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Abstract— This paper shows a Dynamic Network Learning for 
performing unrestricted grammar trained Recurrent Neural 
Network and proves the relationship between Recurrent Neural 
Network and Turing machine. Dynamic Network Learning 
employs bi-directional neural network which has feedback path 
from their outputs to the inputs, the response of such network is 
dynamic. Turing machine is a finite-state machine associated 
with an external storage. It prevents indefinite lengthy training 
sessions. The Dynamic Network Learning architecture is a 
Recurrent Neural Network and its working principle is related 
to Turing machine structure. This work exhibits how Turing 
machine recognizes recursive language and it is also elucidated 
that Dynamic Network Learning is a stable network.   
 
Keywords— Finite State Machine, Formal languages, 
Perceptron, Recurrent Neural Network  

 
I. INTRODUCTION 

 
      A Neural Network [1][2][6][9][11] is a mathematical 
model or computational model that tries to simulate the 
structure and functional aspects of biological neural 
networks. The basic building block of a brain and the neural 
network is the neuron.  An artificial neuron consists of many 
inputs and one output. It has an interconnected group of 
artificial neurons and processes information using a 
connectionist approach to computation. The neural network 
demonstrates the behaviour of the feedforword network and 
feedback network[1][3][6][7]. In feedforward networks, 
neurons are organized into different layers that have 
unidirectional connections between them. Feedforward 
networks are static in the sense that the outputs depend only 
on the present input. Feedback neural networks have 
feedback path from their outputs to the inputs, the response of 
such network is dynamic or recursive. There are many 
different types of neural networks, each of which has 
different strengths particular to their applications.  
     Finite State Technology describes Finite State Machines 
and their languages[4][5][6][10]. Each language has its own 
grammar; based on these grammars the Finite-State Machines 
behave.  Finite-State Machines have four divisions namely 
Finite State Automaton, Push-down Automaton, Linear 

Bounded Automaton and Turing Machines. Finite State 
Automaton accepts regular grammar or type3 grammar. Push-
down Automaton generates Context free grammar or type2 
grammar.  Linear bounded Automaton produces Context 
sensitive grammar or type1 grammar.  Turing Machine 
generates unrestricted grammar or type0 grammar.  Every 
regular grammar is Context free and every Context -free 
grammar is Context sensitive and every Context sensitive is 
unrestricted grammar. Neural network architecture is trained 
to perform the same computation from a set of examples to 
recognize a language from a set of examples.  Viewing finite 
state machine as language generators or language acceptors 
allows to view examples as input strings (of symbols from an 
appropriate alphabet), belonging or not to the language, to the 
computation, that is to be learned by the neural network. 
Section 2 briefly analyses the background work. Section 3 
proposes Dynamic Network Learning illustration.  Section 4 
demonstrates Dynamic Network Learning as Recurrent 
Neural Network with illustration. Section 5 summarizes the 
paper. 
 

II. BACKGROUND WORK 
 

     The conventional Neural Network Structure 
[1][4][6][8][13] used for Formal Language Recognizers is 
Feedforward Recurrent Neural Network.  It uses two types of 
Neural Finite State Machines such as Dynamical Language 
Recognizer using Regular Grammars and Dynamical 
Language Recognizer using Context-Free Grammars. 
Dynamical Language Recognizer using Regular Grammars 
are less powerful than other Dynamical Language 
Recognizers.  The grammars used in Regular Languages are 
left-linear and right-linear which takes more number of rules 
(productions) to generate the language [4][6][13][15]. It 
solves the problem using regular expression.  Some examples 
of regular expressions are a*, b* ,a*b* and (a+b)* where * 
(Kleene star or looping) denotes indefinite loop symbol.   
     The conventional Dynamical Language Recognizer using 
Context-Free Grammar [6][7][13] is an improved model over 
Dynamical Language Recognizer using Regular Grammar.  It 
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generates context-free language.  Every regular language is a 
context free language.  It generates the problems like anbn and 
wcwR and solves some definite formal language problems.  It 
does not solve non-context-free languages like anbnan, anbncn 
and ambncm+n. It does not solve halting problem and cannot 
process recursive languages. Thus the structure of Dynamical 
Language Recognizer using Regular Grammar and 
Dynamical Language Recognizer using Context-Free 
Grammar are mostly unstable.  Most of the conventional 
Dynamical Language Recognizer [1][4][6][7][8][13][15] are 
used as Feedforward Recurrent Neural Network like 
Perceptron and Backpropagation Neural Networks.  The 
Perceptron Neural Network is Feedforward single layer 
network which is not effective for producing formal 
languages.  As the training process in the Feedforward single 
layer network is not effective, it produces irrelevant and 
inconsistent results. Backpropagation network or multilayer 
network has n number of layers.  It has more number of 
hidden layers.  The training process in the hidden layers using 
conventional Dynamical Language Recognizers takes long 
training session and leads to wrong direction producing 
inconsistent and improper results. The reasons are that these 
models cannot achieve stability, computational network 
interactions, incapable of network learning and insufficient 
memory.   
  

III. DYNAMIC NETWORK LEARNING 
 

     This paper illustrates a novel Dynamic Network Learning 
which alleviates all the problems in the traditional methods 
[1][4][6][7][8][13][15]. It is more suitable for Recurrent 
Neural Network using the power of Turing machine. Turing 
machine is used for solving all halting problems and leads to 
proper termination.  If the machine is properly terminated, 
then the network training achieves stability.  The Turing 
machine architecture is applied in Recurrent Neural Network 
to achieve parallelism.  As the structure of Recurrent Neural 
Network and Turing machine are parallel in nature, the 
equivalence of Recurrent Neural Network and Turing 
machine is easily achieved.  As the Turing machine generates 
unrestricted grammar, the grammar formation is very simple 
and derivation steps of grammar are simpler than other 
traditional model. The concepts of the conventional research 
works reveal that a step-by-step advancement is observed in 
every research work from the previous one. Thus the need of 
this work is to design a Recurrent Neural Network, which has 
greater degree of flexibility in terms of learning speed, 
parallelism, generalization and stability. 
 
A.  Dynamic Network Learning as Turing Machine  
     This section deals with Dynamic Network Learning to 
generate recursive language to attain stability. The Dynamic 
Network Learning structure is a Recurrent Neural Network 
and its working design is based on Turing machine structure. 
The principle for designing Dynamic Network Learning is 
derived from Recurrent Neural Network which functions 

according to the transitions of Turing machine.  The Turing 
machine consists of three independent tapes with three 
separate heads. The states and inputs of three-tapes are the 
same as in a standard Turing machine.  The Turing machine 
reads the tape simultaneously but has only one state. It is a 
finite-state machine associated with an external storage or 
memory medium. An input tape is divided into cells, one next 
to the other. Each cell contains a symbol from some finite 
alphabet. The alphabet contains a special blank symbol and 
one or more other symbols. The tape is assumed to be 
arbitrarily extendable to the left and to the right, i.e., the 
Turing machine is always supplied with as much tape as it 
needs for its computation. Cells that have not been written to 
before are assumed to be filled with the blank symbol. In 
some models the tape has a left end marked with a special 
symbol; the tape extends or is indefinitely extensible to the 
right. 
     A transition is determined by the state and the symbols are 
scanned by each of tape heads.  A transition in three-tape 
machine may change the state, with a symbol on each of the 
tape, and independently reposition each of the tape heads.  
The repositioning consists of moving the tape head one cell to 
the left or one cell to the right or leaving it at its current 
position.  A model of computation consisting of a set of 
states, a start state, an input alphabet, and a transition 
function that maps input symbols and current states to a next 
state. Computation begins in the start state with an input 
string. It changes to new states depending on the transition 
function.  A read/write that can read and write symbols on the 
tape and move the tape left,  right one (and only one) cell at a 
time and stationary (no move). A finite control stores the 
state of the Turing Machine. The number of different states is 
always finite and there is one special start state. In one move 
the Turing machine, depending upon the symbol scanned by 
the tape and the state of the finite control:  either erase or 
write a symbol, and then move the head ('L' for one step left 
or 'R' for one step right or ‘S’ for stationary), and then 
assume the same or a new state as prescribed 
     A three-tpe Turing machine M is constructed to accept the 
recursive language L.  The derivations of the unrestricted 
grammar G are simulated on a three tape Turing machine. 
Tape1 holds the input pattern and tape2 a representation of 
rule of G.  A rule u→v is represented on tape2 by the string 
u#v.  Rules are separated by two consecutive #’s.  The 
derivations of G are simulated on tape3. When a rule u → v is 
applied to the string xuy on tape3, the string xvy is written on 
the tape following xuy#.  The symbol # is used to separate the 
derived strings.  The tape1 holds the target pattern.  The tape2 
contains the productions of the grammar.  The tape3 has the 
derivation of the grammar where the production is replaced 
by another production.  If tape1 and tape3 match, the Dynamic 
Network Learning accepts and halts. Sometimes the 
traditional dynamic networks are unstable 
[1][4][6][7][8][13][15]. That is, the training sessions are 
indefinite lengthy sessions and training will not complete. 
Therefore, the network will not halt.  But Dynamic Network 
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Learning produces the constant result and the Turing machine 
can properly terminate.  Here it compares length of the target 
pattern (tape1) and length of the actual output (tape3). If the 
length of tape3 string is less than the length of tape1 string, 
then the training process continues until the tape1 and tape3 
matches. If the length of tape3 string is greater than the length 
of tape1 string, then the training process stops and the Turing 
machine halts in a rejecting state.  Hence the given input is 
not present in the language.  Here when an input string 
(pattern) is given, the Dynamic Network Learning accepts it 
if the string belong to the language or rejects it if the string 
does not belong to the language. Thus the Dynamic Network 
Learning generates the recursive language 
 
B. Experimental Results  
     The languages such as {anbncn} can be generated using 
unrestricted grammar G.  The unrestricted grammar G is 
implemented in the Turing machine to produce the language 
L.  As Turing machine generates recursive language, the 
language L generated by Turing machine is also a recursive 
language.  It is hereby proved that Dynamic Network 
Learning produces recursive language which helps to achieve 
stability. This is explained with an illustration given below. 
     An unrestricted grammar G = (V, T, P, S) generates the 
language L = {anbncn

  | n ≥ 1}, where V = {S,A,C} is a set of 
non-terminals, T={a,b,c} is the set of terminals, P is the set of 
productions and S is the start symbol.   
     The production P is described as follows. 
 

P:  S → aAbc | abc 

    A → aAbc | abC 

    Cb → bc 

    Cc → cc 

 
      A sample for the word pattern w = ‘aaabbbccc’ is taken to 
generate the language L = {anbncn

  | n ≥ 1} using the 
unrestricted grammar G and the derivation is given below. 
 
      S => aAbc           (since S → aAbc) 

         => aaAbCbc       (since A → aAbC) 

         => aaabCbCbc   (since A → abC) 

        => aaabbCCbc    (since Cb → Cb) 

        => aaabbCbCc    (since Cb → Cb) 

        => aaabbbCCc    (since Cc→ cc) 

        => aaabbbCcc     (since Cc → cc) 

        => aaabbbccc      (since Cc → cc) 

 
 
 
 

TABLE I 
LANGUAGE L={anbncn} IS IMPLEMENTED DYNAMIC 
NETWORK LEARNING WITH  CORRECT PATTERN 

 
 
     A three tape Turing machine is taken to implement the 
language L={anbncn

 |n ≥ 1} in Dynamic Network Learning. 
The input word w = ‘aaabbbccc’ is stored in tape1.  The 
productions of grammar G are stored in tape2.  The derivation 
process which carried out in tape3 is described in the table.1.  
The table.1 consists of state transition of Turing machine, 
desired output (tape1), actual output (tape3), rules extracted 
from tape2, length (u) and length (v).  The input pattern     w = 
‘aaabbbccc’ is taken from the language L to process it.   A 
rule u→v is taken from tape2.  Every derivation is calculated 
and tabulated. The length (u) and length (v) should satisfy the 
production rule so that Dynamic Network Learning is 
refrained from entering into indefinite loop or indefinite 
cycle. 
     For every transition, the length of desired output and 
length of actual output are compared from the table 1.  If the 
length of actual output is less than the length of desired 
output, the processing of Dynamic Network Learning 
continues.  If the length of actual output is equal to the length 
of desired output and all its symbols contain terminals, then 
Dynamic Network Learning accepts the given input pattern 
and halts.  If the length of actual output is less than the length 
of desired output and all its symbols contain terminals, then 
the given input pattern is wrong.  Therefore the Dynamic 
Network Learning rejects the input pattern and halts.  This is 
shown in the    table 2. If the length of actual output and the 
length desired output than Dynamic Network Learning rejects 
the input pattern and halts.  Thus Dynamic Network Learning 
is abstained from entering into indefinite loop.  From the 
above discussion it is concluded that Dynamic Network 
Learning accepts recursive language and Dynamic Network 
Learning achieve stability. 
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TABLE II 
LANGUAGE L={anbncn} IS IMPLEMENTED DYNAMIC 
NETWORK LEARNING WITH INCORRECT PATTERN 

 
 

IV.  DYNAMIC NETWORK LEARNING AS RECURRENT 

NEURAL NETWORK 
 

     In this section it is proved that the structure of the 
Dynamic Network Learning is designed based on Recurrent 
Neural Network. The Dynamic Network Learning is possible 
to keep recurrent network in a stable position through 
recursive language and thus it is proved that Dynamic 
Network Learning is a recursive language Recognizer. The 
details of the recurrent network from the transitions of the 
Turing machine are discussed below. The proof given in this 
section illustrates that Dynamic Network Learning is a 
language Recognizer. Recursive languages are generated by 
Turing machine.  Recursive language is to be implemented in 
recurrent network (dynamical network).  That is, recurrent 
network generates recursive languages.  The advantage of 
generating recursive language is to achieve stability in 
recurrent network. The Dynamic Network Learning is used to 
train the given input pattern and produce a desired output.  In 
the Dynamic Network Learning if the input pattern given is 
correct or even if the input is partially incomplete or partially 
incorrect, the Dynamic Network Learning trains and produces 
the correct desired output.  Then the desired output is 
compared with the target output.                                            
Dynamic Network Learning consists of three layers: layer1 
serves no computational function which simply distributes 
the outputs back to the inputs, each layer2 neuron computes 
the weighted sum of its inputs and layer3 is an output layer 
which produces the actual output. If the actual output and 
target output match, then the Dynamic Network Learning 
recognizes the input pattern and halt. Otherwise, training 
process continues until the network produces a constant 
value. The internal representation of Dynamic Network 
Learning is implemented by Turing machine. Each and every 
iterations in the training process is called a state. The Turing 
machine recognizes a language (the set of string accepted by 
the Recognizer) by being presented with an input string.  The 
given string is either accepted or rejected as part of the 
language, depending on the resulting point. 

 

 
Fig. 1 Architecture of Dynamic Network Learning using 

Recurrent Neural Network 
     
     The Dynamic Network Learning has three primary layers: 
input layer, computation layer and output layer. The neurons 
in input layer serve only as fan-out points and no 
computation. The computation layer is fully connected with 
the output layer and does the supervised learning.  The 
Dynamic Network Learning is trained in two successive 
steps.  The first step is performed between the input layer and 
the computation layer.  The second step is performed between 
the computation layer and output layer.  An input vector is 
applied, the input layer inputs are established, and the 
Dynamic Network Learning outputs are calculated as in 
normal operation.  Each weight is adjusted only if it connects 
to an input layer.  The Dynamic Network Learning training is 
supervised.  Supervised training requires input pattern with 
target pattern representing desired output.  When an input 
pattern is applied, the output of the network is calculated and 
compared to the corresponding target pattern, and weights are 
changed according to an algorithm that tends to minimize the 
error. Computation layer produces the desired output which is 
the input of the next iteration. 
     The start symbol S in the grammar of recursive language 
is given as the input of recurrent network. i.e., S is assigned 
to X where X is the input of recurrent network.  All the 
productions of the grammar are considered as the weight 
matrix W.  The output of the recurrent network is recirculated 
to the input of it till the target is achieved.  To begin the 
training, input X is given as the input of recurrent network.  
Weight W is applied to X to get NET value.  The NET value 
is called the actual output.  The actual output is compared 
with the target output.  When the target is matched with the 
actual output the recurrent network recognize the input, 
generates recursive language and halts.  When the target does 
not match with the actual output, the output is recirculated as 
input to continue the training process.  In the training process 
the length of the actual output and the length of the target are 
calculated in order to avoid indefinite training process.  When 
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the length of the actual output is longer than the target, the 
training process is stopped to reject the given input and halt 
the machine.  Otherwise, it leads to instability.  Therefore, the 
Dynamic Network Learning will either accept or reject the 
given input but it will not go to indefinite state.  Thus the 
Dynamic Network Learning generates recursive language as 
it produces recursive language recurrent network is a Turing 
machine. 
  Dynamic Network Learning has a closed loop in the 
network topology. In Dynamic Network Learning, every 
neuron receives inputs from every other neuron in the 
network.  It is defined as one in which either the network's 
computation unit activations or output values are fed back 
into the network as inputs. In this network, inputs are 
received from an external source, passed to a computation 
layer, and then on to the output layer. The signal from the 
output layer is passed to an external source, as well as back to 
a same layer which then acts as an input layer (along with the 
actual input layer) to the computation on the next pass. As the 
output of the network is used along with a new input to 
compute the output of the network, the response of the 
network is dynamic. That is, the network's response can be 
stable (successive iterations produce smaller and smaller 
output changes until the outputs become constant). The 
structure of the Dynamic Network Learning is dynamic and 
stable. The Dynamic Network Learning properly ends with 
the input pattern. 
 
A. Experimental Results 
     In section 4, it has been proved that Turing machine is 
used in Recurrent Neural Network to generate recursive 
language through which is achieved. The example discussed 
in section 3.2 is taken here for illustration.  The language 
such L = {anbncn} can be generated using unrestricted 
grammar G. The unrestricted grammar G is implemented in 
the Turing machine to produce the language L. The Turing 
machine consists of (Q, ∑, Γ, δ, q0, B, F), where Q= 
{q0,q1,q2,q3} is a set of stats,       ∑ = {a,b,c} is the set of 
alphabets, Γ = {a, b, c, S, A, C} is the set of input tape 
symbols, δ is the transition function which maps from Q to Γ, 
q0 is the initial state,  B = { ∆ } is the blank symbol and F = 
{q3} is the final state.  The transition function δ is described 
as follows. 
 

δ (q0,S,R) =  (q1, aAbc) 

δ (q0,S,R) =  (q0, abc)  

δ (q1,A,R) =  (q1, aAbC) 

δ (q1,A,R) =  (q2, abC) 

δ (q2,Cb,L) =  (q2, bC) 

δ (q3,Cc,L) =  (q3, cc) 

   
 

     The equivalence of state transition function δ of Turing 
machine with the training sets for Recurrent Neural Network.  
The equivalence of state transition of Turing machine with 
training set of Recurrent Neural Network is demonstrated in 
table 3.  The table 3 consists of two divisions.  The first 
division shows the transition functions of Turing machine and 
the division deals with training set of Recurrent Neural 
Network.  The transition function of Turing machine contains 
present state with input, tape move direction and next state 
with output. 
     The Recurrent Neural Network training set consists 
present input pattern Xi, actual output Oi and adjustment 
weight Wi.  Every iterations of Recurrent Neural Network has 
its equivalent state transition of Turing machine.  The training 
set contains the input patternX = { S }, actual output Oi = 
{anbncn} and the weight vector Wi = { S → aAbc ;    S → abc 
; A → aAbc ; A → abC; Cb → bc ; Cc → cc}.  For example 
in table 3, iteration 3 shows Turing machine transition 
function which is denoted by δ(q1,A,R) = (q2,abC) and its 
corresponding Recurrent Neural Network training set which 
are   X = { aaAbCbc }, O = { aaabCbCbc } and  W = { abC }. 
An input pattern is applied either from input vector Xi or 
from a output vector Oi. Each of these is replaced by a weight 
vector Wi and actual output is produced.  The state of the 
network is based on the state of the Turing machine.  In the 
table 3, the language L={anbncn} is applied by the transitions 
of the Turing machine to implement Recurrent Neural 
Network.  Therefore Recurrent Neural Network not only 
generates recursive language but also achieves stability.  
Thus Dynamic Network Learning is trained to behave like 
Turing machine to generate recursive language to reach stable 
form. 
 

TABLE III 
EQUIVALENCE OF TURING MACHINE AND 

RECURRENT NEURAL NETWORK 
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V. CONCLUSION 
     Dynamic Network Learning overcomes the drawbacks 
faced by the traditional Dynamical language Recognizers. 
The Dynamic Network Learning is a Dynamical Neural 
Network and its internal structure is designed as Turing 
machine. Dynamic Network Learning generates recursive 
languages. The internal representation of Dynamic Network 
Learning is implemented by Turing machine. The Turing 
machine recognizes a language by being presented with an 
input string.  The input pattern is either accepted or rejected 
as part of the language, depending on the resulting point. The 
advantage of generating recursive language is to achieve 
stability in dynamic network. Dynamic Network Learning 
produces the constant result and the Turing machine can 
properly terminate. Dynamic Network Learning produces 
recursive language, which is a suitable language for solving 
decidable problems. It is dynamic in nature and the 
architecture is Recurrent Neural Network. Hence the 
Dynamic Network Learning is a language Recognizer. 
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