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Abstract— The problem of mining frequent itemsets in 
streaming data has attracted a lot of attention lately. Even 
though numerous frequent itemsets mining algorithms have 
been developed over the past decade, new solutions for 
handling stream data are still required due to the continuous, 
unbounded, and ordered sequence of data elements generated 
at a rapid rate in a data stream. The main challenge in data 
streams will be constrained by limited resources of time, 
memory, and sample size. Data mining has traditionally been 
performed over static datasets, where data mining algorithms 
can afford to read the input data several times. The goal of this 
article is to analyze the factors for mining frequent itemsets in 
theoretical manner. By comparing previous algorithms we 
propose new method using analytical modelling to determine 
the factors over data streams. 
 
Keywords— Data Mining, Data Streams Frequent Itemset 
Mining, Sliding Window. 

I. INTRODUCTION 
 

Mining association rules in transaction datasets has been 
demonstrated to be useful and technically feasible in several 
application areas, particularly in retail sales [1] and 
document datasets applications [2]. The management and 
storage of large datasets have always been a problem to 
solve. An interesting solution is to use compression 
algorithms on the data because the presence or absence of 
an item in a transaction can be stored in a bit. To find an 
algorithm that compresses the data while maintaining the 
necessary semantics for the frequent itemsets mining 
problem is the goal of this work. 

Frequent itemset mining is one of the essential data 
mining tasks. Since it was firstly proposed in [1], various 
algorithms have been proposed, including Apriori [2] and 
FP-growth [12] algorithms. Many studies have also 
demonstrated its application in feature selection and 
associative classifier construction [18, 9, 14, 17, 3, 26, 8, 24, 
5, 6]. If we divide the set of all itemset patterns into a set of 
equivalence classes, where each equivalence class contains 
a set of itemset patterns which are supported by the same 
set of input transactions, the closed itemsets are those 
maximal ones in each equivalence class. It is evident that 
the set of closed itemsets is just a subset of all itemset 
patterns, and thus it is possible to identify some parts of 
search space which are unpromising to generate any closed 
itemsets and can be pruned. Thus, closed itemset mining 
can be potentially more efficient than all itemset mining. 
Due to the concise representation and high efficiency, many 
algorithms for mining frequent closed itemsets have been 
proposed [20, 21, 29, 19, 25, 11]. 

In each equivalence class of itemset patterns, if we call 
the minimal ones itemset generators, similarly we get that 
the set of all itemset generators is a subset of all itemset 
patterns, and itemset generator mining can be potentially 
more efficient than all itemset pattern mining too. It is also 
evident that the average length of itemset generators tends 
to be smaller than that of all itemset patterns (or closed 
itemset patterns). Since one of the important applications of 
frequent itemset mining is to be used for feature selection 
and associative classifier construction. According to the 
Minimum Description Length (MDL) Principle, generators 
are preferable in tasks like inductive inference and 
classification among the three types of itemset patterns 
(namely, all itemset patterns, closed itemset patterns. 

In solving many application problems on data stream, it 
is desirable to discount the effect of the old data. One way 
to handle such problem is to use sliding window models[2]. 
There are two typical models of sliding window[3]: 
milestone window model and attenuation window model. 
H.F.Li[4] made use of NewMoment to maintain the set of 
frequent closed itemsets in data streams with a transaction-
sensitive sliding window. MOMENT by Chi[5] is also a 
typical algorithm which can decrease the size of the data 
structure. N.Jiang[6] proposed a novel approach for mining 
frequent closed itemsets over data streams. Y.Chi[7] 
introduced a compact data structure, i.e. the closed 
enumeration tree, to maintain a dynamically selected set of 
itemsets over a sliding window. The selected itemsets 
contain a boundary between frequent closed itemsets and 
the rest of the itemsets. F.J.Ao[8] presented an algorithm 
named FPCFI-DS for mining closed frequent itemsets in 
data streams. FPCFI-DS uses a single-pass lexicographical-
order FP-Tree-based algorithm with mixed item ordering 
policy to mine the closed frequent itemsets in the first 
window, and updates the tree for each sliding window. 
J.Y.Wang[9] proposed an alternative mining task for 
mining top-k frequent closed itemsets of length no less than 
min_l.  

In this paper, an efficient mining algorithm (denoted as 
EMAFCI) for frequent closed itemsets in data stream is 
proposed. The algorithm is based on the sliding window 
model, and uses a Bit Vector Table (denoted as BVTable) 
where the transactions and itemsets are represented by the 
column and row vectors respectively. The algorithm 
firstbuilds the BVTable for the first sliding window. 
Frequent closed itemsets can be detected by pair-test 
operations on the binary numbers in the table. After 
building the first BVTable, the algorithm updates the 
BVTable for each sliding window. The frequent closed 
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itemsets in the sliding window can be identified from the 
BVTable. The algorithm is also proposed to modify 
BVTable when adding and deleting a transaction. The 
experimental results on synthetic and real data sets indicate 
that the proposed algorithm needs less time CPU time and 
memory than other similar methods. 

II. RELATED WORK 

A. Frequent Closed Itemsets 

    Let I = {i1,i2 , ,im} be a set of distinct data items, and a 

subset X �I is called an itemset. Each transaction t is a set 
of items in I . A data stream DS = {(tid1, t1),..., (tidn , tn ),...} 
is an infinite sequence of transactions in which tidk is the 

identifier of a transaction and tk � I (k = 1,2, ,n) is an 
itemset. For all transactions in a given window of the data 
stream, the support sup ( X ) of an itemset X is defined as the 
number of transactions with X as a subset. In general, the 
more transactions a sliding window has, a larger amount of 
frequent itemsets could be produced. In this case, there are 
many redundancies among those frequent itemsets. For 
example, in the frequent itemsets{acd,ad,a} , the only 
useful information is the set acd according to Apriori 
property, because it includes ad and a . Frequent closed 
itemset is a solution to this problem. A frequent itemset X is 
a closed one if it has no superset Y � X so that sup (X ) 
=sup (Y ) .Frequent closed itemset is a condensed, i.e. both 
concise and lossless, representation of a collection of 
frequent itemsets. 
B. Sliding Window 
     The basic idea of mining frequent closed itemset in the 
sliding window model is that it makes decisions from the 
recent transactions in a fixed time period instead of all the 
transactions happened so far. Formally, a new data element 
arriving at the time t will expire at time t + w, in which w is 
the length of the window. At every time step, when a new 
transaction comes to the window, the oldest one in the 
window should be deleted. Since the transactions in the 
window are updated over time, the frequent itemsets should 
be renewed accordingly.  

III. THE EMAFCI ALGORITHM 
 

   In this section, we illustrate the framework of the 
algorithm EMAFCI for mining frequent closed itemsets in 
data streams based on the model of sliding window. First 
we introduce the data structure of BVTable used in the 
algorithm. 
A. The BVTablet 

 The EMAFCI algorithm is based on the data structure 
of BVTable. To compress the itemsets and the database,  
VTable consists of a set of binary integer where each bit 
epresents an item. It consists of three parts, the left, middle 
and right part. The ith row of the BVTable is a vector (si , ti , 
ci ) where binary integers si , ti are the left and middle parts 
respectively, and the right part ci is the support of the 
itemset corresponding to the ith row. In the left part of 
BVTable, each column represents an item and each row is a 
binary integer corresponding to a candidate itemset.  

Denote the jth bit of si , as sij . If the jth item is included 
in the ith itemset, then sij = 1, otherwise sij = 0 . In the 
middle part of BVTable, each column represents a  

transaction in the current time window and each row is a 
binary integer indicating whether the itemset represented by 
this row is included in the transaction or not. Denote the jth 
bit of ri , as rij . If the ith itemset is included in the jth 
transaction, then rij = 1 , otherwise rij = 0 . In the right part 
of the ith row, ci = H(ri ) is the support of the itemset 
corresponding to the ith row, here H(ri ) is the number of 
bits "1" in rj . Since ci can be calculated easily from ri , it 
doesn’t need to be physically stored in the memory. To 
mine the frequent closed itemsets from the current sliding 
window, the algorithm EMAFCI first builds a BVTable for 
all 1-itemsets that are denoted as L1 . Based on L1 , all the 
frequent 2-itemsets can be detected and L2 can be built. 
Repeat this procedure until all the r -itemsets are detected, 
and here r is the maximum length of the transactions. Here, 
L1 consists of all the 1-itemsets that include the frequent and 
nonfrequent ones in order to store all the transactions in the 
current window. 
B. Framework of algorithm 
    The algorithm EMAFCI receives a transaction from the 
data stream at each time step, and forms a new sliding 
window by adding this new transaction into the window 
and emitting the oldest one. To identify the  requent closed 
itemsets in this new sliding window, EMAFCI should 
modify the BVTable accordingly. Since two adjacent 
windows are overlapped except the added and deleted 
transactions, the frequent closed itemsets of the two 
windows do not change abruptly. EMAFCI needs only to 
process the part of BVTable involving these two 
transactions. Therefore, procedures are proposed to modify 
BVTable when adding and deleting a transaction. The 
framework of algorithm EMAFCI is as follows: 
Algorithm: EMAFCI( D, L ) 
Input: D : the data stream; 
Output: L : the BVTable; 
Begin 

BuildFirstBVTable( D, n, L ); 
while not the end of the stream do 
Receive a new transaction x from the stream; 
DeleteTransFCI( L ); 
AddTransFCI( L , x ); 

end while 
End 
C. Build the BVTable for the first window 
    The ItemList for the first window is constructed by a 
procedure BuildFirstBVTable(). First the BVTable for the 
1-itemsets L1 should be generated. Then the BVTable L2 for 
the frequent 2-itemsets are generated from the frequent 1-
itemsets by performing bitwise OR operation (denoted as � 
) in the left part of the BVTable and AND operation 
(denoted as ∩ ) in the middle part of the BVTable. 
Similarly, the frequent 3-itemsets and 4-itemsets are 
generated from the 2-itemsets. Iterate this procedure until 
all the frequent itemsets are detected. Let n be the 
maximum length of the transactions, so the maximum 
number of such iterations is log2n. Among the frequent 
itemsets detected, the sub-itemsets with the same support 
are labeled "*", because they are nonclosed frequent 
itemsets. Details of the operation are as follows. 
We denote the BVTable after the kth iteration as Lk . Let m 
= 2k−2 , and denote the set of all frequent j -itemsets as Cm , 
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then Lk consists of all the frequent itemsets Cm+1 … C2m . To 
construct Lk +1 , pair-test operation should be performed on 
each pair of frequent itemsets to generate possible larger 
frequent itemset. Let (si ,ti ,ci ) and (si ,t j ,c j ) be two 
frequent itemsets in Lk , then a pair-test operation can 
generate an itemset (si � s j ,ti � t j ,c) , here c = H(ti ∩ t j ) is 
the number of bits "1" in ti ∩t j . In each iteration we 
generate the frequent itemsets in Lk +1 based on Lk which 
consists of the frequent itemsets Cm+1 … C2m , and entirely 
ignore the itemsets in 
Lk −1,Lk −2...L1 . 

IV. EXPERIMENTAL RESULTS 

In order to evaluate the performance of our algorithm 
EMAFCI, we test it and compare the memory requirement, 
the processing time for the first window andeach sliding 
window with the algorithm Moment. The experiments are 
performed on a Pentium 2.4GHz S4800A (AMD Opteron 
880) CPU with 4GB RAM memory, 300GB hard drive. The 
algorithm is coded using the VC + + 6.0 on Linux operating 
system. 
A. Data Set 

In our experiments, we use the real database Mushroom 
and the synthetic databases proposed by Agrawal and 
Srikant for evaluating the algorithms. Mushroom which can 
be downloaded from [13] is a dense dataset with 8124 
transactions,. Database T40I5D10K which produces data 
simulating the transactions of retail stores is generated by 
using the synthetic data generator described by  
Agrawal et al. 
B. Experimental results and analysis 
(1) Mushroom 
We have adopted the commonly used parameters: the 
number of transactions is set as 8124 while the size of 
window as 8000. We report the average performance over 
124 consecutive sliding windows.  

In Fig.1, the times for processing the first window by the 
algorithms of Moment and EMAFCI are compared. From 
Fig.1 we can see that when the support=minsup/8000 is set 
between 1 and 0.8, the processing time of EMAFCI is equal 
to that of Moment. But when the support is lower than 0.8, 
the time of Moment is much more than that of EMAFCI. 
For instance, when support is set as 0.2, time cost of 
Moment is more than 200s, while the time of EMAFCI is 
less than 50s. 

 

 
Figure 1. The time of processing the first window of 
Mushroom by EMAFCI compared with Moment 

 
Figure 2. The average time of processing one window of 

Mushroom byEMAFCI compared with Moment 
 
In Fig.2, the average time for processing a sliding 

window  y the two algorithms are compared. From Fig.2, 
we can see that the average time for processing a sliding 
window by EMAFCI is much less than that of Moment 
especially when support is small. The time required for one 
window by EMAFCI is less than 0.04s, while the time of 
Moment increases very quickly and can go beyond 0.16s. 

CONCLUSIONS 

An algorithm of EMAFCI is proposed for mining the 
closed frequent itemsets from data stream. The algorithm is 
based on the sliding window model, and uses a BVTable 
where the transactions and itemsets are recorded by the 
column and row vectors respectively. The algorithm first 
builds the BVTable for the first sliding window. Frequent 
closed itemsets can be detected by pair-test operations on 
the binary numbers in the table. After building the first 
BVTable, the algorithm updates the BVTable for each 
sliding window. The frequent closed itemsets in the sliding 
window can be identified from the BVTable. Algorithms 
are also proposed to modify BVTable when adding and 
deleting a transaction. 

The EMAFCI algorithm is implemented and compared 
its performance with Moment in terms of processing time 
and memory requirement. Our experimental results on both 
synthetic and real data show that EMAFCI is more effective 
with the guaranty of accuracy[12,13]. 
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