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Abstract- In communication systems, sound files and also 
disk space for storage, compression of these files has 
become a necessity. Speech compression is the technology 
of converting human speech into an efficiently encoded 
representation that can later be decoded to produce a close 
approximation of the original signal. In this paper we are 
using one of the familiar wavelet transform for 
compressing speech signal in frequency domain.   
Wavelet analysis is the breaking up of a signal into a set of 
scaled and translated versions of an original  wavelet. 
Taking the wavelet transform of a signal decomposes the 
original signal into wavelets coefficients at different scales 
and positions. These coefficients represent the signal in the 
wavelet domain and all data operations can be performed 
using the just corresponding wavelet coefficients. The 
major issues concerning the design of this Wavelet based 
speech coder are choosing optimal wavelets for speech 
signals, decomposition level in the wavelet transform, 
thresholding criteria for coefficient truncation and 
efficient encoding of truncated coefficients. The 
performance of the wavelet compression scheme on 
recorded speech was calculated. A significant advantage of 
using wavelets for speech compression ratio can easily be 
varied, while most of the other techniques have fixed 
compression ratios. 
 
Keywords- Speech Signal, Speech Compression, Wavelet 
transform,  Frequency domain. 

 
I. INTRODUCTION 

Human language in its original form is an acoustic 
signal. For the purpose of communication and storage, it 
is necessary to convert it into an electric signal. This is 
achieved with the help of certain instruments called 
transducers. With the advent of digital computing 
machines, it was proposed to exploit the power of the 
same for processing voice signals. This requires a digital 
representation of voice to achieve this, the analog signal 
is sampled at some frequency and then quantized at 
discrete levels . 
Thus, parameters of digital speech are 
1. Sampling rate 
2. Bits per second 
3. Number of channels. 
The sound files can be stored and played in digital 
computers.  
In recent years, the transfer of information on a large 
scale remote computing and the development of mass 
storage and retrieval systems have witnessed 
tremendous growth. To cope with the growth in size of 
the databases, additional storage devices need to be 
installed and modems and multiplexers have to be 
constantly updated to allow large quantities of data 
transfer between computers and remote terminals.. This 

leads to an increase in the cost as well as equipment. 
One solution to these problems is “COMPRESSION” 
where the database and the transmission sequence can 
be encoded efficiently. 
The primary objective of this paper is to represent the 
wavelet based method for the compression of speech. 
The algorithm presented here was implemented in 
MATLAB. This paper is an application of wavelets, it 
was natural to study the basics of wavelets in detail.. 
However, the wavelet itself is an engrossing field, and a 
comprehensive study was beyond the scope of our 
graduate level. Hence, attempt is made only to explain 
the very basics which are indispensable from the 
compression point of view. This approach led to the 
elimination of many of the mammoth sized equations 
and vector analysis inherent in the study of wavelets. 
 

II. THE WAVELET TRANSFORM 
The fundamental idea behind wavelets is to analyse 
according to scale. Indeed, some researchers in the 
wavelet field feel that, by using wavelets, one is 
adopting a whole new mindset or perspective in 
processing data [16]. 
Wavelets are functions that satisfy certain mathematical 
requirements and are used in representing data or other 
functions. This idea is not new. Approximation using 
superposition of functions has existed since the early 
1800's, when Joseph Fourier discovered that he could 
superpose sines and cosines to represent other functions. 
However, in wavelet analysis, the scale that we use to 
look at data plays a special role. Wavelet algorithms 
process data at different scales or resolutions. If we look 
at a signal with a large “window", we would notice 
gross features. Similarly, if we look at a signal with a 
small “window", we would notice small features. The 
result in wavelet analysis is to see both the forest and 
the trees, so to speak [1].  
This makes wavelets interesting and useful. For many 
decades, scientists have wanted more appropriate 
functions than the sines and cosines which comprise the 
bases of Fourier analysis, to approximate choppy signals 
[2]. By their definition, these functions are non-local 
(and stretch out to infinity). But with wavelet analysis, 
we can use approximating functions that are contained 
neatly infinite domains. Wavelets are well-suited for 
approximating data with sharp discontinuities [3]-[5].  
The wavelet analysis procedure is to adopt a wavelet 
prototype function, called an analysing wavelet or 
mother wavelet. Temporal analysis is performed with a 
contracted, high-frequency version of the prototype 
wavelet, while frequency analysis is performed with a 
dilated, low-frequency version of the same wavelet. 
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Because the original signal or function can be 
represented in terms of a wavelet expansion (using 
coefficients in a linear combination of the wavelet 
functions), data operations can be performed using just 
the corresponding wavelet coefficients. And if you 
further choose the best wavelets adapted to your data, or 
truncate the coefficients below a threshold, your data is 
sparsely represented. This sparse coding makes wavelets 
an excellent tool in the field of data compression [8], 
[15]. 
Other applied fields that are making use of wavelets 
include astronomy, acoustics, nuclear engineering, Sub-
band coding, signal and image processing, 
neurophysiology, music, magnetic resonance imaging, 
speech discrimination, optics, fractals, turbulence, 
earthquake-prediction, radar, human vision, and pure 
mathematics applications such as solving partial 
differential equations [7]. 
A. Discrete Wavelet Transform 
Calculating wavelet coefficients at every possible scale 
(for continuous WT) is a fair amount of work, and it 
generates an awful lot of data. It turns out, rather 
remarkably, that if we choose scales and positions based 
on powers of two -- so-called dyadic scales and 
positions -- then our analysis will be much more 
efficient and just as accurate. We obtain such an 
analysis from the discrete wavelet transform (DWT). An 
efficient way to implement this scheme using filters was 
developed in 1988 by Mallat. The Mallat algorithm is in 
fact a classical scheme known in the signal processing 
community as a two-channel subband coder. This very 
practical filtering algorithm yields a fast wavelet 
transform -- a box into which signal passes, and out of 
which wavelet coefficients quickly emerge. A 
discussion of MRA (Multi-resolution analysis or 
approximation) bridges the gap between wavelets and 
the filter-bank implementation of DWT explained in this 
section. 
We directly begin our discussion with the formula of 
DWT and then veer towards the decomposition of signal 
into approximation and detail coefficients. The filter 
banks used to achieve this are also discussed. The 
reverse process, i.e. reconstruction of signal from the 
coefficients is described later. Examples of haar, and 
db10 are used to demonstrate the filter coefficients, 
frequency response of the low and high pass 
decomposition and reconstruction filters. This chapter 
forms the basis for the next chapter, which discusses 
compression. 
The Discrete Wavelet Transform (DWT) involves 
choosing scales and positions based on powers of two- 
the so called dyadic scales and positions [10]. The 
mother wavelet is rescaled or “dilated” by powers of 
two and translated by integers. Specifically, a function 
f(t) Î L2 (R) (defines space of square inferable functions) 
can be represented as 
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The function ψ(t) is known as the mother wavelet, while 
Ф(t) is known as the scaling function. The set of 
functions 
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Where Z is the set of Integers, is an orthonormal basis 
for L2(R) the numbers a (L, k) are known as the 
approximation coefficients at scale L, while d (j, k) are 
known as the detail coefficients at scale j. 
These approximation and detail coefficients can be 
expressed as 
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The above two  equations give a mathematical 
relationship to compute the approximation and detail 
coefficients. 
This procedure is seldom adopted. A more practical 
approach is to use Mallat’s Fast Wavelet Transform 
algorithm. The Mallat algorithm for discrete wavelet 
transform (DWT) is, in fact, a classical scheme in the 
signal processing community, known as a two channel 
subband coder using conjugate quadrature filters or 
quadrature mirror filters (QMF). 
B.One-Stage Filtering 
For many signals, the low-frequency content is the most 
important part. It is what gives the signal its identity. 
The high-frequency content, on the other hand, imparts 
flavor or nuance. Consider the human voice. If we 
remove the high-frequency components, the voice 
sounds different, but we can still tell what's being said. 
However, if we remove enough of the low-frequency 
components, we hear gibberish In wavelet analysis, we 
often speak of approximations and details. The 
approximations are the high-scale, low-frequency 
components of the signal. The details are the low-scale, 
high-frequency components. The filtering process, at its 
most basic level, looks like this: 

 
Fig.1: One stage filtering scheme producing the 

approximation and detail components of the signal. 
 
The original signal, S, passes through two 
complementary filters and emerges as two signals. 
Unfortunately, if we actually perform this operation on a 
real digital signal, we wind up with twice as much data 
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as we started with. Suppose, for instance, that the 
original signal S consists of 1000 samples of data. Then 
the resulting signals will each have 1000 samples, for a 
total of 2000. 
These signals A and D are interesting, but we get 2000 
values instead of the 1000 we had. There exists a more 
subtle way to perform the decomposition using wavelets. 
By looking carefully at the computation, we may keep 
only one point out of two in each of the two 2000-length 
samples to get the complete information. This is the 
notion of down sampling. We produce two sequences 
called cA and cD 
The process on the right, which includes down sampling, 
produces DWT coefficients. To gain a better 
appreciation of this process, let's perform a one-stage 
discrete wavelet transform of a signal. Our signal will 
be a pure sinusoid with high-frequency noise added to it. 

 
Fig 2: Producing approximation and detail coefficients at the 

first level 
 
Here is our schematic diagram with real signals inserted 
into it: The detail coefficients cD are small and consist 
mainly of a high-frequency noise, while the 
approximation coefficients cA contain much less noise 
than does the original signal. 
The actual lengths of the detail and approximation 
coefficient vectors are slightly more than half the length 
of the original signal. This has to do with the filtering 
process, which is implemented by convolving the signal 
with a filter. The convolution "smears" the signal, 
introducing several extra samples into the result. In this 
section, we considered only one-stage decomposition of 
the signal into cA and cD coefficient. This process can 
be repeated to get multiple-level decomposition. 

 
Fig. 3: Demonstration of one-stage filtering scheme for 

producing approximation and detail coefficient. 
C. Reconstructing Approximations and Detail 
Coefficients 
It is possible to reconstruct our original signal from the 
coefficients of the approximations and details. As an 
example, let's consider how we would reconstruct the 
first-level approximation A1 from the coefficient vector 

cA1 We pass the coefficient vector cA1 through the 
same process we used to reconstruct the original signal. 
However, instead of combining it with the level-one 
detail cD1, we feed in a vector of zeros in place of the 
detail coefficients vector: 
The process yields a reconstructed approximation A1, 
which has the same length as the original signal S and 
which is a real approximation of it. 

 
Fig 4: Obtaining the first level approximation of the signal. 

 
Similarly, we can reconstruct the first-level detail D1, 
using the analogous process: 

 
Fig 5: Obtaining the first level detail of the signal 

 
The reconstructed details and approximations are true 
constituents of the original signal. In fact, we find when 
we combine them that: 
                A1 + D1 = S 
Note that the coefficient vectors cA1 and cD1 -- because 
they were produced by down sampling and are only half 
the length of the original signal -- cannot directly be 
combined to reproduce the signal. It is necessary to 
reconstruct the approximations and details before 
combining them. 
D. Multiple-Level Decomposition: 
The decomposition process can be iterated, with 
successive approximations being decomposed in turn, so 
that one signal is broken down into many lower 
resolution components. This is called the wavelet 
decomposition tree 

 
Fig 6: Multiple level decomposition trees. 
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Looking at a signal's wavelet decomposition tree can 
yield valuable Information 
 

 
Fig 7: Multiple level decomposition of a signal. 

 

E. Number of Levels: 
Since the analysis process is iterative, in theory it can be 
continued indefinitely. In reality, the decomposition can 
proceed only until the individual details consist of a 
single sample or pixel. In practice, you'll select a 
suitable number of levels based on the nature of the 
signal, or on a suitable criterion such as entropy The 
next step splits the approximation coefficients cA1 in 
two parts using the same scheme, replacing s by cA1 and 
producing cA2 and cD2, and soon. Now that we have 
seen the decomposition of a signal into wavelet 
(approximation and detail) coefficient s, it is natural to 
ask whether the reverse is possible, i.e., is it possible to 
generate the original signal back from the coefficients, 
and if yes, how to achieve this Fortunately, there does 
exist a method to do it, and it is very similar to the one 
used for decomposition. 
F. Choice of Wavelet 
The choice of the mother-wavelet function used in 
designing high quality speech coders is of prime 
importance. Choosing a wavelet that has compact 
support in both time and frequency in addition to a 
significant number of vanishing moments is essential 
for an optimum wavelet speech Compressor. 
Several different criteria can be used in selecting an 
optimal wavelet function. The objective is to minimize 
reconstructed error variance and maximize signal to 
noise ratio (SNR). In general optimum wavelets can be 
selected based on the energy conservation properties in 
the approximation  part of the wavelet coefficients. In  
the Battle-Lemarie wavelet concentrates more than 97.5% 
of the signal energy in the approximation part of the 
coefficients. This is followed very closely by the 
Daubechies D10, D8, D6 or D4 wavelets, all 
concentrating more than 96% of the signal energy in the 
Level 1 approximation coefficients. 
Wavelets with more vanishing moments provide better 
reconstruction quality, as they introduce less distortion 
into the processed speech and concentrate more signal 
energy in a few neighboring coefficients. However the 
computational complexity of the DWT increases with 
the number of vanishing moments and hence for real 
time applications it is not practical to use wavelets with 
an arbitrarily high number of vanishing moments. 
G. Wavelet Decomposition 
Wavelets work by decomposing a signal into different 
resolutions or frequency bands, and this task is carried 
out by choosing the wavelet function and computing the 

Discrete Wavelet Transform (DWT). Signal 
compression is based on the concept that selecting a 
small number of approximation coefficients (at a 
suitably chosen level) and some of the detail 
coefficients can accurately represent regular signal 
components. Choosing a decomposition level for the 
DWT usually depends on the type of signal being 
analysed or some other suitable criterion such as 
entropy. For the processing of speech signals 
decomposition up to scale 5 is adequate, with no further 
advantage gained in processing beyond scale 5. 
 

III RESULTS AND PERFORMANCE MEASURE 
A number of quantitative parameters can be used to 
evaluate the performance of the wavelet based speech 
coder, in terms of both reconstructed signal quality after 
decoding and compression scores. The following 
parameters are compared: 
 Signal to Noise Ratio (SNR), 
 Peak Signal to Noise Ratio (PSNR), 
 Normalised Root Mean Square Error (NRMSE), 
 Retained Signal Energy 
 Compression Ratios 
     Retained signal energy  
     Compression factor 
1. Signal to noise ratio (SNR): This value gives the 
quality of reconstructed signal. 
Higher the value, better. It is given by: 

ܴܵܰ ൌ ݋݈ 10 ଵ݃଴ ቆ
௫ߪ

ଶ

௘ߪ
ଶቇ 

where σx
2     and  σe

2 are respectively the mean square of 
the speech signal and the mean square difference 
between the original and reconstructed signals. 
2. Peak Signal to Noise Ratio [5]  

ܴܲܵܰ ൌ ଵ଴݃݋݈ 10
ܰܺଶ

ݔ|| െ  ଶ||ݎ

N is the length of the reconstructed signal, X is the 
maximum absolute square value of the signal x and ||x-
 r||2  is the energy of the difference between the original 
and reconstructed signals. 
3. Normalised Root Mean Square Error [5] 
x(n) is the speech signal, r(n) is the reconstructed signal, 
and ݔሺ݊ሻതതതതതത is the mean of the speech signal. 

ܧܵܯܴܰ ൌ ඨ
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ሺݔሺ݊ሻ െ  ௫ሺ݊ሻሻଶߤ

4. Retained Signal Energy 
x( n ) is the norm of the original signal and r( n ) is the 
norm of the reconstructed signal. For one-dimensional 
orthogonal wavelets the retained energy is equal to the 
L2-norm recovery performance. 

ܧܴܵ ൌ
100 כ ሺ݊ሻ||ଶݔ||

ሺ݊ሻ||ଶݎ||  

5. Compression Ratio 
cWC is the length of the compressed wavelet transform 
vector. 

ܥ ൌ
ሺ݊ሻሻݔሺ݄ݐ݈݃݊݁
ሻܥሺܹ݄ܿݐ݈݃݊݁

 

6. Compression factor: It is the ratio of the original 
signal to the compressed signal. Of course, for the 
compressed signal we have to take into account all the 
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values that would be needed to completely represent the 
signal. As has been explained in the previous section, 
this project implements encoding using a modification 
of RLE wherein 2 vectors are produced, we must take 
into account the combined length of these 2 vectors. 
7. Retained signal energy: This indicates the amount 
of energy retained in the compressed signal as a 
percentage of the energy of original signal. When 
compressing using orthogonal wavelets, the Retained 
energy in percentage is defined by:  The amount of 
energy concentrated in level one approximation 
coefficients. 

ݕ݃ݎ݁݊݁ ݀݁݊݅ܽݐܴ݁

ൌ  

100 כ ሺ݉ݎ݋݊ ݎ݋ݐܿ݁ݒሺܿݐ݊݁ݎݎݑܿ ݄݁ݐ ݂݋ ݏ݂݂݁݋ 
,݊݋݅ݐ݅ݏ݋݌݉݋ܿ݁݀ 2ሻሻଶ

ሺ݉ݎ݋݊ ݎ݋ݐܿ݁ݒሺ݈ܽ݊݃݅ݏ ݈ܽ݊݅݃݅ݎ݋, 2ሻሻଶ  

 
Optimal Decomposition Level in Wavelet Transforms 

The figure below shows a sample speech signal and 
approximations of the signal, at five different scales. 
These approximations are reconstructed from the coarse 
low frequency coefficients in the wavelet transform 
vector. 

 
Fig 8:Wave decomposed signal. 

 

 
Fig 9:Original signal. 

 
Fig 10:Output signal at decomposition level 1 

 
Fig 11: Output signal at decomposition level 2 

 
Fig 12:Output signal at decomposition level 3 

 
A spoken speech signals were decomposed at scale 5 
and level dependent thresholds were applied using the 
Birge-Massart strategy. Since the speech files were of 
short duration, the entire signal was decomposed at once 
without framing. A summary of the performance is 
given below for the different wavelets used. 

 
Fig 13:Output signal at decomposition level 4 

 

 
Fig 14: Output signal at decomposition level 5 
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A spoken speech signals were decomposed at scale 5 
and level dependent thresholds were applied using the 
Birge-Massart strategy. Since the speech files were of 
short duration, the entire signal was decomposed at once 
without framing. A summary of the performance is 
given below for the different wavelets used. 
 

TABLE 1: PERFORMANCR RECORDED SPEECH CODING 
Wavelet 

%of 
zeros 

Retained 
energy 

SNR PSNR NRMSE 

Haar 94.280 97.340 17.250 7.720 0.313 
Db4 94.270 96.870 19.020 10.420 0.229 
Db6 94.267 96.862 19.191 10.660 0.222 
Db8 94.257 96.852 19.363 10.901 0.216 

Db10 94.249 96.851 19.363 10.908 0.215 
 

IV. CONCLUSION 
Speech coding is currently an active topic for research 
in the areas of Very Large Scale Integrated (VLSI) 
circuit technologies and Digital Signal Processing 
(DSP). The Discrete Wavelet Transform performs very 
well in the compression of recorded speech signals. For 
speech processing however, its performance is not as 
good. Therefore for speech coding it is recommended to 
use a wavelet with a small number of vanishing 
moments at level 5 decomposition or less. 
The wavelet based compression software designed 
reaches a signal to noise ratio of 19.36 db at a 
compression ratio of 3.88 using the Daubechies 10 
wavelet. The performance of the wavelet scheme in 
terms of compression scores and signal quality is good. 
In addition, using wavelets the compression ratio can be 
easily varied, while most other compression techniques 
have fixed compression ratio. 
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