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Abstract— Making use of Fourier techniques, this paper
deals with the global solution of a singularly perturbed
KdV equation with initial value. Under certain assumption,
The existence and uniqueness of the global solution to the
singularly perturbed KdV equation is gained in Sobolev
space.And the long time asymptotic behaviour of the form a
approximation solution is discussed.
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INTRODUCTION

Recently there has been much interestin the global
solution of non-linear developing equation, it has been
an important object in physics, mechanics, biology.
Many applied mathematics workers and explorers
working in Turing Machine spend their time in looking
for the global solution of some non-linear partial
differential equations.The generated KdV function

u, +6uu, +U,, +U,. =0
is an important function which is often seen in physics,
wave mechanics, biology, chemistry, and so on.

In this paper, we will explore the global solution of
the initial value problem (1) and the global solution is
asymptotic in long time.

MAIN RESULT

First ,we give the initial value problem;
u, +6uu, +u,, +u,. =0,
u(0,x,0)=04(x). (2)

where teR, XeR, ¢eH5(R),S>%.

In order to proof the theorem, we should give a
definition.

Definition 1 Let
X,(T)=C([0,T],H**(R)NC*([0, T], H*(R)).

The normal is

1069

U llx, = sup ([ulls.. +Ilucll)
te(0,T)

Where
1
+o0 A 2
Jull=( [0 12y i 02"

Let

X(20) =C([0,0], H**(R)) NC'([0, ] H*(R)).  If

1
S> E , according to the theorem of the Sobolev Space
we know
fuvls<Cllullglfv -

In the following we act C as all instant numbers.

Theorem 1 If ¢@e HS(R),S>% ,

0 <0 < ¢, <<1, there exits the unique global solution

of the initial value problem, where U(X,t) € X ().

Proof : Making the Fourier transform about X in the
initial value problem (2), we will get

N /\2 A N
u+3(u ), —iu+it’u=0,

U(0,2) = 5 ().
And then

G _ e(i/13—i/15)t5%(ﬂ) _

A
s (- Y2 A@i4%-i25)(t-7)
ile jou Ne d..

Let U =e™ NS p(1).
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We will get
Ul < S 1I@ll;= A, (4)

where A=[lo]|;.

We definite the sequence {Un}:

A

. @i (L 2
Un =Uo—€ '[O(un—l )x

(iA%-iA%)(t-r)
e d,

where n=12,3,---

In the following we will proof that there is the
functionu(X,t) € X (), and the sequence {un}will

be uniformly convergent tou (X, t) .

As we all know that there are three important
conservation laws in  physics. When a physics problem
can be made by a non-linear partial differential equation

U, = k(u), according to conservation laws we can get
oT  oX
—+—=0
ot ox

where T and X is polynomial for u(x,t). And

then | =ITdX have no relations of time t.
For the singularly perturbed KdV equation,we can
attain the result as follow

[u?], +[4u® +2uu,, —u’ +eu =0.

XXXXX ] X

XTXXX

[—%ux2 +u°], +[-6uu ? +3uu, —u,u

1 1
+§(U xx)2 —&uu + EU LU __g(l“lxxx)2

X XXXXX
2

9 4 2 1 2
FS U U, 4 2 SUU g — UL U +

1guxzuXX —lgux3 +£gquX2]X =0.
4 12 2
Define @, (u) = jRuz(x,t)dx,

O, = [, (-7u +ut)dx

It is easy to know

d .
£ ®iW=0 j=01 teR.

And for the random time t € R ,we know

L u2(x,t)dx = jR @?(X)dx
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I, IP= [ u,2(x tdx
= .fR ¢ 2dx— ZJR #ldx+ ZIR u’dx

lu, IP<lig P + 2l ALl 4

+2llull flu P

(6)

()

Since the theorem in Sobolev Space,we attain
1
3 < 3 . ST
107 ey =<l Py 52 2 ®
For (4)(6)(7)and (8), we know
llug” s =112ug (ug), I,
< 2| L [1Cug ), I
< 26 AI(up) Il
[(O9N%

B " +21 SIS I +2 1 ug [l ug [l
<C25%A?
And then

[1uy [ls= & AIug 111 uo ) [
<5A+25A-CSA.

If o is small enough, we know
lu, ||,<20A.
According to induction,we know
lu, [,<20A,n=123,-- 9)
Using the way as (9),we attain
llu, ||XS(T)3 20A, n=123,---
And then
[T [ TR TR
<C[3(25 A1l U, , —U, |l
<[BC(25A)* 1 (5A).

Xs(T)

n
” u, ||XS(T)S|| Uo ”XS(T) +Z” U —Uu, ”XS(T)
i=1

<SA+ Zn:[BC(ZcSA)Z]H(éA)

i=1
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So there exists a function

u(x,t) e Xg ().
And the sequence {un} is uniformly convergent to

u(x,t) . In the other way, u(X,t)e Xs() is the

global solution of the initial value problem (2).
Next we proof the solution of the initial value problem
(2) is unique.

Theorem 2 The solution of the initial value problem (2)
is unique.

Proof: Suppose the initial value problem (2) has two
solutionsas U™ (X,t) € X (o),

and U™ (X,t) € Xq(0).
Let w(X,t)=u"(x,t)—u"(x,t),
And then

o2

W)
2)(X,t) — _glif-ie)t J‘O‘ (G _G )Xe(if—igf)(t—r)dr
=_e(i13—iels)t‘.‘;[(u +u ) —u )]Xe(if—ids)(t—r)dr
| (X, D)
. - t /\* /\** /\* A** . -
=|_e(|/13—|615)t.|'0[(u +u )(U —u )]Xe(l/la—lels)(t—r)dr
B o t /\* /\** A* A**
£|—e(”3"“”5’t|[J‘O|(u +u ), (u—u D|dr
t /\* A** A* A** t . s
_ (iA°-igd”)(t-1)
+j0|(u +u YU —-u >X|dr]|joe d|
<c[loxD|dr+ [ |ox D], d
<Cf lox,[dr+ [ |o(xD], d7]
t N
<C'[ lox,D|dz
0
We can attain the similar result
N
lo(X,D |, ,<C’ j||a><x Il
Since Gronwall inequation, we know

o (X,1)=0(@ (X,t)e X ().
Sointhe X, (o) space, we get

u*(x,t) =u™(x,t).
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Theorem 3 If the condition of the theorem 1 is
existing, the unique solution of the initial value problem
(2) can be written as

u(,t)=> "™ (xt), ...
n=0

where 0 >0 and it is small enough.

Proof: Suppose the global solution of the initial value
problem (2) as

u(x,t)=> 6" (x,t) (11)
n=0
According to the initial value problem (2)
A(N)

iévnﬂ + I(é‘ls lS)ZﬁnA
n=0
o An)
— _3[2 5n+l u
n=0

3 5m 0 (0,2) = 5 $(2)

2
X

Since the same power of O isequal, when n=0,
we attain

A A° -4 =0,
Ut(0)()( )i )U ........... (12)
U (0,2) = $(A).
And then
U (% A)+i(e* —A)u =0,
A(0)
U (0,2)=¢(A).
A(0) ,
So u (x,4)= ¢(/1)e'“ —e2° i3

A(0)
We can know [[U [l < C| (ﬂ I, o) -
According to (5), when M is even number, we know

A(m)

ue (x,A)+i(ed’ - /13)u

A(m)

ROBNORINGOINGEY A A
=-3Ux Ux +Ux Ux +---+Ux Ux ]
A(©)

U (0,4)=¢(2)
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The computation as (12), we know
A(m)

lu (%Dl m<Cmllell

X ()

When M is odd number, we can attain the similar
result
A (M) A

i < AD)lm<Cmliell,  ........a3)

[COIREED I DI
© A A

< n+l <
< ;a cnligll  <Cligll, B ... (14)

0

1
Since § <=, Zé'n*ln is convergent.
n=0

Let Zé‘”“n < B, where B is a constant. Since
n=0
(14), (10) is unformly convergent. Using the reverse
Fourier transform, the global solution of the initial value
problem (2) can be expressed by (10).
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