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Abstract— Desktop Grids have proved to be a suitable 
platform for the execution of Bag-of-Tasks applications but, 
being characterized by a high resource volatility, require the 
availability of scheduling techniques able to effectively deal 
with resource failures and/or unplanned periods of 
unavailability. Scheduling BoT applications on Desktop Grids 
has thus attracted the attention of the scientific community, 
and various schedulers tailored towards them have been 
proposed in the literature However, due to the wide variety of 
approaches to this problem, it is difficult to meaningfully 
compare different systems since there is no uniform means for 
qualitatively or quantitatively evaluating them. It is also 
difficult to successfully build upon existing work or identify 
areas worthy of additional effort without some understanding 
of the relationships between past efforts. In this paper, 
taxonomy of approaches to the resource management problem 
in Grid environments is presented in order to provide a 
common terminology and classification mechanism necessary 

in addressing this problem. 
Keywords— Bag-of-Tasks applications (BoT), Desktop Grids, 

Scheduling taxonomy. 

I. INTRODUCTION 

The exploding popularity of the Internet has created a new 
much large scale opportunity for Grid computing. As a 
matter of fact, millions of desktop PCs, whose idle cycles 
can be exploited to run Grid applications, are connected to 
wide-area networks both in the enterprise and in the home. 
These new platforms for high throughput applications are 
called Desktop Grids [1, 2], and provide an amount of raw 
computing power far exceeding that provided by more 
traditional Grid platforms that include a lower number of 
more powerful resources (e.g., high-performance clusters). 
The inherent wide distribution, heterogeneity, and 
dynamism of Desktop Grids make them better suited to the 
execution of loosely-coupled parallel applications rather 
than tightlycoupled ones. Bag-of-Tasks applications (BoT) 
[3, 4] (parallel applications whose tasks are completely 
independent from one another) have been shown [5] to be 
particularly able to exploit the computing power provided 
by Desktop Grids 

In order to take advantage of Desktop Grid environments, a 
variety of widely differing techniques and methodologies 
for distributed resource management, tailored to BoT 
applications, must be adopted Along with these competing 
proposals has came the inevitable proliferation of 
inconsistent and even contradictory terminology, as well as 

a number of  slightly differing problem formulations, 
assumptions, etc. Thus, it is difficult to analyze the relative 
merits of alternative schemes in a meaningful fashion. It is 
also difficult to focus common effort on approaches and 
areas of study which seem most likely to prove fruitful 

 The rest of the paper is organized as follows. Section 2 
describing taxonomy in order to allows the classification of 
distributed scheduling algorithms according to a reasonably 
small set of salient features, while in Section 3 examples 
will be taken from the scientific literature to demonstrate 
their relationship to one another with respect to the 
taxonomy detailed in previous section. In Section 4 we will 
attempt to compare the scheduling algorithms previously 
described based on the taxonomy proposed Finally, Section 
5 concludes the paper . 

II. TAXONOMY 

The classification scheme proposes in our taxonomy 
considers six different scheduling categories represented in 
Figure 1: information-based and information-free, on-line 
and batch mode scheduling, fault-tolerant and not fault-
tolerant. 

A. Information-based and Information-free scheduling 

The decisions a scheduler makes are only as good as the 
information provided to it. Many theoretical schedulers 
assume one has 100 percent of the information needed, at 
an extremely fine level of detail, and that the information is 
always correct. Unfortunately, as discuss later, this scenario 
is overly unrealistic. In general we have only the highest 
level of information. For example, it may be known that an 
application needs to run on Linux, will produce output files 
somewhere between 20 MB and 30 MB, and should take 
less than three hours but might take as long as five. 

 
Figure1: Taxonomy 
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    Usually, the information regards the tasks (execution 
time, software and hardware requirements, etc) and the 
resources (computational power, availability, etc). In 
general, the scheduling algorithms assume partial 
information, and use it to calculate a sort of utility value for 
each assignment task/resource. With this value the 
scheduler is able to evaluate how good is each assignment 
and decides how make the scheduling decisions. In some 
case, the goodness of an assignment could be decided also 
considering the cost to use a particular resource. As matter 
of fact, if the resources are freely usable any user could 
have an antisocial behavior (i.e., a single user can occupy 
the whole Computation Grid with his tasks). To avoid this 
situation, the scientific community has proposed some 
approaches based on microeconomy theories. 

B. On-line and batch-mode scheduling algorithms      

Independently of the amount of information about resources 
and task knew, the scheduling policies can be grouped into 
two categories: on-line and batch mode. In the on-line mode, 
a task is assigned to a machine as soon as it arrives at the 
scheduler and this decision is not changed once it is 
computed. Conversely, in the batch mode, tasks are not 
mapped onto the machines as they arrive; instead they are 
collected into a set that is examined for mapping at 
prescheduled times called mapping events. In the next 
section, we provide some example to put in evidenced the 
differences between on-line mode and batch mode 
scheduling. 

C.  Fault-tolerant scheduling 

A Grid may potentially encompass thousands of resources, 
services, and applications that need to interact in order for 
each of them to carry out its task. The extreme 
heterogeneity of these elements gives rise to many failure 
possibilities, including not only independent failures of 
each resource, but also those resulting from interactions 
among them. Moreover, resources may be disconnected 
from a Grid because of machine hardware and/or software 
failures or reboots, network misbehaviors, or process 
suspension/abortion in remote machines to prioritize local 
computations. Finally, configuration problems or 
middleware bugs may easily make an application fail even 
if the resources or services it uses remain available [6]. In 
order to hide the occurrence of faults, or the sudden 
unavailability of resources, fault-tolerance mechanisms 
(e.g., replication or checkpointing-and-restart) are usually 
employed. 

D. On-line mode scheduling 

In the on-line mode scheduling, the scheduler must select 
the best resource given a particular task. The resource 
selection is done ordering the hosts in the ready queue 
according to some criteria (e.g., by clock rate, by the 
number of cycles delivered in the past) and to assign tasks 
to the "best" hosts first. This method is also called resource 
prioritization. The simplest on-line scheduling policy is 
First-Come-First-Serve (FCFS) where the scheduler selects 
the first host in the ready queue. Although this policy is not 
accurate since it does not consider any kind of information 
concerning either tasks or hosts, FCFS is often used also in 
important Desktop Grid projects like XtremWeb and 

BOINC. This is due to the fact that, in a dynamic and 
extremely heterogeneous environment like Grid it is 
difficult to obtain such information 

III. EXAMPLES 

In this section, examples will be taken from the scientific 
literature to demonstrate their relationship to one another 
with respect to the taxonomy detailed in previous section. 

A. On-line mode scheduling 

In the on-line mode scheduling, the scheduler must select 
the best resource given a particular task. The resource 
selection is done ordering the hosts in the ready queue 
according to some criteria (e.g., by clock rate, by the 
number of cycles delivered in the past) and to assign tasks 
to the "best" hosts first. This method is also called resource 
prioritization.  
 The simplest on-line scheduling policy is First-Come-First-
Serve (FCFS) where the scheduler selects the first host in 
the ready queue. Although this policy is not accurate since 
it does not consider any kind of information concerning 
either tasks or hosts, FCFS is often used also in important 
Desktop Grid projects like XtremWeb and BOINC. This is 
due to the fact that, in a dynamic and extremely 
heterogeneous environment like Grid it is difficult to obtain 
such information. Moreover many works, as described in 
[7], considers that when the number of tasks is about equal 
or greater than the number of hosts, there is just a little 
benefit of prioritization over FCFS. This can be explained 
considers that the most capable hosts tended to request 
tasks the most often, and so FCFS performed almost as well 
as any of the prioritization heuristic proposed in the 
scientific literature. Many of these scheduling policies are 
based on the classical on-line scheduling algorithms: 
minimum completion time (MCT), minimum execution 
time (MET), switching algorithm (SA), k-percent best 
(KPB) and opportunistic load balancing (OLB) (all 
described in detail in [8]).  
     For example, the work in [7] describes three methods for 
resource prioritization using different levels of information 
about the hosts from virtually no information to 
comprehensive historical statistics derived from trace for 
each host. In particular, for the PRI-CR method, hosts in the 
server's ready queue are prioritized by their clock rates. 
Similar to PRI-CR, PRICR- WAIT sorts hosts by clock 
rates, but the scheduler waits for affixed period of 10 
minutes before assigning tasks to hosts. The rationale is that 
collection a pool of ready hosts before making the 
assignments can improve host selection. Finally, the third 
method called PRI-HISTORY uses dynamic information, 
i.e. history of a host's past performance to predict its future 
performance. All the results report in [7] are based on 
scenarios where the number of tasks is comparable with the 
number of resources. We believe that different scenarios 
where the number of tasks can be greater than the number 
of machines should be evaluated. 
The work described in [9] is the most relevant in terms of 
Desktop Grid scheduling. The author investigates the 
problem of scheduling multiple independent compute 
bound applications that have soft-deadline constraints on 
the Condor Desktop Grid system. Each "application" in this 
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study consists of a single task. The issue addressed in the 
paper is how to prioritize multiple applications having soft 
deadlines so that the highest number of deadlines can be 
met. The author uses two approaches. One approach is to 
schedule the application with the closest deadline first. 
Another approach is to determine whether the task will 
complete by the deadline using a history of host availability 
from the previous day, and then to randomly choose a task 
that is predicted to complete by the deadline. The author 
finds that a combined approach of scheduling the task that 
is expected to complete with the closest deadline is the best 
method. Although the platform model in that study 
considers shared and volatile hosts, the platform model 
assumes that the hosts have identical clock rates and that 
the platform supports check-pointing. So, the study did not 
determine impact of relatively slow hosts or task failures on 
execution for a set of tasks; likewise, the author did not 
study the effect of resource prioritization (e.g., according to 
clock rates) or resource exclusion. 

B. Batch mode scheduling 

In the batch mode scheduling, the scheduling approaches 
are typically more complicated with respect to the previous 
situation. As a matter of fact, the scheduler, besides the set 
of resources, knows the set of tasks and it can consider any 
combination of task/resource. Unfortunately, considering 
all possible combinations in order to decide the best set of 
assignments is a well-known NP-complete problem if 
throughput is the optimization criterion [10, 11, 12]. For 
this reason, the batch mode scheduling algorithms proposed 
in the scientific literature provides suboptimal solutions 
such as Min-Min, Max-min and Sufferage (all described in 
detail in [13]). 
     The most relevant batch mode scheduling policy is 
based on the classic algorithm cited above. For example, 
XSufferage [14] is an extension of Sufferage policy that is 
able to exploit file locality issues without any a priori 
analysis of the task-file dependence pattern. The idea is that 
if a file required by some task is already present at a remote 
cluster, that task would "suffer" if not assigned to a host in 
that cluster. The Sufferage's value would then be a simple 
way of capturing such situations and ensuring maximum 
file re-use. This is somewhat reminiscent of the idea of 
task/host affinities introduced in [15], where some hosts are 
better for some tasks but not for others. The problem of this 
algorithm regards the necessity to know much information 
to calculate the completion time of the tasks. In particular, it 
needs to know the HostSpeed (a measure of the host speed), 
the HostLoad (the load of the host due to the local 
processes) and the TaskSize (the completion time of a task 
in a host with HostSpeed=1 and HostLoad=0). 
Moreover, as we have cited above, some scheduling 
algorithm needs an extremely fine level of detail such as 
First-order Prediction-based Dynamic FPLTF (FP Dynamic 
FPLTF) [16], abbreviated as FP. FP is a prediction-based 
scheduling algorithm that works as FPLTF [17] except that 
it needs the host's latest two load records. The scheduler 
uses these two records to reconstruct an approximated hosts 
loading model to predict the hosts's speed in the future 
based on the linear function. FP is able to achieve good 
performances but, it needs a level of detail about 
information of tasks and hosts that is overlay unrealistic to 

obtain in a Computational Grid, for the reasons previously 
discussed. 

C. Fault-tolerant scheduling 

The scheduling approaches discussed above do not consider 
the occurrence of faults, but as we have just observed, Grid 
environments are prone of failures. Task failures near the 
end of the application, and unpredictably slow hosts can 
cause major delays in application execution. Many 
solutions propose the replication of the tasks on multiple 
hosts, either to reduce the probability of task failure or to 
schedule the application on a faster host. 
    Replication a task may increase the chance that at least 
one task instance will be completed. One of these proposals 
is WorkQueue with Replication (WQR) [17]: a knowledge-
free scheduling algorithm that adds task replication to the 
classical Workqueue (WQ) [17] scheduler. The beginning 
of the algorithm execution is the same as the simple 
Workqueue and continues the same until the bag of tasks 
becomes empty. At this time, in the simple Workqueue, 
hosts that finish their tasks would become idle during the 
rest of the application execution. Using the replication 
approach, these hosts are assigned to execute replicas of 
tasks that are still running. Tasks are replicated until a 
predefined maximum number of replicas are achieved. 
When a task replica finishes, its other replicas are canceled. 
This policy has the drawback of wasting CPU cycles (due 
to the replicas that do not contribute to the completion of 
the tasks), which could be a problem if the Desktop Grid is 
to be used by more than one application. 
    Conversely of these information-free schedulers, the 
scientific literature has proposed fault-tolerant schedulers 
that combine replication and information-based scheduling. 
For example, Distributed Fault-Tolerant Scheduling (DFTS) 
[18] is an on-line scheduling policy that uses job replication 
strategy and it considers available sufficient information to 
estimate the run-time of the task. In particular, when a job 
arrives, DFTS chooses a set of n candidate’s sites for job 
execution and orders them for an estimate of the job 
completion time. If the desirable replication threshold is 
greater than n, DFTS reserves a set of resources equal to the 
number of unscheduled job replicas. If a job successfully 
completes, DFTS sends releases message to each site it had 
reserved such that these sites can be used for running other 
jobs. The experimental results of DFTS show that 
performances degrade gracefully in the presence of failures, 
but it does not consider the amount of waste cycles due to 
the useless replicas. 
      Besides the completion time and the number of the 
replicas desired, other scheduling policies specified also a 
minimum replication threshold. For example, in the Fault 
Tolerant Scheduling algorithm (FTSA) [19], along with the 
job, two values are specified by the user: the number of 
desired replicas n and the replication threshold k, where k 
<=n. FTSA picks the n best hosts (ordered by an estimate of 
the job completion time) and send them the replicas of the 
task. The system must ensure that k replicas are running. 
That is, the number of replicas may fall below n due to 
replica failure, but not below k. Although FTSA could 
achieve good performance even in presence of fault, it is 
not clear explained how the user should specify the values 
of n and k. 
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Finally, task checkpointing is another means of dealing 
with task failures since the task state can be stored 
periodically either on the local disk or on a remote 
checkpointing server; in the event that a failure occurs, the 
application can be restarted from the last checkpoint. In 
combination with checkpointing, process migration can be 
used to deal with CPU unavailability or when a "better" 
host becomes available by moving the process to another 
machine. For example, the EXCL-PRED-CHKPT [7] is a 
scheduling policy that assumes a checkpoint frequency 
equals to 2.5 minutes (interval between two checkpoints) 
and the cost of checkpointing is 15 seconds (time to 
save/retrieve a checkpoint to/from a remote host). In this 
work, the authors note that the poor performance of EXCL-
PRED-CHKPT is due to the fact that a task is not 
reassigned when it is assigned to a slow host or when the 
host becomes unavailable for task execution. Moreover, the 
authors consider that remote checkpointing or process 
migration is most likely infeasible in Internet environments, 
as the application can often consume hundreds of 
megabytes of memory and bandwidth over the Internet is 
often limited. 

 Top = 19mm (0.75") 
 Bottom = 43mm (1.69") 
 Left = Right = 14.32mm (0.56") 

Your paper must be in two column format with a space 
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D. Economic models 

The scheduling policies previously described consider the 
resources in Computational Grid freely usable without any 
constraints. Unfortunately, if constraints are not put on how 
the resource on how resources are used, they may be 
misused. For instance, if all resources can be used without 
any limitation, situation in which all task are submitted to 
the best resources (e.g., the resource that has the best 
performance and availability) may arise, thus leaving idle 
other resources. Moreover, antisocial behaviors, where a 
user submits a replica of its application on all the resources, 
with the aim of speculatively exploit them to reduce the 
execution time of his application, may arise as well. In 
order to avoid these phenomena, a possible solution 
consists in associating a cost to each resource, and a budget 
to each user/application. When an application is run on a 
resource, a proper amount of (virtual) money is allocated to 
that application, and is subtracted from the total budget to 
account for the usage of the resource. The so-called 
economic approach to resource management has received 
great attention in the recent Grid literature [20], where both 
scheduling algorithms taking into account resource costs 
and application budgets [21], and automatic approaches for 
the computation of resource prices [22], have been 
proposed. 
     Some of the commonly used economic models that can 
be employed for managing resources environment include: 
the commodity market model, the posted price model, the 
bargaining model, the tendering/contract-net model, the 
auction model, the bid-based proportional resource sharing 
model, the community/coalition/bartering model and the 
monopoly and oligopoly. Details about each model are in 
[21]. 

 

IV. DISCUSSIONS 

In this section, we will attempt to compare the scheduling 
algorithms previously described based on the taxonomy 
proposed. 
 

A. Information-based algorithm versus information-free 
algorithm 

Obtain information about the status of the resource is often 
difficult, especially in Grid environments. This is due to 
some characteristics that are intrinsic to Grids such as 
heterogeneity and volatility of the resources. Moreover, in 
order to achieve good performance, it is necessary to know 
the status of the resources in the next future, because just 
monitoring the resource (when it is possible) is not enough. 
The scientific literature has proposed tools able to obtain 
dynamic information such as host load and network 
bandwidth [23, 24, 25] with some good results [24, 25]. 
Unfortunately these are only initial encouraging results, 
thus the information-free scheduling algorithms are still 
popular in Grid environments. 
 

B. On-line scheduling versus batch mode scheduling 

The main difference, in terms of performance, between on-
line scheduling and batch mode scheduling regards 
principally the arrival rate. When the arrival rate is low, 
machines may be ready to execute a task as soon as it 
arrives at the scheduler. Therefore, it may be beneficial to 
use the scheduler in the on-line mode so that a task does not 
need to wait the next scheduling event to begin its 
execution. In batch mode, the scheduler considers a bag of 
tasks for matching and scheduling at each scheduling event. 
This enables the scheduling algorithm to possibly make 
better decisions, because the  scheduler have the resource 
requirement information for all tasks, and know about the 
actual execution times of a larger number of tasks (as more 
tasks might complete while waiting for the scheduling 
event). When the task arrival rate is high, there will be a 
sufficient number of tasks to keep the machines busy in 
between the scheduling events, and while an assignment is 
being computed. 
 

C. Fault-tolerant scheduling versus no fault-tolerant 
scheduling 

Although scheduling and fault tolerance have been 
traditionally considered independently from each other, 
there is a strong correlation between them. As a matter of 
fact, each time a fault-tolerance action must be performed, 
i.e. a replica must be created or a checkpointed job must be 
restarted, a scheduling decision must be taken in order to 
decide where these jobs must be run, and when their 
execution must start. A scheduling decision taken by 
considering only the needs of the faulty task may thus 
strongly adversely impact non-faulty jobs, and vice versa. 
Therefore, scheduling and fault tolerance should be jointly 
addressed in order to simultaneously achieve fault tolerance 
and satisfactory performance. 
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CONCLUSIONS 

The intention of this paper has been to provide the related 
work in the area of resource management. This has been 
done through the presentation of taxonomy on the 
scheduling policies used in Grid computing. From our study, 
we can assert that usually the scheduling literature has 
considered efficiency and robustness as orthogonal aspects, 
that is their interactions are not taken into account when 
scheduling applications on Computational Grid. 
Unfortunately, as already mentioned before, in Desktop 
Grids faults may occur, and in this case the execution time 
of the applications gets much larger, as there is the need to 
recover from the fault. Consequently, there is the need of 
exploring scheduling strategies that attempts to maximize 
application performance in face of occurrence of faults. 
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