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Abstract— A new scheme for Diffie-Hellman type key exchange is 
presented. This method uses morphological dilation process to 
provide secure exchange of a 2D key between two users.  
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I. INTRODUCTION 

Diffie-Hellman [1] algorithm is the most popular secret key 
exchange scheme between two users. In the literature, 
semigroup and matrix based versions of Diffie-Hellman type 
key exchange schemes have been proposed [2],[3],[4]. In this 
paper, digital image processing techniques are used to provide 
the secret shared key exchange.  

II. ENTITIES AND THE PROCESS OF THE PROPOSED SCHEME 

All the entities participating in the scheme are binary 
matrices whose elements are 0’s and 1’s. They in turn 
represent corresponding black/white images which are  
processed to get the desired result.  

A. Symbols and Terms 

 Alice and Bob are the two users communicating over an 
unsecured channel, who wants to exchange a secret key. 

1) Private Keys: P and Q are the private keys of Alice 
and Bob respectively. P and Q are binary matrices of equal 
size mxn. Alice can choose her own P and Bob can choose his 
own Q. The matrices P and Q are independent of each other.  

2) Base Matrix: G is the base binary matrix known to 
both Alice and Bob. It is in the public domain. The size hxk of 
G is relatively large compared to that of P or Q. (The reason 
for the large size of G is explained later.)  Base matrix G is 
used to generate the public keys of Alice and Bob. 

3) Public Keys: Binary matrices R and T are the public 
keys of Alice and Bob respectively. The sizes of R and T are 
same as that of G. That is hxk. R is generated using G and P 
while T is generated using G and Q. 

4) Shared Secret Key: Binary matrix S is the shared 
secret key. Size of S is also hxk same as those of R and T. 

B. Main Process 

The main process used in this scheme is the Morphological 
Dilation [5]. Dilation thickens or expands the shape of the 
objects in the image. The shape and the nature of expansion 
depend on the Structuring Element used for dilation. 
Essentially it is a set union operation. 

1) Definition of Dilation: Let C be the given binary 
image to be dilated by the structuring element D which is also 
a given binary image. Dilation is defined in terms of the 
corresponding sets as follows. 

Here, the (x,y) co-ordinates of all the white pixels of the 
given image are the members of the corresponding set. The 
members belong to the integer space Z2. Let the images C and 
D be represented by their sets designated by C and D 
respectively. Sets C and D are points in the 2D Eucledian 
space. Let cגC and dגD where c and d are the members of C 
and D respectively. The members are 2-tuples. Then the 
dilation is defined as [5], 

C ْ D ൌ ሼw ג Zଶ|w ൌ c ൅ d for  c ג C and d ג Dሽ    (1) 

 

The symbol ْ is used as the dilation operator. The dilation 
operation is also called the Minkowski addition [6] of the two 
sets.  Another definition which gives the same result is [6], 

 

                                C ْ D ൌ  ራ Cୢ

Dגୢ

ൌ  ራ Dୡ

ୡגC

                         ሺ2ሻ 

Here, Cd is the translation of set C by d and similarly, Dc is the 
translation of set D by c. Let us agree to write the translation 
of set C by d as, 

               Cd = C+d = set {c+d | c א C } 
and 

                Dc = D+c = set {d+c | d א D } 
 
2) Properties of Binary dilation:  It is associative. This 

property is evident from the definition of dilation given by 
Eq.(1). Thus for any three sets C, D and E in Z2, associative 
property yields, 

           ሺC ْ Dሻ ْ E ൌ  C ْ ሺD ْ Eሻ                                (3) 

It is commutative. Because of the additive nature of dilation, 
for any two sets, the commutative property yields, 

                        ሺC ْ Dሻ ൌ ሺD ْ Cሻ                                  (4) 

But from the image processing perspective, the commutative 
property is conditional. In the morphological image dilation 
process, the size of the image after dilation is maintained same 
irrespective of the size of the structuring element. In this paper, 
we use the imdilate function from the Matlab Image 
Processing Toolbox. Let C be the binary image dilated by D 
which is called the structuring element. D is also a binary 
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image (binary matrix). Then the image processing dilation 
operation [7] is expressed as, 
             F = imdilate(C,D)                                               (5) 
 
Here, F is the result of dilation. Even though the above 
function uses the definition of Eq.(1) for dilation, those output 
members of the result of Eq.(1), which fall outside the co-
ordinate ranges of C are not included in F. This is called the 
‘same’ size dilation opposed to the ‘full’ size one. In the 
proposed method, we use ‘same’ size dilation. Thus, the size 
of F is kept same as that of C. The size of F does not depend 
on the size of D. Now, consider the function G = imdilate(D,C) 
where the function arguments are interchanged. Then, the size 
of G would be that of D. Therefore if the sizes of C and D are 
equal, then the two results F and G would be equal. Hence 
when the sizes of C and D are equal, imdilate(C,D) is equal to 
imdilate(D,C) and the dilation operation is commutative. Thus, 
for the imdilate function to be commutative, sizes of its two 
arguments should be same.  

III. COMMON SECRET KEY EXCHANGE 

We use function imdilate along with private keys P, Q 
and base matrix G as described in section II, to exchange the 
secret key as follows. 
1. User Alice choses her private key P. 
2. Alice’s public key R is obtained as,  
       R = imdilate(G,P) = Gْ P                                              (6) 
 
3. R is sent to user Bob over the unsecured channel. 
4. User Bob choses his private key Q. 
5. Bob’s public key T is obtained as,  
       T = imdilate(G,Q) = Gْ Q                                             (7) 
 
6. T is sent to user Alice over the unsecured channel. 
7. User Bob, having received R, generates the secret key SB as, 
       SB = imdilate(R,Q)                                                           (8) 
 
8. User Alice, having received T, generates his secret key SA 
as, 
       SA = imdilate(T,P) = Tْ P                                              (9) 
 
Now, it can be shown that the common secret key for user 
Alice and Bob is S = SA = SB. Substituting for R from Eq.(6) 
in Eq.(8), 
      SB = imdilate(imdilate(G,P),Q) =  (Gْ Pሻ ْ Q            (10) 
 
From the associative property of imdilate, Eq.(10) becomes, 
      SB = imdilate(G,imdilate(P,Q)) =  Gْ ሺP ْ Qሻ            (11) 
 
Similarly, from Eqs.(7) and (9), 
       SA = imdilate(imdilate(G,Q),P) =  (Gْ Qሻ ْ P           (12) 
 
Again, using the associative property, 
       SA = imdilate(G, imdilate (Q,P) = Gْ ሺQ ْ Pሻ           (13) 
 
Since the sizes of P and Q are same (equal to mxn ), by the 
commutative property of dilation, 
 imdilate(P,Q) = imdilate(Q,P) =  Pْ Q  = Qْ P               (14) 
 
 From Eqs.(11),(13 ) and (14), 
             SA = SB = Gْ Q ْ P =G ْ P ْ Q                                           

Calling this as S, the shared secret key is, 
             S = SA = SB = G ْ P ْ Q                                       (15) 
Thus S is a double dilated 2D binary image. The size of S is 
same as that of G. 

IV.       CRYPTANALYSIS OF THE PROPOSED METHOD 

From the definition given by Eq.(2), dilation is basically 
the union of translated sets.  Initially let us consider the union 
of set C with its translated copy C+d as, 

      E = C ׫ (C+d)                                                           (16) 

A.     Unique Determination of C given E and d 

        Consider the problem of uniquely determining C, given E 
and d. In Eq. (16), taking the translation of E by (–d), we get,  
          E–d = [C ׫ (C+d)] – d = (C-d) ׫ C                            (17) 
 
Taking the intersection of E and (E-d), From Eqs.(16) and 
(17), 
         E∩(E-d) = [C ׫ (C+d)] ∩[(C-d) ׫ C] 
      = [C∩C] ׫ [C∩(C+d)] ׫ [C∩(C-d)] ׫ [(C+d) ∩(C-d)] 
On simplification, 
         E∩(E-d) = C ׫ [(C+d) ∩(C-d)]                                    (18) 
 
Case 1: (C+d) ∩ (C-d) = Ф = null set                                   (19) 
 
             Then, From Eqs.(18) and (19), 
           C = E∩(E-d)                                                               (20) 
 
Thus C can be uniquely determined from Eq.(16) provided  
          (C+d) ∩ (C-d) = Ф ( null set.) 
Case 2: (C+d) ∩ (C-d) is a subset of C. 
          Then C ׫ [(C+d) ∩(C-d)] = C and Eq.(18) becomes 
E∩(E-d) = C and C can be obtained as C = E∩(E-d). 
Thus, when (C+d) ∩ (C-d) is a subset of C including the null 
set Ф, C can be uniquely solved as given by Eq.(20).         
Case 3: (C+d) ∩ (C-d) is non empty and not a subset of C. 
            Let  F = (C+d) ∩ (C-d)                                              (21) 
 
From Eqs.(18) and (21), 
                   E∩(E-d) = C ׫ F                                                (22) 
 
Then C ׫ F is bigger than C and C cannot be recovered 
uniquely from C׫F. Therefore from the knowledge of E and d, 
C cannot be determined uniquely. This can be demonstrated as 
follows.   
Let H be a subset of (C+d) ∩ (C-d). That is, 
                       H ك(C+d) ∩ (C-d)                                          (23) 
 
Then, 
                       H ؿ (C+d)                                                      (24) 
 
and                 H ؿ (C-d)                                                       (25) 
 
Eq.(25) can be rewritten as, 
                        H+dؿC                                                         (26) 
      Consider the set C׫H. Now, it can be shown that C׫H is 
also a solution of Eq.(16) when C is one of its solution. This is 
understood by examining the RHS of Eq.(16) after replacing 
C by C׫H as,  
                RHS = (C׫H) ׫((C׫H) +d)                                 (27) 
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By using the distributive property, 
                (C׫H) + d = (C+d) ׫  (H+d)                                (28) 
From Eqs.(27) and (28), 
                RHS = C׫H׫ (C+d) ׫ (H+d)                               (29) 
Since Hؿ (C+d),  
                H ׫ (C+d) = C+d                                                  (30) 
 
From Eq.(26), H+dؿC, therefore, 
                (H+d) ׫C = C                                                        (31) 
 
From Eqs.(27),(29),(30) and (31), 
            RHS =(C׫H) ׫ ((C׫H) + d) = C׫ (C+d)                (32) 
From Eqs.(32) and (16), it can be concluded that  
C׫H is also a solution of Eq.(16) when C is its solution. 
        If C׫H is to be different from C, H should be non-empty 
and H should not be a subset of C. Since H ك(C+d) ∩ (C-d) 
(see Eq.(23)), these conditions imply that (C+d) ∩ (C-d) 
should be non-empty and (C+d) ∩ (C-d) should not be a 
subset of C. That is,  
                     (C+d) ∩ (C-d) ≠ Φ                                           (33) 
                     (C+d) ∩ (C-d) فC                                            (34) 
 
Thus, Eq.(16) has many solutions for C when conditions given 
by Eqs.(33) and (34) are satisfied. Under these conditions, it 
can be shown that C is a concave set as follows.  

B.    Concavity of set C 

       Let c1, c2, c3, c4, be the 4 corners of the outer boundary of 
a simple example set C represented by its Venn diagram as 
shown in Fig.1. Note that C belongs to the 2D Eucledian space. 
For convenience, the outer boundary of C is taken as a square 
and c4 is taken as the origin. Set C+d is represented by the 
north east translated set enclosed by u1, u2, u3, u4 as shown in 
Fig. 1.  d is taken as a 45 degree (north-east pointing) vector. 
Similarly, C–d is represented by the southwest translated set 
v1, v2, v3, v4. Here,  
                                 c4 + d = u4                                             (35) 
                                 c2 – d = v2.                                            (36) 
 
 

 
 
The intersection of set (C+d) represented by u1, u2, u3, u4 with 
set (C-d) represented by v1, v2, v3, v4 is given by the over-
lapping region v5, v2, u5, u4 (see Fig. 1). For the existence of 

this region, v2 should be on the north-east side of u4. 
Measuring the length along the direction of d (north-east), the 
above condition means c4v2 should be greater than c4u4, that is, 
                                     c4v2 > c4u4                                        (37) 
 
Since, c4 is taken as the origin, the above condition becomes 
                                         v2 > u4                                          (38) 
Eq.(38) gives the condition for (C+d) ∩ (C-d) to be non-
empty. 
From Eq.(35) , 
                                    u4 > c4                                                (39) 
 
and from Eq.(36), 
                                    c2 > v2                                                (40)   
 
From  Eqs. (40), (38) and (39), 
                               c2  > v2 > u4 >c4                                      (41)    
This means, v2 and u4 are the interior points on c2c4.  
Now consider the condition given by Eq.(34) which is 
reproduced here, 
                               (C+d) ∩ (C-d) فC                                  (34) 
In the example of Fig. 1, (C+d) ∩ (C-d) is represented by the 
square v5, v2, u5, u4. This square should not be a sub set of C if 
Eq.(34) is to be satisfied. This means set C should not include 
this square. Under this condition, the line segment  u4v2 of c4c2  
does not belong to C. Therefore set C is concave when 
conditions given by Eqs.(33) and (34) are satisfied. Such a C 
is shown in shaded gray in Fig. 2 (a) and the corresponding 
translated set C+d is shown in Fig. 2 (b). The union C ׫ (C+d) 
is shown in Fig. 2 (c). 

 

u1 

u3 

u2 u1 

d c3 

c1 c2 

(a) Set C (b) Set C+d 

Fig. 2.   Set C, displaced set C+d and their union 
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(c) Union Set  C ׫ (C+d) 
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       Fig.  1.  Set C, C+d and C–d.  
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      In the union C ׫ (C+d), the hole of C is covered by the 
south-west region of C+d and the hole of C+d is covered by 
the north-east region of C. Thus both the holes are covered by 
the union of C and C+d. In this way, the exact shape of C is 
lost in the union C ׫ (C+d).  
      In general, if set C is concave and for a suitable d, 
conditions of Eqs.(33) and (34) are satisfied. Then C cannot 
be uniquely solved using Eq.(16). The above argument can be 
extended when several translated sets form a union as given 
below, 
                      E = C ׫ (C+d1) ׫ (C+d2) ׫ … ׫ (C+dN)   
   Or               E = (C+d1) ׫ (C+d2) ׫ … ׫ (C+dN)               (42)   
Comparing the RHS of Eq.(42) with Eq.(2), Eq.(42) can be 
rewritten as, 
                                                  E ൌ C ْ D                                                                   (43) 
Here, E is the result of dilation (Minkowski sum). The 
knowledge of E and D cannot uniquely determine C. 

C.   Discovery of Private Keys by Outsiders 

       Now, consider the problem of uniquely determining the 
private key P of user Alice, by an outsider, from the 
knowledge of the base matrix G and Alice’s public key R. 
That is Eq.(6) has to be solved for P. Eq.(6) is reproduced 
below for convenience. 
                    R = imdilate(G,P)                                               (6) 
In terms of the corresponding sets, the above equation can be 
written as, 
                              R ൌ P ْ G                                                         (44) 
where G and P are the set of  white pixel co-ordinates of 
images G and P respectively. The resulting set R represents 
the image R. In view of the earlier discussion, P cannot be 
uniquely determined from the knowledge of R and G when G 
is a concave set. 

D.    Brute force method for solving P 

       Here, all possible combinations of P are substituted in 
Eq.(44) one at a time until it is satisfied. Since P is a binary 
matrix of size (mxn), the total number of distinct 
combinations is 2(mxn). Even for a moderate size of (mxn) = 
(32x32), this number becomes 21024 which is really large. Thus 
the brute force method of discovering the key by an outsider is 
infeasible. 

V. EXPERIMENTAL RESULTS 

In the example discussed here, G is the binary base image 
of size 768x768. G is obtained by randomly distributing 
hallow white squares and solid black squares of size 24x24 to 
fill the size of G. The number of black squares is intentionally 
kept higher than that of white squares so that adequate black 
regions are available for the expansion of white regions during 
dilation. The image G is shown in Fig. 3. The border regions 
of G are purposefully made black so that the expanded white 
regions due to dilation do not get truncated. The white squares 
of G contain random sized black holes in them to have a 
higher degree of concavity. In this example, private keys P 
and Q are random matrices of size 9x9. Fig.4. shows the 
dilated image R=G ْ P  which is the public key of Alice. 
S=Gْ P ْ Q is the common shared key. It is shown in Fig. 5. 
In the experiment, G ْ Q ْ P  is found exactly equal to 
Gْ P ْ Q . In general G can be any arbitrary binary image 

with reasonably large black regions distributed randomly. P 
and Q are binary matrices of equal size. This size is kept small  
compared to that of G so that the dilations of G by P and Q do 
not merge all the white regions of G into a single white region. 

 

  

 

 

Fig. 5. Double Dilated Image S=Gْ P ْ Q 
 

Fig. 4. Dilated Image R=Gْ P 

          Fig. 3. Base Image G 
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VI. CONCLUSIONS 

A new technique of generating Diffie-Hellman type 2D 
common keys is presented. The sizes of private keys P, Q and 
the base matrix G are easily scalable to large values. Then the 
consequent common secret key size also will be large so that 
the chances of key theft and discovery by unauthorized 
outsiders is very low. Since the secret key is 2D matrix, it can 
be used for encryption/decryption of document images and 
other block oriented data. The binary morphological operation 
Erosion also can be used instead of Dilation. Even though the 
method proposed here is computationally intensive, this 
technique opens up a new research area of 2D keys for further 
investigation. 
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