
An Algorithm for Mining Frequent Itemsets
K Jothimani1, S. Antony Selvadoss Thanmani 2

Research Department of Computer Science,

NGM College, 90, Palghat Road, Pollachi - 642 001

Coimbatore District, Tamilnadu, INDIA
 1 jothi1083@yahoo.co.in

2 selvdoss@yahoo.com

Abstract— The problem of mining frequent itemsets in
streaming data has attracted a lot of attention lately. Even
though numerous frequent itemsets mining algorithms have
been developed over the past decade, new solutions for
handling stream data are still required due to the continuous,
unbounded, and ordered sequence of data elements generated
at a rapid rate in a data stream. The main challenge in data
streams will be constrained by limited resources of time,
memory, and sample size. Data mining has traditionally been
performed over static datasets, where data mining algorithms
can afford to read the input data several times. The goal of this
article is to analyze the factors for mining frequent itemsets in
theoretical manner. By comparing previous algorithms we
propose new method using analytical modelling to determine
the factors over data streams.

Keywords— Data Mining, Data Streams Frequent Itemset
Mining, Sliding Window.

I. INTRODUCTION

Mining association rules in transaction datasets has been
demonstrated to be useful and technically feasible in several
application areas, particularly in retail sales [1] and
document datasets applications [2]. The management and
storage of large datasets have always been a problem to
solve. An interesting solution is to use compression
algorithms on the data because the presence or absence of
an item in a transaction can be stored in a bit. To find an
algorithm that compresses the data while maintaining the
necessary semantics for the frequent itemsets mining
problem is the goal of this work.

Frequent itemset mining is one of the essential data
mining tasks. Since it was firstly proposed in [1], various
algorithms have been proposed, including Apriori [2] and
FP-growth [12] algorithms. Many studies have also
demonstrated its application in feature selection and
associative classifier construction [18, 9, 14, 17, 3, 26, 8, 24,
5, 6]. If we divide the set of all itemset patterns into a set of
equivalence classes, where each equivalence class contains
a set of itemset patterns which are supported by the same
set of input transactions, the closed itemsets are those
maximal ones in each equivalence class. It is evident that
the set of closed itemsets is just a subset of all itemset
patterns, and thus it is possible to identify some parts of
search space which are unpromising to generate any closed
itemsets and can be pruned. Thus, closed itemset mining
can be potentially more efficient than all itemset mining.
Due to the concise representation and high efficiency, many
algorithms for mining frequent closed itemsets have been
proposed [20, 21, 29, 19, 25, 11].

In each equivalence class of itemset patterns, if we call
the minimal ones itemset generators, similarly we get that
the set of all itemset generators is a subset of all itemset
patterns, and itemset generator mining can be potentially
more efficient than all itemset pattern mining too. It is also
evident that the average length of itemset generators tends
to be smaller than that of all itemset patterns (or closed
itemset patterns). Since one of the important applications of
frequent itemset mining is to be used for feature selection
and associative classifier construction. According to the
Minimum Description Length (MDL) Principle, generators
are preferable in tasks like inductive inference and
classification among the three types of itemset patterns
(namely, all itemset patterns, closed itemset patterns.

In solving many application problems on data stream, it
is desirable to discount the effect of the old data. One way
to handle such problem is to use sliding window models[2].
There are two typical models of sliding window[3]:
milestone window model and attenuation window model.
H.F.Li[4] made use of NewMoment to maintain the set of
frequent closed itemsets in data streams with a transaction-
sensitive sliding window. MOMENT by Chi[5] is also a
typical algorithm which can decrease the size of the data
structure. N.Jiang[6] proposed a novel approach for mining
frequent closed itemsets over data streams. Y.Chi[7]
introduced a compact data structure, i.e. the closed
enumeration tree, to maintain a dynamically selected set of
itemsets over a sliding window. The selected itemsets
contain a boundary between frequent closed itemsets and
the rest of the itemsets. F.J.Ao[8] presented an algorithm
named FPCFI-DS for mining closed frequent itemsets in
data streams. FPCFI-DS uses a single-pass lexicographical-
order FP-Tree-based algorithm with mixed item ordering
policy to mine the closed frequent itemsets in the first
window, and updates the tree for each sliding window.
J.Y.Wang[9] proposed an alternative mining task for
mining top-k frequent closed itemsets of length no less than
min_l.

In this paper, an efficient mining algorithm (denoted as
EMAFCI) for frequent closed itemsets in data stream is
proposed. The algorithm is based on the sliding window
model, and uses a Bit Vector Table (denoted as BVTable)
where the transactions and itemsets are represented by the
column and row vectors respectively. The algorithm
firstbuilds the BVTable for the first sliding window.
Frequent closed itemsets can be detected by pair-test
operations on the binary numbers in the table. After
building the first BVTable, the algorithm updates the
BVTable for each sliding window. The frequent closed

K Jothimani et al IJCSET |March 2012| Vol 2, Issue 3,1012-1015

1012

itemsets in the sliding window can be identified from the
BVTable. The algorithm is also proposed to modify
BVTable when adding and deleting a transaction. The
experimental results on synthetic and real data sets indicate
that the proposed algorithm needs less time CPU time and
memory than other similar methods.

II. RELATED WORK

A. Frequent Closed Itemsets

 Let I = {i1,i2 , ,im} be a set of distinct data items, and a

subset X �I is called an itemset. Each transaction t is a set
of items in I . A data stream DS = {(tid1, t1),..., (tidn , tn),...}
is an infinite sequence of transactions in which tidk is the

identifier of a transaction and tk � I (k = 1,2, ,n) is an
itemset. For all transactions in a given window of the data
stream, the support sup (X) of an itemset X is defined as the
number of transactions with X as a subset. In general, the
more transactions a sliding window has, a larger amount of
frequent itemsets could be produced. In this case, there are
many redundancies among those frequent itemsets. For
example, in the frequent itemsets{acd,ad,a} , the only
useful information is the set acd according to Apriori
property, because it includes ad and a . Frequent closed
itemset is a solution to this problem. A frequent itemset X is
a closed one if it has no superset Y � X so that sup (X)
=sup (Y) .Frequent closed itemset is a condensed, i.e. both
concise and lossless, representation of a collection of
frequent itemsets.
B. Sliding Window
 The basic idea of mining frequent closed itemset in the
sliding window model is that it makes decisions from the
recent transactions in a fixed time period instead of all the
transactions happened so far. Formally, a new data element
arriving at the time t will expire at time t + w, in which w is
the length of the window. At every time step, when a new
transaction comes to the window, the oldest one in the
window should be deleted. Since the transactions in the
window are updated over time, the frequent itemsets should
be renewed accordingly.

III. THE EMAFCI ALGORITHM

 In this section, we illustrate the framework of the
algorithm EMAFCI for mining frequent closed itemsets in
data streams based on the model of sliding window. First
we introduce the data structure of BVTable used in the
algorithm.
A. The BVTablet

 The EMAFCI algorithm is based on the data structure
of BVTable. To compress the itemsets and the database,
VTable consists of a set of binary integer where each bit
epresents an item. It consists of three parts, the left, middle
and right part. The ith row of the BVTable is a vector (si , ti ,
ci) where binary integers si , ti are the left and middle parts
respectively, and the right part ci is the support of the
itemset corresponding to the ith row. In the left part of
BVTable, each column represents an item and each row is a
binary integer corresponding to a candidate itemset.

Denote the jth bit of si , as sij . If the jth item is included
in the ith itemset, then sij = 1, otherwise sij = 0 . In the
middle part of BVTable, each column represents a

transaction in the current time window and each row is a
binary integer indicating whether the itemset represented by
this row is included in the transaction or not. Denote the jth
bit of ri , as rij . If the ith itemset is included in the jth
transaction, then rij = 1 , otherwise rij = 0 . In the right part
of the ith row, ci = H(ri) is the support of the itemset
corresponding to the ith row, here H(ri) is the number of
bits "1" in rj . Since ci can be calculated easily from ri , it
doesn’t need to be physically stored in the memory. To
mine the frequent closed itemsets from the current sliding
window, the algorithm EMAFCI first builds a BVTable for
all 1-itemsets that are denoted as L1 . Based on L1 , all the
frequent 2-itemsets can be detected and L2 can be built.
Repeat this procedure until all the r -itemsets are detected,
and here r is the maximum length of the transactions. Here,
L1 consists of all the 1-itemsets that include the frequent and
nonfrequent ones in order to store all the transactions in the
current window.
B. Framework of algorithm
 The algorithm EMAFCI receives a transaction from the
data stream at each time step, and forms a new sliding
window by adding this new transaction into the window
and emitting the oldest one. To identify the requent closed
itemsets in this new sliding window, EMAFCI should
modify the BVTable accordingly. Since two adjacent
windows are overlapped except the added and deleted
transactions, the frequent closed itemsets of the two
windows do not change abruptly. EMAFCI needs only to
process the part of BVTable involving these two
transactions. Therefore, procedures are proposed to modify
BVTable when adding and deleting a transaction. The
framework of algorithm EMAFCI is as follows:
Algorithm: EMAFCI(D, L)
Input: D : the data stream;
Output: L : the BVTable;
Begin

BuildFirstBVTable(D, n, L);
while not the end of the stream do
Receive a new transaction x from the stream;
DeleteTransFCI(L);
AddTransFCI(L , x);

end while
End
C. Build the BVTable for the first window
 The ItemList for the first window is constructed by a
procedure BuildFirstBVTable(). First the BVTable for the
1-itemsets L1 should be generated. Then the BVTable L2 for
the frequent 2-itemsets are generated from the frequent 1-
itemsets by performing bitwise OR operation (denoted as �
) in the left part of the BVTable and AND operation
(denoted as ∩) in the middle part of the BVTable.
Similarly, the frequent 3-itemsets and 4-itemsets are
generated from the 2-itemsets. Iterate this procedure until
all the frequent itemsets are detected. Let n be the
maximum length of the transactions, so the maximum
number of such iterations is log2n. Among the frequent
itemsets detected, the sub-itemsets with the same support
are labeled "*", because they are nonclosed frequent
itemsets. Details of the operation are as follows.
We denote the BVTable after the kth iteration as Lk . Let m
= 2k−2 , and denote the set of all frequent j -itemsets as Cm ,

K Jothimani et al IJCSET |March 2012| Vol 2, Issue 3,1012-1015

1013

then Lk consists of all the frequent itemsets Cm+1 … C2m . To
construct Lk +1 , pair-test operation should be performed on
each pair of frequent itemsets to generate possible larger
frequent itemset. Let (si ,ti ,ci) and (si ,t j ,c j) be two
frequent itemsets in Lk , then a pair-test operation can
generate an itemset (si � s j ,ti � t j ,c) , here c = H(ti ∩ t j) is
the number of bits "1" in ti ∩t j . In each iteration we
generate the frequent itemsets in Lk +1 based on Lk which
consists of the frequent itemsets Cm+1 … C2m , and entirely
ignore the itemsets in
Lk −1,Lk −2...L1 .

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of our algorithm
EMAFCI, we test it and compare the memory requirement,
the processing time for the first window andeach sliding
window with the algorithm Moment. The experiments are
performed on a Pentium 2.4GHz S4800A (AMD Opteron
880) CPU with 4GB RAM memory, 300GB hard drive. The
algorithm is coded using the VC + + 6.0 on Linux operating
system.
A. Data Set

In our experiments, we use the real database Mushroom
and the synthetic databases proposed by Agrawal and
Srikant for evaluating the algorithms. Mushroom which can
be downloaded from [13] is a dense dataset with 8124
transactions,. Database T40I5D10K which produces data
simulating the transactions of retail stores is generated by
using the synthetic data generator described by
Agrawal et al.
B. Experimental results and analysis
(1) Mushroom
We have adopted the commonly used parameters: the
number of transactions is set as 8124 while the size of
window as 8000. We report the average performance over
124 consecutive sliding windows.

In Fig.1, the times for processing the first window by the
algorithms of Moment and EMAFCI are compared. From
Fig.1 we can see that when the support=minsup/8000 is set
between 1 and 0.8, the processing time of EMAFCI is equal
to that of Moment. But when the support is lower than 0.8,
the time of Moment is much more than that of EMAFCI.
For instance, when support is set as 0.2, time cost of
Moment is more than 200s, while the time of EMAFCI is
less than 50s.

Figure 1. The time of processing the first window of
Mushroom by EMAFCI compared with Moment

Figure 2. The average time of processing one window of

Mushroom byEMAFCI compared with Moment

In Fig.2, the average time for processing a sliding

window y the two algorithms are compared. From Fig.2,
we can see that the average time for processing a sliding
window by EMAFCI is much less than that of Moment
especially when support is small. The time required for one
window by EMAFCI is less than 0.04s, while the time of
Moment increases very quickly and can go beyond 0.16s.

CONCLUSIONS

An algorithm of EMAFCI is proposed for mining the
closed frequent itemsets from data stream. The algorithm is
based on the sliding window model, and uses a BVTable
where the transactions and itemsets are recorded by the
column and row vectors respectively. The algorithm first
builds the BVTable for the first sliding window. Frequent
closed itemsets can be detected by pair-test operations on
the binary numbers in the table. After building the first
BVTable, the algorithm updates the BVTable for each
sliding window. The frequent closed itemsets in the sliding
window can be identified from the BVTable. Algorithms
are also proposed to modify BVTable when adding and
deleting a transaction.

The EMAFCI algorithm is implemented and compared
its performance with Moment in terms of processing time
and memory requirement. Our experimental results on both
synthetic and real data show that EMAFCI is more effective
with the guaranty of accuracy[12,13].

REFERENCES
[1] J.W.Han, J.Pei, Y.W.Yin, R.Y.Mao. Mining frequent patterns

without candidate generation: frequent-pattern tree approach, Data
Mining and Knowledge Discovery, No.8, pp.53-87, 2004..

[2] K.T.Chuang, H.L.Chen, M.S.Chen. Feature-preserved sampling
over streaming data. ACM Transactions on Knowledge discovery
from data, Vol.2, No.4, Article 15, 2009

[3] Y.Y.Zhu, D.Shasha. StatStream: Statistical monitoring of thousands
of data streams in real time. Proceedings of the 28th International
Conference on VLDB, Hong Kong, China, pp.358-369, 2002.

[4] H.F.Li, C.C.Ho, S.Y.Lee. Incremental updates of closed frequent
itemsets over continuous data streams. Expert Systems with
Applications, Vol.36, pp.2451-2458, 2009.

[5] Y.Chi, H.Wang, P.S.Yu, R.R.Muntz. Moment: Maintaining closed
frequent itemsets over a stream sliding window. Proceedings of the
2004 IEEE International Conference on Data Mining. Brighton,
UK, pp.59-66,2004

[6] N.Jiang, L.Gruenwald. Research issues in data stream association
rule mining. SIGMOD Record 35 (1), pp.14-19, 2006.

[7] Y.Chi, H.Wang, P.S.Yu, R.R.Muntz. Catch the moment:
Maintaining closed frequent itemsets over a data stream sliding

K Jothimani et al IJCSET |March 2012| Vol 2, Issue 3,1012-1015

1014

window. Knowledge and Information Systems, 10 (3), pp.265-294,
2006

[8] F.J.Ao, J.Du, Y.J.Yan, B.H.Liu, K.D.Huang. An efficient algorithm
for mining closed frequent itemsets in dataStreams. Proceedings of
the IEEE 8th InternationalConference on Computer and Information
Technology, pp.37-42, 2008.

[9] J.Y.Wang, J.W.Han, Y.Lu, P.Tzvetkov. TFP: An efficient algorithm
for mining Top-K frequent closed itemsets. IEEE Transaction on
knowledge and Engineering, Vol.17, No.5, pp.652-664, 2005

[10] J.Dong, M.Han. BitTableFI: An efficient mining frequent itemsets
algorithm. Knowledge-Based Systems, Vol.20, pp.329-335, 2007.

[11] Dataset available at http://fimi.cs.helsinki.fi/.
[12] H.F.Li, H.Chen. Improve frequent closed itemsets mining over data

stream with BitMap. Ninth ACIS international onference on
Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, pp.399-404, 2008.

[13] L.Chen, L.J.Zou, L.Tu. Stream data classification using improved
fisher discriminate analysis. Journal of Computers. Vol.4, No.3,
pp.208-214, 2009.

[14] L. Bhuvanagiri, S. Ganguly, D. Kesh, C. Saha, “Simpler algorithm
for estimating frequency moments of data streams”, Proceedings of

the seventeenth annual ACM-SIAM symposium on Discrete
algorithm, pp.708–713, 2006

[15] D. Coppersmith, R. Kumar, “An improved data stream algorithm
for frequency moments”, Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms, pp.151–156, 2004.

[16] Y. Chi, H. Wang, P. S. Yu, R. R. Muntz, “Moment: Maintaining
Closed Frequent Itemsets over a Stream Sliding Window”, Fourth
IEEE International Conference on Data Mining (ICDM’04), pp. 59–
66, 2004.

[17] L. K. Lee, H. F. Ting, “Maintaining significant stream statistics over
sliding windows”, Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm, pp.724–732, 2006.

[18] P. Indyk, D. Woodruff, “Optimal approximations of the frequency
moments of data streams”, Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing, pp.202–208, 2005.

[19] L. Golab , M. T. O¨ zsu, “Processing sliding window multi-joins in
continuous queries over data streams”, Proceedings of the 29th
international conference on Very large data bases, pp.500–511,
2003.

[20] G. S. Manku, R. Motwani, “Approximate frequency counts over
data streams”. In Proceedings of the 28th International Conference
on Very Large Data Bases, pp.356–357, 2002

K Jothimani et al IJCSET |March 2012| Vol 2, Issue 3,1012-1015

1015

