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Abstract— In this paper, we study the computability of the
solution operator of the initial problem for the nonlinear
Kawahara equation, which is based on the Type-2 Turing

machines. We will prove that in Sobolev space H°(R?) ,
for S= 0, the solution operator :

Ko HA(R) - O(R H(RY)
is(0,.,[p — ,.]) -computable. The conclusion enriches

the theory of computability.
Key words— the nonlinear Kawahara equation, initial problem,
computability, Type-2 theory of effectivity (TTE), Sobolev space

I .INTRODUCTION
At present, the computability of solutions of the nonlinear
evolution equations have become an important topic to the
life science, applied
theoretical
Researching boundedness and computability of the solutions

workers of physics, mechanics,

mathematics, engineering and computer.
of the nonlinear equations, will offer effective tools for the
application of equations, enrich theoretical foundation of
computer science and promote the development of computer
software. In 1985, K.Weihrauch and others established a
computational model, called Type-2 theory of effectivity (TTE
for short). K.Weihrauch and N. Zhong have studied the
computability of the generaized functions, the KdV equation
and the Schrdodinger equation [3]-{5], Dianchen Lu and others
have studied the computability of the mKdV equation [1].

The nonlinear Kawahara equation was first proposed by
Kawahara in 1972, this equation has wide applications in

physics such as in the theory of magneto—acoustic waves in
plasma, in the theory of long wavesin shallow liquid under ice

cover and so on. In this paper, we will discuss the nonlinear

Kawahara equation as follows:

i(a—u+aua—u+ @+ @):_l @ D
xR TP T T 2%y
u(x, y,0) = g(x y),x, ye Rt>0 @)

where 5, 7€ R are dispersion coefficients, a is nonlinear
perturbance coefficient, and C, >0 is sound velocity.

The paper is organized as follows. In Section2, we mainly
review some basic definitions, lemmas and conclusions of
TTE, which are relevant to the proof of section3. Section3 is
devoted to the proof of the main theorem.

II. PRELIMINARIES

This section we will give a brief introduction of TTE. For
details the reader can refer to [2].
Lemma 2.1

1) In Schwarz space S(R) , the function (a, ) > aw is
(p.6,,6,) - computable; (w,t) > w(t)]is (J,, 0, p)

— computable; (@, ¥) > ¢+ and (P, W) > @y are

(Js, 05, 6,) — computable.
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2) Thefunction (y,t) > E_ (1) v, (v, t) > E_(t)-

v, is(d, p,0,)— computable, for computableme R.
3) The Fourier transform

F:S(R)— S(R), ¢ (27) ™2 j e p(x)dx,

and the inverse Fourier transform

F:S(R) - S(R), ¢ (27)¥*[ e™p(£)d¢,

areboth (J;, J,) — computable.

Lemma 2.2

Thefunction H : C(R; S(R))x RxR — S(R),
b
H (u,a,b) = j u(t)dt

is ([p—9o.], p,p,d,)— computable.
Lemma 2.3 (type conversion)

Let 0 :CX” — X, be a representation of the set X,
(0<i<k).Let f:c X;x:--xX, — X,and define

L0 %) (%) = £ 04 %)

then f is (0,,---,6,0,)—computable (continuous) if and

only if L is (0,04, [0 — 6,])— computable

(continuous).

Lemma 2.4 (primitive recursion)

Lt ycY—>M ad y'cY—>M" ae two

representations, v, is admissible representation of N . Then

we have the following propositions:

1) Suppose f .= M — M’is (¥, %) — computable,

f" . NxXM'xM — M’is(vy,7,7,7) — computable.
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Defineg”:c NxM — M’ asfollows:
9'(0,x) = f(x),9’(n+1,x) = f'(n, g’(n,x),%),

wherexe M,ne N, then the functiong’is(vy, 7, 7)) —
computable.

2) Supposeh:= M — M is(y, ) — computable, define a
functionH . NX M — M asfollows:

H(0,x) = x, H(n+1,X) =ho H(n,x) = h"*(x),

then the function H is(vy,, 7, 7) — computable.

The conclusions about the computability above aso can
apply to multidimensional spaceR"(n>2).

Definition25® For a fixed T > 0 and any

function @(X,y,t):[0, T]xR*+> R , define modular

functions:
Al (@) = supla],, ®
[0,T]
AL () :Ha_w )
ox Loy
T _ T T
A (@) = max{A; (@), A, ()} (5)

Where||||_, means the norm of Sobolev spaceW*?(R?),

which is also the norm of H °(R?) , we construct a function

space as follows:

X; ={we C([0,T];H*(R?)),s=0,A" (@) <<} ,
Thenforanyue X, it holds that

T PN ©

Ly
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Define the operator in H  *(R?), 0': F(0'f) =
/(i) f

WhereH '(R*) ={f € ¢’,% f(k k) e (R},

Then the Cauchy problem (1)-(2) are equivalent to
8 u 1

L2(R?)

Jou ou

— tau= ﬁ Yot —008‘1( ) 0 (7)
u(x, y,0)=6(x,y),x,ye Rt >0 (8)
Thelinear part of (7)-(8) is
Ju 9% au 1
—+f— 0
P ae e 2% ( ) ©
u(x, y,0)=6(x,y),x,ye Rt 20 (10)

Then use the Fourier transform, we obtain the solution of
(9)-(10) is

ity +pE (]/2)(30 )

Gyt =[ | &ranie SdEdE, (1)

2

NoteG,, (X, Y,t) =(—%)2G(X, y),(xy)eR (12

Suppose W (t)@(X) = (G(-,t) * ¢)(X) =u(x, y,t) (13)
whereu(X, Y,t) isthe solution of (9)-(10).

Let W,,,,(D)@(X, y) =

.[RZ |§l|"‘+“9 QT +BE~(%0/2E /%) | ei<x§1+y§2)(5(§1, £)dEAE,

(14)
When@ =0, wehave
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2

W, (0)4(x, y) = (—a— 2W(t)d(%,Y)

- <—%)Zu(x, Y1) = (G, () *A)(¥)
X

Next we will give some lemmas and theorems about
estimators.

Theorem 2.6'° The initial value problem of (9)-(10) is given
by (11), then for any fixed T >0, whenO< o <1, for any

parameters ¥ # 0, ,B ,Cy >0jthere exist an constant C >0,

which only depends on & and parameters 7,ﬁ,co, then it

holds that
a o+l
(——ZG(X y,t)[<CTSt 5 ,0<t<T (15)
Lemma 2.7 For any 0 < e < 1, the estimator
"\Na (t)¢| L26-a)(R?) < CTgt_a”(D"Lw“’) (R%) (16)

for any fixed T >0,0<t<T holds, where C is positive

constant, which only dependson ¥, 3,C,, & .

2 .2

Theorem 2.8 SupposeO< <1, p=——, q=
1-o o

1+ i,:l,1+£,:l,then for any fixed T >0, there
p aqa qg

exists C whichdependson 7y, 3,C,, & , it holds that

AQL <cTs 1]z e 17)
2 Kl
Andforanyge LY L(p);y) , we have
Hj W, (t - T)g(,,T)dTH <CT5||g||Lqu 8

‘ (xy)
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III. MAIN RESULT

Theorem 3.1 The initiad vaue problem (7)-(8) define a
nonlinear map K : H*(R?) = C(R;H*(R?)), which is
from the initial value@ to the solutionU , and the solution

operator is(0,,.,[ 0 — J,,.]) — computable.
If the initial value problem of (7) isu(X, ,t,) € H*(R?),

then in the neighborhood of t,, apply contracting mapping
principle , the initial value problem of (7) can be constructed,

usually we begin this fromt, =0 . Suppose the solution

u(X, y,t) has been constructed in the interval [0, t,] . Next we

will prove how to extend the solution from the

neighborhoodt =1, . Next we consider the equation with the
initial valueVv(t,):

v 1 0%V
Coa Xl(a—yz) = 0 (19)

_+_
7ax5 2

@+av%+ﬁa—3v+
ot ox o

V(X Yito) =p(x y).we H (R) (20)
The equivalence integral equation of (19)-(20) is

v(t) =W(t ~to)y +af ‘OW(t - T)(V%)(T)dr 1)
Define two maps AandG ,

Vt,e R',t—t, <T,G(t,): C(R H*(R*)) - C(R;
H*(R%)) is defined
GO =af WD hHnds @)
ty X
Vt,e R, t—t, <T,pe H*(R?),At,) :C(R;
H*(R%) — C(R;H*(R?)) s defined

At ) () =W(t-t)y + (L)) (29

TJCSET |April 2012| Vol 2, Issue 4,1059-1064
Let X7 ={ue X;;A" <b}is a bal of X;and the
radiusis b, thenthereexist T =T(||l//||512,7/,,8,co,a) >0
and b=b(y|_,.7.5.c,8) >0, which make the

maps Aand G are contracting in the neighborhood of t,, .
Form (17), we have

A W(t-to)y) <Cly],, (24)

Whena = Qin (18) and combine with (6), we have

AL (Gt) (1))

% to+T on 2 %
<aCT (jto ij 7(X, y,t)g(x, y,t)| dxdydt)

1
<aCT2(A" (7))’ (25)

Where C is a constant depends on 7,ﬁ,c0 . Likewise,

when =1in (18), we have

Az (Gt (t) =a

J. Wite- ) Sy (e)de

Ly

1
<aCT?® 778_77
oX

szL%Xx}’)

1 2 1
<aCTs["" ( Lz dxdy)2dt

to+T
to

1% 2L (x y.0)

I 2 1
5 T2/[°" 2
<aCT®-T (jt 0 Lz dxdydt)

1v) 2L (x y.0)

So from (6), we have

AL(G(to)(7)(1) < aCT* (A(1))? (26)
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From (24), (25), (26) and combine with (21), it holds that

AT(Alt,, ¥)(m)(®)

1 7
<Cly],,+aCmax{T2, T}A (m)* @D

1 7
Note & = max{T 2,T1°} , then for any fixed initial

value (%, y)€ H*(R*)(s20) , let b=2C|y_, and

seek T, it holds that

4Cabg <1 (28)

From(27)we have AT (A(ty, 1) (7)(1)) < %b + %b <
b (i.e AT(Aty, ) e X?), thenforany 7,,17,€ X2,
AT (Alty, )(1) — Alto, ) (17,))
= AT (G(t,)(17,) — G(t,)(77,))
<aCO(A" (m,~1,))°

S%AT (17,71, (29)

On the basis of (21) and (29), the fixed point in the
contracting map A(t,, ) satisfiesV(X, y,t,) =¥ , andisthe
solution of the initial value of the integral equation (7).

Therefore, if we can compute A inH °(R?) space, then we

can compute the solution of initia value in the following
lemma will show that the restriction of Aon the Schwarz
space S(R?) , a dense subset of H°(R?), is computable.
This restriction will also be denoted as A.

Lemma 3.2 The restriction of the operator A to S(R?) :
Rx S(R*)xC(R;S(R*)) = C(R S(R%), (t,,v,

) — Al w)m)(t) is(p,d., [p— 6], [p — 6,]) -

computable.
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Proof. By lemma 2.1 and 2.2, the function:

(to,w,m) — Alte,w)(1)(t)

is(p,0,,[p — ], p,d,)—computable.

Lemma 33 The map F, : (t,,%,n) — (Alt,,¥))"(0) is
(p,0,,Vy,[p — J,]) — computable.

Where (Aty, 1))" (1)) = Alty, ¥ )(Alty, )™ (1)) is the

nth iteration.

Proof. By Lemma 2.4 and A is computable, we can get it.

Next we prove A(t,,¥)is computable inH*(R?) . Let

U, is the fixed point of A(ty, %), construct a sequence of

iterations as follows:

Uy = AOY,)"™ (1) = AW ) (At )" (1)) -

Select a subsequence of natura number { j;} , which

%{tisfiesAT(uji —u, )< 2% Because S(R?) is dense
Vi (43

in HY(R?) ,

0 there exists Y, € S(R®) satisfies

||l,uk —l,u”&2 <27%7 Let <2, sowehave

A (U, = Aty ) (1)) = A (Alte, ) (1) — Alto. ) (1))
= AT (W(t=to)y ~W(t-t)w)
=ATW(t-t) ¥ -¥)

b

< C”'// B Wk”s,z = 2”1//” ”W B Wk” <2t
s,2

AT (u, = Alte, )" (1)
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<SAT(U, — Aty W )m) + AT (Alte, ) (1) — Alto. )" (7)) (Z+1) 6. Apply Lemma3.4, we can compute U(Z- 8) and

<2+ AT(u) —u, )<2°¢ F.(z-6,u(z-6),t), whereF,(z-6,u(z- 8),t) = u(t).

Lemma 3.4 The m ,
@ In Lemma 3.4, we can prove that for t, =0, the solution

F :(t,,w,t) > v()te[t, t,+6
* (O v, ® [0 0 ] of theinitial value problem of (7)-(8) is computable,.

P P So we prove the Theorem 3.1.
is(p,5Hs,p,§Hs)—computabIe. P

Because i = U(t,),V(t) is the solution of (7) in the ACKNOWLEDGMENT

Research was supported by the National Nature Science
Foundation of China (No: 61070231) and the Outstanding
Personal Program in Six Fields of Jiangsu (No: 2009188) and
the Jiangsu Province Natura Science Foundations of
to[t,,t, + 6] . University (No: 10KJD110002).

interval [t,,t, + 6] , so the solution is extended form [O,t,]

REFERENCES
Suppose anB ’7’CO!T are CompUtable real numbers, and [1] Dianchen Lu and Qingyan Wang. Computing the solution of the
m-Korteweg-deVries equation on Turing machines, Electronic Notes in
||W ||5,2 is computable, s0C,8,b  are computable. Theoretical Computer Science, 202(2008) 219-236.
[2] K.Weihrauch. Computable Analysis. Springer, Berlin, 2000.
For integer Z€ Z, we compute the solutionu(z- &) at [31 N.zhong, K.Weihrauch. Computability of generalized functions.
J.Assoc. for Computing Machinery, 2003, 50(4):469-505.

timesZ- @ . Define
[4] K.Weihrauch, N. Zhong. Computing the Solution of the Korteweg -

H + (¢7,0) =H - (qo,O) =9 deVries Equation with Arbitrary Precision on Turing Machines. Theoret.
H.(p,n+D)=F (n-6,H,(p,n),(n+1)-6) Comput. Sci, 2005, 332 (1 - 3):337 - 366.
[5] K.Weihrauch, N. Zhong Computing Schrddinger propagators on Type-2
By Lemma3.4 H_ (¢,n)=u(n-6) iscomputablefrom Turing machines, Journal of Complexity 2006, 22: 918-935.
[6] TAO shuangping, CUI shangbin. Existence and uniqueness of solutions
N and ¢ , because H, is primitive recursion of the to nonlinear Kawahara equations. Annals of Mathematics ,

23A:2(2002),221-228.
function F+' [7] Zhao Xiangqging. Local solvability of Cauchy problem for the

Kawahara-BO equation. Applied mathematics - a journal of Chinese
Fromt,&, we can compute Ze Z, such that z9 <t < universities, 2009, 24(3):306-310.

1064





