H.X. Yao et al

IS88N:2231-0711

www.ijeset.net

IJCSET |March 2012| Vol 2, Issue 3,1020-1023

Impulsive Stabilization of a Class of Stochastic
Functional Differential Equations with Time Delays

H.X. Yao', Y.W.Li?

! Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu Province, China, 212013

" hxyao@ujs.edu.cn

Abstract—This paper investigates the pth moment globally
uniformly exponential stability of a class of impulsive
stabilization of stochastic delay differential equations,and the
pth moment exponential stability criteria is established by
using theLyapunov-Razumikhin method.
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[. INTRODUCTION

In recent years, impulsive control and stabilization has
been shown to be a powerful tool in the theory and
applications of nonlinear dynamical systems.,such as control
systems[1,2] . In particular, special attention has been
focused on exponential stability of delay differential
equations because it has played an important role in many
areas[3-6]. However, to the best of the authors’ knowledge,
there are few studies on impulsive stabilization of stochastic
delay systems.In[7], P.Cheng, F.Q.Deng proved several
criteria on global exponential stability of impulsive
stochastic functional differential systems by utilizing
Lyapunov function methods combined with Razumikhin
techniques. The result shows that impulses do contribute to
global exponential stability of dynamical systems with any
time delays even if they are unstable.In[8], J. Liu, X. Liu,
W.C. Xie proved both moment and almost sure exponential
stability criteria on impulsive stabilization of stochastic
delay differential equations can be established by using the
Lyapunov—Razumikhin method.

This paper formulates a simple impulsive stabilization of
stochastic delay differential equations which would
unstable,the aim of this work is to show this system must be
stable if given several criteria on it.

II. PRELIMINARIES

Consider the following impulsive
stochastic delay differential equations:

stabilization of

a(t) =[ ADX(D) + BOXE - r®)]ot +[CX(®) + Dut —rO) WD), t#8, .t >t

MO = Lt=t,,
X, =&
2.
where A(t), B(t)are all nxn function matrices which

are continuous on [t,«),C,» D, | are all nxn matrices
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and W is a one-dimensional standard Wiener process. A
single time-varying delay is given by r(t) , which is
continuous on [t ,0) and satisfies 0 <r(t)<r, for some

constant I > 0. The initial data is el In addition, it is
AXt)+Bixt—rt))=0 )

Cx(t)+ D(x(t)—r(t))=0and | =0 for all x(t—r(t))=0,s0
that system (2.1) admits a trivial solution.

assumed that

As in [8],we have following definitions:

Definition 2.1. Let p >0, then the trivial solution to
systems (2.1) is said to be pth moment globally uniformly
exponentially stable if for any initial data £¢ (5 the

fo

solution x(t; &) satisfies
B(x(t:6) ") < CE(¢[ e 121,

where ¢ and C are positive constants independent of t; .
It follows from (2.2) that

lim sup tlog E( x(t:6) ) < .

to>o

The left-hand side of (2.3) is called the pth moment
Lyapunov exponent for the solution.

(2.2)

(2.3)

Definition 2.2. Let £"* denote the set of all functions
from [t, —r,0)xR" to R that are continuously
differentiable in t and twice continuously differentiable

in X . For each V €/ , define an operator from
R*xPL to R by
LV (t,4) =V, (t,¢(0)) +V, (t,¢(0)) f (t,¢)

+%trace[gT (t, @)V, (t,4(0))g(t,9)]

Consider the following impulsive stabilization of

stochastic delay differential equations:
dx(t) = f(t,x)dt+g(t, x )AW (t),t £t t > t,
AX(t) = IX(t7),t=t,,

X, =6
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We have the lemma:
Lemma. Let A, p,C,,C,,p<1,0 and u be positive

constants. Suppose that
(1) there

¢ |X” <V (t.x)<c,|x. for(t,x) e[t, —r,00)xR"
(ii) there exists a nonnegative and piecewise continuous

function g :[t,,0) = R", satisfying

exists a function V € /" such that

O .[tt+6y(s)ds < ,;15 for all t>t;, .such that
E(LV(t,¢)) < u(DE(V (1, ¢(0)))

whenever t2>1, and ¢ e LbFf , are such that
E(V (t+5,4(5))) < GE(V (t, ¢(0))) . forall s [, 0],
where q is a constant such

thatq > exp(Ar + A0 + ;_15) ,

(iii)  there  exist positive  constants dk ,

with H:):ldk < 0 , such
that E(V (t,, #(0) + 1 (t; , ) < pd E(V (t; ,#(0)))

fork e Z*,¢ LbF{ and
(iv) sup, . {t, -t} =0 < —M
A+ u

Then the trivial solution of system (2.1) is pth moment
globally uniformly exponentially stable and its pth moment
Lyapunov exponent is not greater than — A .

In the following, we shall establish several criteria on
impulsive stabilization of stochastic delay differential
equations. Our result shows that even if the impulsive
stabilization of stochastic delay differential equations are
highly unstable, the impulsive control can successfully
stabilize system(2.1).

III. MAIN RESULTS

Consider the impulsive stabilization of stochastic delay
differential equations(2.1).
Theorem 3.1. Assume that there exist several positive

constants 4, A,C,,C,,0, P =2,p <1such that

(i) that there exist two positive constants @, 0 such that
|A®) < a,|B(t)| <b foranyt e[t,, o)

Cii) |X(t - I’(t))| < |X(t)| for any single time-varying
delay r(t)

Gii) > pa+ |Ob+%|0(lf’—1)||c||2

1
+2p(p=D[P[" + p(p-D|C]D]

In(p)
A+ U

Giv) sup, . it =t} =0 <~

(v) there exists a positive constant ( >1 such that

g = exp(Ar + A0 + o)
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Then the trivial solution of system (2.1) is pth moment
globally uniformly exponentially stable and its pth moment
Lyapunov exponent is not greater than — A .

Proof. Let X(t)=X(t;£) be any solution of the
system(2.1),given any initial data & € Lbfto .we assume that
the initial data & is nontrivial so that X(t) is not a trivial
solution.

Let V(t) = E(V (t, X(1)) , V (X(1)) = X |” fort > t, —T |,

and A = A —177, where 77 >0 being an arbitrary number

such that A > 0.
We can choose a constant M € (6"’ qe"’) so that

—(A+u)o —AO
v, | <Ml e <My e <alw] D
where HVtO ‘ =max_,_., V(t, +5)

We first prove that

V() <My, He’A(t"tO),Vt elt,.t,) (2)
To do this, we only need to prove a stronger claim:
v(t) <My, He‘“f,Vte[to,tl) (3)
If (3) isnot true, then for

v < v < M, fle @

holds on [t, —1,t,].

Define t* =inf{t €[t,,t,):v(t) > M “le H e,

Then t” € (t,,t,)

Vi) <Vt ) =M HVro H e, Vtelt,,t'] (5)

In view of (4) .
Define t, =supit e[t,,t"):v(t) < HVtO “} :

Then t, €[t,,t7)

v(t) > v(t.) :H"to Vtelt,t'] (6

By (4) (5) (6) ,we have for any t €[t,,t" ]and
se[-r,0]
vit+s)<v(t)=M Hvto He’” < quIO H < qu(t)

Then by lemma condition (ii)

E(LV(t, X)) < OBV, XA), VEelt,t] D

We get
M) [APO+BREOINP-I [Oe+DEO

+ ;—trace{[C X (t) + D x(t — r(t))]”

By condition (i) (ii) we get
LV (t,x(t) < p|x|" " alx(®)]+ p|x|" " b|x(t - r(t))]
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+% p(P—1)[X" {[Cx(t) + Dx(t = r(t)]'[CX(t) + Dx(t —r()]}

<erpf" " bt o0 DG+ Dyt
< palx|” + pb|x|"" [x(t - r (1))
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WO20)=e"M, Jyfe V=W, te ) (4)
Now for ¢ ¢ [t,¢] and S €[-T,0], from(10) and (13),

and the fact that Q=exp(Ar+Ad+ ud) and

%p(p—l)M“Z{[qx(t)F +ACKOIDXE-TON+Dxt -y S €[t t] we get

< pa x| + pb|x|”" [x(t = r)]+ = p(p - DI [C[f [« +
2

V(t+5) <M, v, [ <erm v < quit)

m-+1

Similar to the argument on [t,,t"], an application of

%p(p—l)\X\HHDHZ (=) + p(p=DX" > [c]|DfXI[x(t - rty)| 1t6’s formula on ['E,t] will lead to V(1) < v([)e"‘) , which

would contradict(14). Therefore, claim(11)must be true .

1 1 iti
< pal” + pb|x” +5 p(p_l)HCHZMp +5 p(p_l)Hq‘sz +p(p-D|d|Dl|{" From the definition of M _,we have

= (pa+ pb-+—p(p-DICI +3 p(p-DIDI + p(p-DIC DV (x(1)

By condition (iii) ,we get

E(LV (1, x(1))) < uEV (X(1)) (8)
Applying 1td’s formula on [t,,t"] and by (8) ,we get
ejto #drv(t*) ~ eI‘O Hdrv(t*)

= JI 2 “IE(LV (5,X(5))) ~ BV (x(5))]ds < 0

tx ds
bt e O
which is a contradiction. Hence (4) holds and (2) is true.
Now we assume that for any

teft ), v <M, |v, He’;“k’“” (10)

which shows v (t") < v(t,)e

Where K <m, k,meZ", define M,:M, =M,
M, =M H1g|gkf1d| when K > 2

Next, we shall prove that

V() <M v e Vet ) an

If (11) is not true,for condition (iv) ,lemma condition
(iii) and(10),we get
v o (t, ) < pod v ()

m+1

<pd M_ v, He—A(tm—to) =pM,, v, He—A(tm—tO)

<e’5(/\+ﬂ) Mm+1 “VIO “ e_/\(tm_to) <e*&l NImH “Vto “ e_/\(tnwl_t()) (12)
Define
t=infit et ,t_):v(t)>M

m+1

Vtu H e’;\(tm+17to) } .

Then E et ,t..)

v(t) < M v,, ||e*”‘m+l*‘o>, te lt,.0) (13)

m+1

Define t =supft e [tm,'E) vt <e*M, ‘vto “ g ")y

Then t € (t, ,E)
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vipswm ] d, Hvto He’;“"“,Vt > t,

{kity<t, <t}
By condition (i) ,lemma condition (iii) and the

arbitrary number 7 >0, we can get

E(x()") <M az—zE(||§||p)e‘““t0),Vt >t
1

&zl_[:’:ldk < o0,

which implies that the trivial solution of system (2.1) is
pth moment globally uniformly exponentially stable and its
pth moment Lyapunov exponent is not greater than —/\ .

Now consider the linear impulsive stochastic delay
system:

{d(t)Z[A(t)+5<(t—r(t))]d4{0(0+D<(t—r(t))]d/\/(tlt # >4,
Mb)=Kt )=,
(3.1
where A,B,C,D are nxn matrices , | is an identity
matrix , W is a one-dimensional standard Wiener process.
A single time-varying delay is given by r(t), which is
continuous on [t,,o0) and satisfies 0 <r(t) <r . The initial

data is omitted, but it is assumed to be in & e L}, .
to

Corollary 3.1. If  there exist  constants
A>0,p>2,p<1 such that =exp(Ar+Ad+ uod) ,
where

1
#=p|Al+p[B[+ p(p-D[C|

1
+5p(P=DP[ + p(p-D|CD]

then the trivial solution of system (3.1) is pth moment
globally uniformly exponentially stable, with its Lyapunov
exponent not greater than — A .

Proof. The conclusions follow from Theorem 3.1 by
considering V (X) = X |°.
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IV. AN EXAMPLE

Example 4.1. Consider the linear impulsive stochastic
delay system

ob«t>=[Ax(t)+B<(t—§e*)]ot+[0<(t>+D<(t—§e*>]dN(t>,t¢tK,t>to
O =B 1=,

where | is an identity matrix , t, = 0.05, time delays

w Yoo Yol

-0.24 0.15 035 0.34 0.31 0.08
A=| 0.09 -035 -0.65|" B=|-0.28 0.25 0.38)’
0.45 -0.38 0.26 -0.67 0.16 0.02
0.35 0.57 0.42 033 034 0.21
C=|-054 006 0.17|” D=|-027 0.28 0.16
-0.15 0.24 0.22 -0.28 0.83 0.72

Choosing P =2,A=0.6,0=0.01 then x# and q in
Corollary 3.1 can be computed to be w1 =7.5734,
g=exp(Ar + Ad + uo) =1.3254

simulations for this example are shown in Fig.1 and Fig.2.
Fig.1 shows that system response without impulses.Fig.2
shows that impulsive stabilization of system.It is clearly
demonstrated that impulses can successfully stabilize an
otherwise unstable stochastic delay system..

Numerical

20

Fig 1. System without impulses.
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Fig. 2. Impulsively stabilized system.
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