
A Survey and Taxonomy of scheduling algorithms
in Desktop Grid

Jayoti Bansal

 Computer Sc. & Engg., B.F.C.E.T, Bathinda Punjab (India),
erjyoti.2009@rediffmail.com

Dr. Shaveta
Computer Sc. & Engg., G.Z.S.C.E.T, Bathinda Punjab (India)

garg_shavy@yahoo.com

 Dr. Paramjit Singh
Computer Sc. & Engg., B.F.C.E.T, Bathinda Punjab (India)

 param2009@gmail.com

Abstract— Desktop Grids have proved to be a suitable
platform for the execution of Bag-of-Tasks applications but,
being characterized by a high resource volatility, require the
availability of scheduling techniques able to effectively deal
with resource failures and/or unplanned periods of
unavailability. Scheduling BoT applications on Desktop Grids
has thus attracted the attention of the scientific community,
and various schedulers tailored towards them have been
proposed in the literature However, due to the wide variety of
approaches to this problem, it is difficult to meaningfully
compare different systems since there is no uniform means for
qualitatively or quantitatively evaluating them. It is also
difficult to successfully build upon existing work or identify
areas worthy of additional effort without some understanding
of the relationships between past efforts. In this paper,
taxonomy of approaches to the resource management problem
in Grid environments is presented in order to provide a
common terminology and classification mechanism necessary

in addressing this problem.
Keywords— Bag-of-Tasks applications (BoT), Desktop Grids,

Scheduling taxonomy.

I. INTRODUCTION

The exploding popularity of the Internet has created a new
much large scale opportunity for Grid computing. As a
matter of fact, millions of desktop PCs, whose idle cycles
can be exploited to run Grid applications, are connected to
wide-area networks both in the enterprise and in the home.
These new platforms for high throughput applications are
called Desktop Grids [1, 2], and provide an amount of raw
computing power far exceeding that provided by more
traditional Grid platforms that include a lower number of
more powerful resources (e.g., high-performance clusters).
The inherent wide distribution, heterogeneity, and
dynamism of Desktop Grids make them better suited to the
execution of loosely-coupled parallel applications rather
than tightlycoupled ones. Bag-of-Tasks applications (BoT)
[3, 4] (parallel applications whose tasks are completely
independent from one another) have been shown [5] to be
particularly able to exploit the computing power provided
by Desktop Grids

In order to take advantage of Desktop Grid environments, a
variety of widely differing techniques and methodologies
for distributed resource management, tailored to BoT
applications, must be adopted Along with these competing
proposals has came the inevitable proliferation of
inconsistent and even contradictory terminology, as well as

a number of slightly differing problem formulations,
assumptions, etc. Thus, it is difficult to analyze the relative
merits of alternative schemes in a meaningful fashion. It is
also difficult to focus common effort on approaches and
areas of study which seem most likely to prove fruitful

 The rest of the paper is organized as follows. Section 2
describing taxonomy in order to allows the classification of
distributed scheduling algorithms according to a reasonably
small set of salient features, while in Section 3 examples
will be taken from the scientific literature to demonstrate
their relationship to one another with respect to the
taxonomy detailed in previous section. In Section 4 we will
attempt to compare the scheduling algorithms previously
described based on the taxonomy proposed Finally, Section
5 concludes the paper .

II. TAXONOMY

The classification scheme proposes in our taxonomy
considers six different scheduling categories represented in
Figure 1: information-based and information-free, on-line
and batch mode scheduling, fault-tolerant and not fault-
tolerant.

A. Information-based and Information-free scheduling

The decisions a scheduler makes are only as good as the
information provided to it. Many theoretical schedulers
assume one has 100 percent of the information needed, at
an extremely fine level of detail, and that the information is
always correct. Unfortunately, as discuss later, this scenario
is overly unrealistic. In general we have only the highest
level of information. For example, it may be known that an
application needs to run on Linux, will produce output files
somewhere between 20 MB and 30 MB, and should take
less than three hours but might take as long as five.

Figure1: Taxonomy

Jayoti Bansal et al IJCSET |March 2012| Vol 2, Issue 3,963-967

963

 Usually, the information regards the tasks (execution
time, software and hardware requirements, etc) and the
resources (computational power, availability, etc). In
general, the scheduling algorithms assume partial
information, and use it to calculate a sort of utility value for
each assignment task/resource. With this value the
scheduler is able to evaluate how good is each assignment
and decides how make the scheduling decisions. In some
case, the goodness of an assignment could be decided also
considering the cost to use a particular resource. As matter
of fact, if the resources are freely usable any user could
have an antisocial behavior (i.e., a single user can occupy
the whole Computation Grid with his tasks). To avoid this
situation, the scientific community has proposed some
approaches based on microeconomy theories.

B. On-line and batch-mode scheduling algorithms

Independently of the amount of information about resources
and task knew, the scheduling policies can be grouped into
two categories: on-line and batch mode. In the on-line mode,
a task is assigned to a machine as soon as it arrives at the
scheduler and this decision is not changed once it is
computed. Conversely, in the batch mode, tasks are not
mapped onto the machines as they arrive; instead they are
collected into a set that is examined for mapping at
prescheduled times called mapping events. In the next
section, we provide some example to put in evidenced the
differences between on-line mode and batch mode
scheduling.

C. Fault-tolerant scheduling

A Grid may potentially encompass thousands of resources,
services, and applications that need to interact in order for
each of them to carry out its task. The extreme
heterogeneity of these elements gives rise to many failure
possibilities, including not only independent failures of
each resource, but also those resulting from interactions
among them. Moreover, resources may be disconnected
from a Grid because of machine hardware and/or software
failures or reboots, network misbehaviors, or process
suspension/abortion in remote machines to prioritize local
computations. Finally, configuration problems or
middleware bugs may easily make an application fail even
if the resources or services it uses remain available [6]. In
order to hide the occurrence of faults, or the sudden
unavailability of resources, fault-tolerance mechanisms
(e.g., replication or checkpointing-and-restart) are usually
employed.

D. On-line mode scheduling

In the on-line mode scheduling, the scheduler must select
the best resource given a particular task. The resource
selection is done ordering the hosts in the ready queue
according to some criteria (e.g., by clock rate, by the
number of cycles delivered in the past) and to assign tasks
to the "best" hosts first. This method is also called resource
prioritization. The simplest on-line scheduling policy is
First-Come-First-Serve (FCFS) where the scheduler selects
the first host in the ready queue. Although this policy is not
accurate since it does not consider any kind of information
concerning either tasks or hosts, FCFS is often used also in
important Desktop Grid projects like XtremWeb and

BOINC. This is due to the fact that, in a dynamic and
extremely heterogeneous environment like Grid it is
difficult to obtain such information

III. EXAMPLES

In this section, examples will be taken from the scientific
literature to demonstrate their relationship to one another
with respect to the taxonomy detailed in previous section.

A. On-line mode scheduling

In the on-line mode scheduling, the scheduler must select
the best resource given a particular task. The resource
selection is done ordering the hosts in the ready queue
according to some criteria (e.g., by clock rate, by the
number of cycles delivered in the past) and to assign tasks
to the "best" hosts first. This method is also called resource
prioritization.
 The simplest on-line scheduling policy is First-Come-First-
Serve (FCFS) where the scheduler selects the first host in
the ready queue. Although this policy is not accurate since
it does not consider any kind of information concerning
either tasks or hosts, FCFS is often used also in important
Desktop Grid projects like XtremWeb and BOINC. This is
due to the fact that, in a dynamic and extremely
heterogeneous environment like Grid it is difficult to obtain
such information. Moreover many works, as described in
[7], considers that when the number of tasks is about equal
or greater than the number of hosts, there is just a little
benefit of prioritization over FCFS. This can be explained
considers that the most capable hosts tended to request
tasks the most often, and so FCFS performed almost as well
as any of the prioritization heuristic proposed in the
scientific literature. Many of these scheduling policies are
based on the classical on-line scheduling algorithms:
minimum completion time (MCT), minimum execution
time (MET), switching algorithm (SA), k-percent best
(KPB) and opportunistic load balancing (OLB) (all
described in detail in [8]).
 For example, the work in [7] describes three methods for
resource prioritization using different levels of information
about the hosts from virtually no information to
comprehensive historical statistics derived from trace for
each host. In particular, for the PRI-CR method, hosts in the
server's ready queue are prioritized by their clock rates.
Similar to PRI-CR, PRICR- WAIT sorts hosts by clock
rates, but the scheduler waits for affixed period of 10
minutes before assigning tasks to hosts. The rationale is that
collection a pool of ready hosts before making the
assignments can improve host selection. Finally, the third
method called PRI-HISTORY uses dynamic information,
i.e. history of a host's past performance to predict its future
performance. All the results report in [7] are based on
scenarios where the number of tasks is comparable with the
number of resources. We believe that different scenarios
where the number of tasks can be greater than the number
of machines should be evaluated.
The work described in [9] is the most relevant in terms of
Desktop Grid scheduling. The author investigates the
problem of scheduling multiple independent compute
bound applications that have soft-deadline constraints on
the Condor Desktop Grid system. Each "application" in this

Jayoti Bansal et al IJCSET |March 2012| Vol 2, Issue 3,963-967

964

study consists of a single task. The issue addressed in the
paper is how to prioritize multiple applications having soft
deadlines so that the highest number of deadlines can be
met. The author uses two approaches. One approach is to
schedule the application with the closest deadline first.
Another approach is to determine whether the task will
complete by the deadline using a history of host availability
from the previous day, and then to randomly choose a task
that is predicted to complete by the deadline. The author
finds that a combined approach of scheduling the task that
is expected to complete with the closest deadline is the best
method. Although the platform model in that study
considers shared and volatile hosts, the platform model
assumes that the hosts have identical clock rates and that
the platform supports check-pointing. So, the study did not
determine impact of relatively slow hosts or task failures on
execution for a set of tasks; likewise, the author did not
study the effect of resource prioritization (e.g., according to
clock rates) or resource exclusion.

B. Batch mode scheduling

In the batch mode scheduling, the scheduling approaches
are typically more complicated with respect to the previous
situation. As a matter of fact, the scheduler, besides the set
of resources, knows the set of tasks and it can consider any
combination of task/resource. Unfortunately, considering
all possible combinations in order to decide the best set of
assignments is a well-known NP-complete problem if
throughput is the optimization criterion [10, 11, 12]. For
this reason, the batch mode scheduling algorithms proposed
in the scientific literature provides suboptimal solutions
such as Min-Min, Max-min and Sufferage (all described in
detail in [13]).
 The most relevant batch mode scheduling policy is
based on the classic algorithm cited above. For example,
XSufferage [14] is an extension of Sufferage policy that is
able to exploit file locality issues without any a priori
analysis of the task-file dependence pattern. The idea is that
if a file required by some task is already present at a remote
cluster, that task would "suffer" if not assigned to a host in
that cluster. The Sufferage's value would then be a simple
way of capturing such situations and ensuring maximum
file re-use. This is somewhat reminiscent of the idea of
task/host affinities introduced in [15], where some hosts are
better for some tasks but not for others. The problem of this
algorithm regards the necessity to know much information
to calculate the completion time of the tasks. In particular, it
needs to know the HostSpeed (a measure of the host speed),
the HostLoad (the load of the host due to the local
processes) and the TaskSize (the completion time of a task
in a host with HostSpeed=1 and HostLoad=0).
Moreover, as we have cited above, some scheduling
algorithm needs an extremely fine level of detail such as
First-order Prediction-based Dynamic FPLTF (FP Dynamic
FPLTF) [16], abbreviated as FP. FP is a prediction-based
scheduling algorithm that works as FPLTF [17] except that
it needs the host's latest two load records. The scheduler
uses these two records to reconstruct an approximated hosts
loading model to predict the hosts's speed in the future
based on the linear function. FP is able to achieve good
performances but, it needs a level of detail about
information of tasks and hosts that is overlay unrealistic to

obtain in a Computational Grid, for the reasons previously
discussed.

C. Fault-tolerant scheduling

The scheduling approaches discussed above do not consider
the occurrence of faults, but as we have just observed, Grid
environments are prone of failures. Task failures near the
end of the application, and unpredictably slow hosts can
cause major delays in application execution. Many
solutions propose the replication of the tasks on multiple
hosts, either to reduce the probability of task failure or to
schedule the application on a faster host.
 Replication a task may increase the chance that at least
one task instance will be completed. One of these proposals
is WorkQueue with Replication (WQR) [17]: a knowledge-
free scheduling algorithm that adds task replication to the
classical Workqueue (WQ) [17] scheduler. The beginning
of the algorithm execution is the same as the simple
Workqueue and continues the same until the bag of tasks
becomes empty. At this time, in the simple Workqueue,
hosts that finish their tasks would become idle during the
rest of the application execution. Using the replication
approach, these hosts are assigned to execute replicas of
tasks that are still running. Tasks are replicated until a
predefined maximum number of replicas are achieved.
When a task replica finishes, its other replicas are canceled.
This policy has the drawback of wasting CPU cycles (due
to the replicas that do not contribute to the completion of
the tasks), which could be a problem if the Desktop Grid is
to be used by more than one application.
 Conversely of these information-free schedulers, the
scientific literature has proposed fault-tolerant schedulers
that combine replication and information-based scheduling.
For example, Distributed Fault-Tolerant Scheduling (DFTS)
[18] is an on-line scheduling policy that uses job replication
strategy and it considers available sufficient information to
estimate the run-time of the task. In particular, when a job
arrives, DFTS chooses a set of n candidate’s sites for job
execution and orders them for an estimate of the job
completion time. If the desirable replication threshold is
greater than n, DFTS reserves a set of resources equal to the
number of unscheduled job replicas. If a job successfully
completes, DFTS sends releases message to each site it had
reserved such that these sites can be used for running other
jobs. The experimental results of DFTS show that
performances degrade gracefully in the presence of failures,
but it does not consider the amount of waste cycles due to
the useless replicas.
 Besides the completion time and the number of the
replicas desired, other scheduling policies specified also a
minimum replication threshold. For example, in the Fault
Tolerant Scheduling algorithm (FTSA) [19], along with the
job, two values are specified by the user: the number of
desired replicas n and the replication threshold k, where k
<=n. FTSA picks the n best hosts (ordered by an estimate of
the job completion time) and send them the replicas of the
task. The system must ensure that k replicas are running.
That is, the number of replicas may fall below n due to
replica failure, but not below k. Although FTSA could
achieve good performance even in presence of fault, it is
not clear explained how the user should specify the values
of n and k.

Jayoti Bansal et al IJCSET |March 2012| Vol 2, Issue 3,963-967

965

Finally, task checkpointing is another means of dealing
with task failures since the task state can be stored
periodically either on the local disk or on a remote
checkpointing server; in the event that a failure occurs, the
application can be restarted from the last checkpoint. In
combination with checkpointing, process migration can be
used to deal with CPU unavailability or when a "better"
host becomes available by moving the process to another
machine. For example, the EXCL-PRED-CHKPT [7] is a
scheduling policy that assumes a checkpoint frequency
equals to 2.5 minutes (interval between two checkpoints)
and the cost of checkpointing is 15 seconds (time to
save/retrieve a checkpoint to/from a remote host). In this
work, the authors note that the poor performance of EXCL-
PRED-CHKPT is due to the fact that a task is not
reassigned when it is assigned to a slow host or when the
host becomes unavailable for task execution. Moreover, the
authors consider that remote checkpointing or process
migration is most likely infeasible in Internet environments,
as the application can often consume hundreds of
megabytes of memory and bandwidth over the Internet is
often limited.

 Top = 19mm (0.75")
 Bottom = 43mm (1.69")
 Left = Right = 14.32mm (0.56")

Your paper must be in two column format with a space
of 4.22mm (0.17") between columns.

D. Economic models

The scheduling policies previously described consider the
resources in Computational Grid freely usable without any
constraints. Unfortunately, if constraints are not put on how
the resource on how resources are used, they may be
misused. For instance, if all resources can be used without
any limitation, situation in which all task are submitted to
the best resources (e.g., the resource that has the best
performance and availability) may arise, thus leaving idle
other resources. Moreover, antisocial behaviors, where a
user submits a replica of its application on all the resources,
with the aim of speculatively exploit them to reduce the
execution time of his application, may arise as well. In
order to avoid these phenomena, a possible solution
consists in associating a cost to each resource, and a budget
to each user/application. When an application is run on a
resource, a proper amount of (virtual) money is allocated to
that application, and is subtracted from the total budget to
account for the usage of the resource. The so-called
economic approach to resource management has received
great attention in the recent Grid literature [20], where both
scheduling algorithms taking into account resource costs
and application budgets [21], and automatic approaches for
the computation of resource prices [22], have been
proposed.
 Some of the commonly used economic models that can
be employed for managing resources environment include:
the commodity market model, the posted price model, the
bargaining model, the tendering/contract-net model, the
auction model, the bid-based proportional resource sharing
model, the community/coalition/bartering model and the
monopoly and oligopoly. Details about each model are in
[21].

IV. DISCUSSIONS

In this section, we will attempt to compare the scheduling
algorithms previously described based on the taxonomy
proposed.

A. Information-based algorithm versus information-free
algorithm

Obtain information about the status of the resource is often
difficult, especially in Grid environments. This is due to
some characteristics that are intrinsic to Grids such as
heterogeneity and volatility of the resources. Moreover, in
order to achieve good performance, it is necessary to know
the status of the resources in the next future, because just
monitoring the resource (when it is possible) is not enough.
The scientific literature has proposed tools able to obtain
dynamic information such as host load and network
bandwidth [23, 24, 25] with some good results [24, 25].
Unfortunately these are only initial encouraging results,
thus the information-free scheduling algorithms are still
popular in Grid environments.

B. On-line scheduling versus batch mode scheduling

The main difference, in terms of performance, between on-
line scheduling and batch mode scheduling regards
principally the arrival rate. When the arrival rate is low,
machines may be ready to execute a task as soon as it
arrives at the scheduler. Therefore, it may be beneficial to
use the scheduler in the on-line mode so that a task does not
need to wait the next scheduling event to begin its
execution. In batch mode, the scheduler considers a bag of
tasks for matching and scheduling at each scheduling event.
This enables the scheduling algorithm to possibly make
better decisions, because the scheduler have the resource
requirement information for all tasks, and know about the
actual execution times of a larger number of tasks (as more
tasks might complete while waiting for the scheduling
event). When the task arrival rate is high, there will be a
sufficient number of tasks to keep the machines busy in
between the scheduling events, and while an assignment is
being computed.

C. Fault-tolerant scheduling versus no fault-tolerant
scheduling

Although scheduling and fault tolerance have been
traditionally considered independently from each other,
there is a strong correlation between them. As a matter of
fact, each time a fault-tolerance action must be performed,
i.e. a replica must be created or a checkpointed job must be
restarted, a scheduling decision must be taken in order to
decide where these jobs must be run, and when their
execution must start. A scheduling decision taken by
considering only the needs of the faulty task may thus
strongly adversely impact non-faulty jobs, and vice versa.
Therefore, scheduling and fault tolerance should be jointly
addressed in order to simultaneously achieve fault tolerance
and satisfactory performance.

Jayoti Bansal et al IJCSET |March 2012| Vol 2, Issue 3,963-967

966

CONCLUSIONS

The intention of this paper has been to provide the related
work in the area of resource management. This has been
done through the presentation of taxonomy on the
scheduling policies used in Grid computing. From our study,
we can assert that usually the scheduling literature has
considered efficiency and robustness as orthogonal aspects,
that is their interactions are not taken into account when
scheduling applications on Computational Grid.
Unfortunately, as already mentioned before, in Desktop
Grids faults may occur, and in this case the execution time
of the applications gets much larger, as there is the need to
recover from the fault. Consequently, there is the need of
exploring scheduling strategies that attempts to maximize
application performance in face of occurrence of faults.

REFERENCES
[1] [1] S. Choi, H. Kim, E. Byun, M. Baik, S. Kim, C. Park, and C.

Hwang. Characterizing and Classifying Desktop Grid. In
CCGRID ’07: Proceedings of the Seventh IEEE International
Symposium on Cluster Computing and the Grid, pages 743–748,
Washington, DC, USA, 2007. IEEE Computer Society

[2] [2] D. Kondo, A. Chien, and H. Casanova. Resource management
for rapid application turnaround on enterprise desktop grids. In Proc.
of Super Computing Conference, 2004.

[3] [3] W. Cirne and et al. Grid computing for bag of tasks applications.
In Proc. of 3rd IFIP Conf. on E-Commerce, E-Business and E-
Government, 2003.

[4] [4] J. Smith and S. Srivastava. A System for Fault-Tolerant
Execution of Data and Compute Intensive Programs over a Network
of Workstations. In Proc. of EuroPar’96, volume 1123 of Lecture
Notes in Computer Science, 1996.

[5] [5] D. da Silva, W. Cirne, and F. Brasileiro. Trading Cycles fro
Information: Using Replication to Schedule Bag-of-Tasks
Applications on Computational Grids. In Proc. of EuroPar 2003,
volume 2790 of Lecture Notes in Computer Science, 2003.

[6] [6] R. Medeiros, W. Cirne, F. Brasileiro, and J. Sauv_e. Fault in
Grids: Why are they so bad and What can be done about it? In Proc.
4th Int. Workshop on Grid Computing (Grid 2003). IEEE-CS Press,
Nov. 2003.

[7] [7] Derrick Kondo, Andrew A. Chien, Henri Casanova Resource
Management for Rapid Application Turnaround on Enterprise
Desktop Grids. Proceedings of Super Computing Conference, 2004.

[8] [8] M. Maheswaran, S. Ali, H. Siegel, Debra Hensgen and R.
Freund Dynamic Mapping of a Class of Independent Tasks onto
Heterogeneous Computing Systems. Journal of Parallel and
Distributed Computing, vol. 59, no. 2, pp. 107-131, 1999.

[9] [9] M. Mutka. Considering deadline constraints when allocating the
shared capacity of private workstations. Int. Journal in Computer
Simulation, vol. 4, no.1 pp. 4163, 1994

[10] [10] O. H. Ibarra and C. E. Kim Heuristic Algorithms for
Scheduling Independent Tasks on Nonidentical Processors. in the
Journal of the ACM, vol.24, no.2, pp. 280{289, 1977.

[11] [11] A. Ghafoor and J. Yang A Distributed Heterogeneous
Supercomputing Management System. IEEE Computer Society
Press, vol.26, no.6, pp. 78{86, 1993.

[12] [12] M. Ka_l and I. Ahmad Optimal Task Assignment in
Heterogeneous Distributed Computing Systems. IEEE Concurrency,
vol.6, no.3, pp. 42{ 51, 1998.

[13] [13] M. Maheswaran and H.J. Siegel A Dynamic Matching and
Scheduling Algorithm for Heterogeneous Computing Systems. in
Proceedings of the Seventh Heterogeneous Computing Workshop
HCW '98, 1998.

[14] [14] H. Casanova, A. Legrand, and D. Zagorodnov et al. Heuristics
for Scheduling Parameter Sweeping Application in Grid

Environments. In Proc. of Heterogeneous Computing Workshop,
IEEE CS Press, 2000.

[15] [15] M. Maheswaran and S. Ali and H. Siegel and D. Hensgen and
R. Freund A Dynamic Matching and Scheduling Algorithm for
Heterogeneous Computing Systems. in the 8th Heterogeneous
Computing Workshop, 1999.

[16] [16] E. Heymann and M. Senar and E. Luque and M. Livny
Adaptive Scheduling for Master-Worker Applications on the
Computational Grid In GRID, pp. 214-227, 2000.

[17] [17] D.P. da Silva, W. Cirne, and F.V. Brasileiro. Trading Cycles
for Information: Using Replication to Schedule Bag-of-Tasks
Applications on Computational Grids. In Proc. of EuroPar 2003,
volume 2790 of Lecture Notes in Computer Science, 2003.

[18] [18] J. H. Abawajy Fault-Tolerant Scheduling Policy for Grid
Computing Systems. in Proceedings of the 18th International
Parallel and Distribuited Processing Symposium (IPDPS'04), 2004.

[19] [19] J. Weissman and D. Womack. Fault Tolerant Scheduling in
Distributed Networks. Technical Report TR CS-96-10, Department
of Computer Science, University of Texas, San Antonio, Sept. 1996.

[20] [20] R. Buyya and M. Murshed GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource Management and
Scheduling for Grid Computing. in the Journal of the Concurrency
and Computation: Practice and Experience,vol. 14, no. 13-15, pp.
1175-1220, Wiley Press, USA, 2002.

[21] [21] R. Buyya and D. Abramson and J. Giddy and H. Stockinger
Economic Models for Resource Management and Scheduling in
Grid Computing. Journal of Concurrency and Computation: Practice
and Experience (CCPE), Wiley Press, May 2002.

[22] [22] R. Wolski, J. S. Plank, J. Brevik and T. Bryan G-commerce:
Market Formulations Controlling Resource Allocation on the
Computational Grid. in the Book International Parallel and
Distributed Processing Symposium (IPDPS), 2001.

[23] [23] P. Francis, S. Jamin, V. Paxson, L. Zhang and D.F. Gryniewicz
and Y. Jin An Architecture for a Global Internet Host Distance
Estimation Service. In the proocedings of IEEE INFOCOM, 1999.

[24] [24] B. Lowekamp, N. Miller, T. Gross, P. Steenkiste, J. Subhlok
and D. Sutherland A resource query interface for network-aware
applications. In the Journal of Cluster Computing, 1999.

[25] [25] R. Wolski Dynamically forecasting network performance using
the network weather service. In the Journal of Cluster Computing,
vol.1, no.1, pp.119-132, 1998.

[26] S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology, 2nd
ed., R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-Verlag, 1998.

[27] J. Breckling, Ed., The Analysis of Directional Time Series:
Applications to Wind Speed and Direction, ser. Lecture Notes in
Statistics. Berlin, Germany: Springer, 1989, vol. 61.

[28] S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, “A novel ultrathin
elevated channel low-temperature poly-Si TFT,” IEEE Electron
Device Lett., vol. 20, pp. 569–571, Nov. 1999.

[29] M. Wegmuller, J. P. von der Weid, P. Oberson, and N. Gisin, “High
resolution fiber distributed measurements with coherent OFDR,” in
Proc. ECOC’00, 2000, paper 11.3.4, p. 109.

[30] R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, “High-speed
digital-to-RF converter,” U.S. Patent 5 668 842, Sept. 16, 1997.

[31] (2002) The IEEE website. [Online]. Available:
http://www.ieee.org/

[32] M. Shell. (2002) IEEEtran homepage on CTAN. [Online]. Available:
http://www.ctan.org/tex-
archive/macros/latex/contrib/supported/IEEEtran/

[33] FLEXChip Signal Processor (MC68175/D), Motorola, 1996.
[34] “PDCA12-70 data sheet,” Opto Speed SA, Mezzovico, Switzerland.
[35] A. Karnik, “Performance of TCP congestion control with rate

feedback: TCP/ABR and rate adaptive TCP/IP,” M. Eng. thesis,
Indian Institute of Science, Bangalore, India, Jan. 1999.

[36] J. Padhye, V. Firoiu, and D. Towsley, “A stochastic model of TCP
Reno congestion avoidance and control,” Univ. of Massachusetts,
Amherst, MA, CMPSCI Tech. Rep. 99-02, 1999.

[37] Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specification, IEEE Std. 802.11, 1997.

Jayoti Bansal et al IJCSET |March 2012| Vol 2, Issue 3,963-967

967

