpropagation Neural Networks. The
Perceptron Neural Network is Feedforward single layer
network which is not effective for producing formal
languages. As the training process in the Feedforward single
layer network is not effective, it produces irrelevant and
inconsistent results. Backpropagation network or multilayer
network has n number of layers. It has more number of
hidden layers. The training process in the hidden layers using
conventional Dynamical Language Recognizers takes long
training session and leads to wrong direction producing
inconsistent and improper results. The reasons are that these
models cannot achieve stability, computational network
interactions, incapable of network learning and insufficient
memory.

III. DYNAMIC NETWORK LEARNING

 This paper illustrates a novel Dynamic Network Learning
which alleviates all the problems in the traditional methods
[1][4][6][7][8][13][15]. It is more suitable for Recurrent
Neural Network using the power of Turing machine. Turing
machine is used for solving all halting problems and leads to
proper termination. If the machine is properly terminated,
then the network training achieves stability. The Turing
machine architecture is applied in Recurrent Neural Network
to achieve parallelism. As the structure of Recurrent Neural
Network and Turing machine are parallel in nature, the
equivalence of Recurrent Neural Network and Turing
machine is easily achieved. As the Turing machine generates
unrestricted grammar, the grammar formation is very simple
and derivation steps of grammar are simpler than other
traditional model. The concepts of the conventional research
works reveal that a step-by-step advancement is observed in
every research work from the previous one. Thus the need of
this work is to design a Recurrent Neural Network, which has
greater degree of flexibility in terms of learning speed,
parallelism, generalization and stability.

A. Dynamic Network Learning as Turing Machine
 This section deals with Dynamic Network Learning to
generate recursive language to attain stability. The Dynamic
Network Learning structure is a Recurrent Neural Network
and its working design is based on Turing machine structure.
The principle for designing Dynamic Network Learning is
derived from Recurrent Neural Network which functions

according to the transitions of Turing machine. The Turing
machine consists of three independent tapes with three
separate heads. The states and inputs of three-tapes are the
same as in a standard Turing machine. The Turing machine
reads the tape simultaneously but has only one state. It is a
finite-state machine associated with an external storage or
memory medium. An input tape is divided into cells, one next
to the other. Each cell contains a symbol from some finite
alphabet. The alphabet contains a special blank symbol and
one or more other symbols. The tape is assumed to be
arbitrarily extendable to the left and to the right, i.e., the
Turing machine is always supplied with as much tape as it
needs for its computation. Cells that have not been written to
before are assumed to be filled with the blank symbol. In
some models the tape has a left end marked with a special
symbol; the tape extends or is indefinitely extensible to the
right.
 A transition is determined by the state and the symbols are
scanned by each of tape heads. A transition in three-tape
machine may change the state, with a symbol on each of the
tape, and independently reposition each of the tape heads.
The repositioning consists of moving the tape head one cell to
the left or one cell to the right or leaving it at its current
position. A model of computation consisting of a set of
states, a start state, an input alphabet, and a transition
function that maps input symbols and current states to a next
state. Computation begins in the start state with an input
string. It changes to new states depending on the transition
function. A read/write that can read and write symbols on the
tape and move the tape left, right one (and only one) cell at a
time and stationary (no move). A finite control stores the
state of the Turing Machine. The number of different states is
always finite and there is one special start state. In one move
the Turing machine, depending upon the symbol scanned by
the tape and the state of the finite control: either erase or
write a symbol, and then move the head ('L' for one step left
or 'R' for one step right or ‘S’ for stationary), and then
assume the same or a new state as prescribed
 A three-tpe Turing machine M is constructed to accept the
recursive language L. The derivations of the unrestricted
grammar G are simulated on a three tape Turing machine.
Tape1 holds the input pattern and tape2 a representation of
rule of G. A rule u→v is represented on tape2 by the string
u#v. Rules are separated by two consecutive #’s. The
derivations of G are simulated on tape3. When a rule u → v is
applied to the string xuy on tape3, the string xvy is written on
the tape following xuy#. The symbol # is used to separate the
derived strings. The tape1 holds the target pattern. The tape2
contains the productions of the grammar. The tape3 has the
derivation of the grammar where the production is replaced
by another production. If tape1 and tape3 match, the Dynamic
Network Learning accepts and halts. Sometimes the
traditional dynamic networks are unstable
[1][4][6][7][8][13][15]. That is, the training sessions are
indefinite lengthy sessions and training will not complete.
Therefore, the network will not halt. But Dynamic Network

P. Dinadayalan et al IJCSET |April 2012| Vol 2, Issue 4,1118-1123

1119

Learning produces the constant result and the Turing machine
can properly terminate. Here it compares length of the target
pattern (tape1) and length of the actual output (tape3). If the
length of tape3 string is less than the length of tape1 string,
then the training process continues until the tape1 and tape3
matches. If the length of tape3 string is greater than the length
of tape1 string, then the training process stops and the Turing
machine halts in a rejecting state. Hence the given input is
not present in the language. Here when an input string
(pattern) is given, the Dynamic Network Learning accepts it
if the string belong to the language or rejects it if the string
does not belong to the language. Thus the Dynamic Network
Learning generates the recursive language

B. Experimental Results
 The languages such as {anbncn} can be generated using
unrestricted grammar G. The unrestricted grammar G is
implemented in the Turing machine to produce the language
L. As Turing machine generates recursive language, the
language L generated by Turing machine is also a recursive
language. It is hereby proved that Dynamic Network
Learning produces recursive language which helps to achieve
stability. This is explained with an illustration given below.
 An unrestricted grammar G = (V, T, P, S) generates the
language L = {anbncn

 | n ≥ 1}, where V = {S,A,C} is a set of
non-terminals, T={a,b,c} is the set of terminals, P is the set of
productions and S is the start symbol.
 The production P is described as follows.

P: S → aAbc | abc

 A → aAbc | abC

 Cb → bc

 Cc → cc

 A sample for the word pattern w = ‘aaabbbccc’ is taken to
generate the language L = {anbncn

 | n ≥ 1} using the
unrestricted grammar G and the derivation is given below.

 S => aAbc (since S → aAbc)

 => aaAbCbc (since A → aAbC)

 => aaabCbCbc (since A → abC)

 => aaabbCCbc (since Cb → Cb)

 => aaabbCbCc (since Cb → Cb)

 => aaabbbCCc (since Cc→ cc)

 => aaabbbCcc (since Cc → cc)

 => aaabbbccc (since Cc → cc)

TABLE I
LANGUAGE L={anbncn} IS IMPLEMENTED DYNAMIC
NETWORK LEARNING WITH CORRECT PATTERN

 A three tape Turing machine is taken to implement the
language L={anbncn

 |n ≥ 1} in Dynamic Network Learning.
The input word w = ‘aaabbbccc’ is stored in tape1. The
productions of grammar G are stored in tape2. The derivation
process which carried out in tape3 is described in the table.1.
The table.1 consists of state transition of Turing machine,
desired output (tape1), actual output (tape3), rules extracted
from tape2, length (u) and length (v). The input pattern w =
‘aaabbbccc’ is taken from the language L to process it. A
rule u→v is taken from tape2. Every derivation is calculated
and tabulated. The length (u) and length (v) should satisfy the
production rule so that Dynamic Network Learning is
refrained from entering into indefinite loop or indefinite
cycle.
 For every transition, the length of desired output and
length of actual output are compared from the table 1. If the
length of actual output is less than the length of desired
output, the processing of Dynamic Network Learning
continues. If the length of actual output is equal to the length
of desired output and all its symbols contain terminals, then
Dynamic Network Learning accepts the given input pattern
and halts. If the length of actual output is less than the length
of desired output and all its symbols contain terminals, then
the given input pattern is wrong. Therefore the Dynamic
Network Learning rejects the input pattern and halts. This is
shown in the table 2. If the length of actual output and the
length desired output than Dynamic Network Learning rejects
the input pattern and halts. Thus Dynamic Network Learning
is abstained from entering into indefinite loop. From the
above discussion it is concluded that Dynamic Network
Learning accepts recursive language and Dynamic Network
Learning achieve stability.

P. Dinadayalan et al IJCSET |April 2012| Vol 2, Issue 4,1118-1123

1120

TABLE II
LANGUAGE L={anbncn} IS IMPLEMENTED DYNAMIC
NETWORK LEARNING WITH INCORRECT PATTERN

IV. DYNAMIC NETWORK LEARNING AS RECURRENT

NEURAL NETWORK

 In this section it is proved that the structure of the
Dynamic Network Learning is designed based on Recurrent
Neural Network. The Dynamic Network Learning is possible
to keep recurrent network in a stable position through
recursive language and thus it is proved that Dynamic
Network Learning is a recursive language Recognizer. The
details of the recurrent network from the transitions of the
Turing machine are discussed below. The proof given in this
section illustrates that Dynamic Network Learning is a
language Recognizer. Recursive languages are generated by
Turing machine. Recursive language is to be implemented in
recurrent network (dynamical network). That is, recurrent
network generates recursive languages. The advantage of
generating recursive language is to achieve stability in
recurrent network. The Dynamic Network Learning is used to
train the given input pattern and produce a desired output. In
the Dynamic Network Learning if the input pattern given is
correct or even if the input is partially incomplete or partially
incorrect, the Dynamic Network Learning trains and produces
the correct desired output. Then the desired output is
compared with the target output.
Dynamic Network Learning consists of three layers: layer1
serves no computational function which simply distributes
the outputs back to the inputs, each layer2 neuron computes
the weighted sum of its inputs and layer3 is an output layer
which produces the actual output. If the actual output and
target output match, then the Dynamic Network Learning
recognizes the input pattern and halt. Otherwise, training
process continues until the network produces a constant
value. The internal representation of Dynamic Network
Learning is implemented by Turing machine. Each and every
iterations in the training process is called a state. The Turing
machine recognizes a language (the set of string accepted by
the Recognizer) by being presented with an input string. The
given string is either accepted or rejected as part of the
language, depending on the resulting point.

Fig. 1 Architecture of Dynamic Network Learning using

Recurrent Neural Network

 The Dynamic Network Learning has three primary layers:
input layer, computation layer and output layer. The neurons
in input layer serve only as fan-out points and no
computation. The computation layer is fully connected with
the output layer and does the supervised learning. The
Dynamic Network Learning is trained in two successive
steps. The first step is performed between the input layer and
the computation layer. The second step is performed between
the computation layer and output layer. An input vector is
applied, the input layer inputs are established, and the
Dynamic Network Learning outputs are calculated as in
normal operation. Each weight is adjusted only if it connects
to an input layer. The Dynamic Network Learning training is
supervised. Supervised training requires input pattern with
target pattern representing desired output. When an input
pattern is applied, the output of the network is calculated and
compared to the corresponding target pattern, and weights are
changed according to an algorithm that tends to minimize the
error. Computation layer produces the desired output which is
the input of the next iteration.
 The start symbol S in the grammar of recursive language
is given as the input of recurrent network. i.e., S is assigned
to X where X is the input of recurrent network. All the
productions of the grammar are considered as the weight
matrix W. The output of the recurrent network is recirculated
to the input of it till the target is achieved. To begin the
training, input X is given as the input of recurrent network.
Weight W is applied to X to get NET value. The NET value
is called the actual output. The actual output is compared
with the target output. When the target is matched with the
actual output the recurrent network recognize the input,
generates recursive language and halts. When the target does
not match with the actual output, the output is recirculated as
input to continue the training process. In the training process
the length of the actual output and the length of the target are
calculated in order to avoid indefinite training process. When

P. Dinadayalan et al IJCSET |April 2012| Vol 2, Issue 4,1118-1123

1121

the length of the actual output is longer than the target, the
training process is stopped to reject the given input and halt
the machine. Otherwise, it leads to instability. Therefore, the
Dynamic Network Learning will either accept or reject the
given input but it will not go to indefinite state. Thus the
Dynamic Network Learning generates recursive language as
it produces recursive language recurrent network is a Turing
machine.
 Dynamic Network Learning has a closed loop in the
network topology. In Dynamic Network Learning, every
neuron receives inputs from every other neuron in the
network. It is defined as one in which either the network's
computation unit activations or output values are fed back
into the network as inputs. In this network, inputs are
received from an external source, passed to a computation
layer, and then on to the output layer. The signal from the
output layer is passed to an external source, as well as back to
a same layer which then acts as an input layer (along with the
actual input layer) to the computation on the next pass. As the
output of the network is used along with a new input to
compute the output of the network, the response of the
network is dynamic. That is, the network's response can be
stable (successive iterations produce smaller and smaller
output changes until the outputs become constant). The
structure of the Dynamic Network Learning is dynamic and
stable. The Dynamic Network Learning properly ends with
the input pattern.

A. Experimental Results
 In section 4, it has been proved that Turing machine is
used in Recurrent Neural Network to generate recursive
language through which is achieved. The example discussed
in section 3.2 is taken here for illustration. The language
such L = {anbncn} can be generated using unrestricted
grammar G. The unrestricted grammar G is implemented in
the Turing machine to produce the language L. The Turing
machine consists of (Q, ∑, Γ, δ, q0, B, F), where Q=
{q0,q1,q2,q3} is a set of stats, ∑ = {a,b,c} is the set of
alphabets, Γ = {a, b, c, S, A, C} is the set of input tape
symbols, δ is the transition function which maps from Q to Γ,
q0 is the initial state, B = { ∆ } is the blank symbol and F =
{q3} is the final state. The transition function δ is described
as follows.

δ (q0,S,R) = (q1, aAbc)

δ (q0,S,R) = (q0, abc)

δ (q1,A,R) = (q1, aAbC)

δ (q1,A,R) = (q2, abC)

δ (q2,Cb,L) = (q2, bC)

δ (q3,Cc,L) = (q3, cc)

 The equivalence of state transition function δ of Turing
machine with the training sets for Recurrent Neural Network.
The equivalence of state transition of Turing machine with
training set of Recurrent Neural Network is demonstrated in
table 3. The table 3 consists of two divisions. The first
division shows the transition functions of Turing machine and
the division deals with training set of Recurrent Neural
Network. The transition function of Turing machine contains
present state with input, tape move direction and next state
with output.
 The Recurrent Neural Network training set consists
present input pattern Xi, actual output Oi and adjustment
weight Wi. Every iterations of Recurrent Neural Network has
its equivalent state transition of Turing machine. The training
set contains the input patternX = { S }, actual output Oi =
{anbncn} and the weight vector Wi = { S → aAbc ; S → abc
; A → aAbc ; A → abC; Cb → bc ; Cc → cc}. For example
in table 3, iteration 3 shows Turing machine transition
function which is denoted by δ(q1,A,R) = (q2,abC) and its
corresponding Recurrent Neural Network training set which
are X = { aaAbCbc }, O = { aaabCbCbc } and W = { abC }.
An input pattern is applied either from input vector Xi or
from a output vector Oi. Each of these is replaced by a weight
vector Wi and actual output is produced. The state of the
network is based on the state of the Turing machine. In the
table 3, the language L={anbncn} is applied by the transitions
of the Turing machine to implement Recurrent Neural
Network. Therefore Recurrent Neural Network not only
generates recursive language but also achieves stability.
Thus Dynamic Network Learning is trained to behave like
Turing machine to generate recursive language to reach stable
form.

TABLE III
EQUIVALENCE OF TURING MACHINE AND

RECURRENT NEURAL NETWORK

P. Dinadayalan et al IJCSET |April 2012| Vol 2, Issue 4,1118-1123

1122

V. CONCLUSION
 Dynamic Network Learning overcomes the drawbacks
faced by the traditional Dynamical language Recognizers.
The Dynamic Network Learning is a Dynamical Neural
Network and its internal structure is designed as Turing
machine. Dynamic Network Learning generates recursive
languages. The internal representation of Dynamic Network
Learning is implemented by Turing machine. The Turing
machine recognizes a language by being presented with an
input string. The input pattern is either accepted or rejected
as part of the language, depending on the resulting point. The
advantage of generating recursive language is to achieve
stability in dynamic network. Dynamic Network Learning
produces the constant result and the Turing machine can
properly terminate. Dynamic Network Learning produces
recursive language, which is a suitable language for solving
decidable problems. It is dynamic in nature and the
architecture is Recurrent Neural Network. Hence the
Dynamic Network Learning is a language Recognizer.

REFERENCES

[1] Aussem, A., Murtagh, F., and Sarazin, M. (1995). Dynamical recurrent

neural networks towards environmental time series prediction.
International Journal of Neural Systems, 6:145 - 170.

[2] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term
dependencies with gradient descent is difficult. IEEE Transactions on
Neural Networks, 5(2):157-166.

[3] Bradley, M. J. and Mars, P. (1995). Application of recurrent neural
networks to communication channel equalization. In IEEE International
Conference on Acoustics, Speech and Signal Processing, volume 5,
pages 3399-3402.

[4] Carrasco, R. C., Forcada, M. L., Valdes-Munoz, M..A., and Neco, R. P.
(2000). Stable encoding of finite-state machines in discrete-time

recurrent neural nets with sigmoid units. Neural Computation,
12(9):2129 - 2174.

[5] Cechin, A.L, Regina. D, Simon. (2003). State automata extraction from
recurrent neural nets using k-means and fuzzy clustering. Chilean
Computer Science Society, SCCC 2003. Proceeding. 23rd International
conference of the Volume, Issue, 6-7, Pages: 73-98.

[6] Dinadayalan.P, Gnanambigai Dinadayalan, R. Vasantha Kumari, (2010),
“Neuro Language Generator”, International Journal on Computer
Science and Engineering (IJCSE), ISSN: 1453 - 1461, Vol. 02, No. 04,
2010, 0975-3397, August 2010..

[7] Elman, J.L., (1995). Language as a dynamical system in (eds) Port, R.F.
& van Gelder, T. Mind as Motion: Explorations in the Dynamics of
Cognition, pp 195-225, Cambridge MA: MIT Press.

[8] Forcada, M. L. and Carrasco, R. C. (2001). Simple stable encodings of
finite state machines in dynamic recurrent networks, pages 103-127.
IEEE Press.

[9] Gnanambigai Dinadayalan, P. Dinadayalan, K. Balamurugan, (2011),
“Hybrid Network Learning”, International Journal of Computer
Applications, ISSN: 0975 – 8887, 21(10):30-34.

[10] Gomez.J (2004). An Incremental Learning Algorithm for Deterministic
Finite Automata Using Evolutionary Algorithms, Proc. Genetic and
Evolutionary Computation.

[11] M. Hasenjager and H. Ritter (2002). Active Learning in neural
networks. Physica-Verlag Studies in Fuzziness and Soft Computing
Series, New learning paradigms in soft computing, Ed. L. C. Jain and J.
Kacprzyk, 137-169.

[12] Shinichi Kikuchi, Masakazu Nakanishi (2003). Recurrent neural
network with short-term memory and fast structural learning method.
Wiley Periodicals, Inc. Syst. Comp Jpn, 36(6): 69-79.

[13] Simon M. Lucas, T. Jeff Reynolds (2005). Learning Deterministic Finite
Automata with a Smart State Labeling Evolutionary Algorithm. IEEE
transactions on Pattern analysis and machine intelligence, pp.1063-
1074.

[14] Tabor, W., (2001). Sentence Processing and Linguistic Structure in
Kolen, J.F. & Kremer, S.C. (eds), A Field Guide to Dynamical
Recurrent Networks, pp 291-309, New York: IEEE Press.

 [15] Wiles, J., Blair, A.D. & Boden, M., (2001). Representation Beyond
Finite States: Alternatives to Pushdown Automata in Kolen, J.F. &
Kremer, S.C. (eds) A Field Guide to Dynamical Recurrent Networks,
pp 129-142, New York: IEEE Press.

P. Dinadayalan et al IJCSET |April 2012| Vol 2, Issue 4,1118-1123

1123

