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Abstract— Cloud storage systems provide storage service on 
the internet. Since cloud is accessed via internet, data stored 
in clouds should remain private. Towards privacy and 
correctness of the data in cloud, several intrusion detection 
techniques, authentication methods and access control 
policies are being used. But they suffer from storage 
overhead. To minimize this overhead, several designs are 
currently using erasure codes. Now, the current research on 
cloud storage systems focuses on efficiency and robustness. 
But here, the major challenge is how to prevent silent data 
corruptions during reconstruction of data. This paper uses 
secure decentralized erasure-coded storage systems to 
guarantee a better privacy, efficiency and robustness and 
proposes a method that can reconstruct data in clouds by 
preventing silent data corruptions. 
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I. INTRODUCTION 

Internet is a public environment that anyone can freely 
access. Cloud is a distributed network of storage systems 
storing data reliably over a very long period of time. 
Security is essential in cloud because cloud is a multi-
tenant environment with more than one company sharing 
the same cloud service provider. If we use security 
principles of cloud service provider, our security in the 
cloud will be as good as, or better, than our current 
security in most cases. Typically, the level of security we 
get will be designed to meet the needs of the most risky 
client in the cloud. But when others have an interest in the 
contents of our data, privacy is compromised. So it is 
important to consider the privacy issue of the stored 
information of the users. Silent Data Corruption occurs 
when incorrect data is delivered by a computing system to 
the user without any error being logged. Users need to get 
correct answers and the resulting data/output needs to 
have its integrity maintained. So in addition to ensuring 
privacy in clouds, it is equally important to deal with 
silent data corruptions in clouds. 

The remainder of the paper is organized as follows: In 
Section 2, we give the existing models to achieve security 
and privacy in clouds.  In Section 3, privacy-preserving 
public auditing scheme is explained and in section 4, we 
propose a secure decentralized erasure codes for ensuring 
privacy in clouds. In Section 5, silent data corruption and 
its counter-measure are addressed with an efficient 
adaptive data reconstruction method.  Finally, Section 6 
concludes our work.  

II. EXISTING MODELS 

This section explains various methods currently used to 
achieve security and privacy where data are available on 
cloud systems. The usual approach to retaining control of 
data requires the encryption of all cloud data. 

A. Identity-Based Authentication for Cloud Computing 

For providing authentication of both users and services, 
SSL Authentication Protocol (SAP), was early used in 
cloud computing. But complications arise in both 
computation and communication. So based on the 
identity-based hierarchical model for cloud computing 
(IBHMCC), a new method is proposed to achieve security 
in cloud computing using encryption and signature 
schemes [2]. 

Steps: 
 

 
 
 
 
 
 
 
 
 
 

In step (1), the client C sends a ClientHello message to 
server S. The message contains a random number nC, the 
session identifier ID and specificationC. 

In step (2), the server S responds to client C with a 
ServerHello message. The message contains a new 
random number nS, the session identifier ID and 
specificationS. Then C chooses a pre-master secret FCS 
and encrypts it with the public key PC. The ciphertext is 
transmitted to C as ServerKeyExchange message. Then S 
generates a signature [ ]

SSSig M  as the IdentityVerify 

message to forward to C. 
In step (3), C verifies the signature [ ]

SSSig M with the 

help of IDS. Pass of verification means S is the valid 
owner of IDS. This completes authentication from S to C. 
Then C decrypts the [ ]

CP CSE F  with its private key SC. The 

correct decryption indicates C is the valid owner of IDC.  

1. C→ S: ClientHello(nC, ID, specificationC) 
ClientHelloDone 
2. S→C: ServerHello(nS, ID, specificationS ) 
ServerKeyExchange ( [ ]

CP CSE F  ) 

IdentityVerify ( [ ]
SSSig M  ) 

ServerHelloDone 
3. C→S :  ClientFinished 

R.Sivakami et al IJCSET |February 2012| Vol 2, Issue 2,903-907

903



B. Secure Role based Data Access Control in Cloud 
Computing 

This method [5] associates a set of attributes with each 
data file and assigns an expressive access structure to 
each user. This access structure is defined as a unique 
logical expression of attributes to reflect the scope of data 
files that the user is allowed to access. As the logical 
expression can represent any desired data file set, 
finegrainedness of data access control is achieved. To 
enforce these access structures, a public key component 
for each attribute is defined. Data files are encrypted 
using public key components corresponding to their 
attributes. User secret keys are defined to reflect their 
access structures so that a user is able to decrypt a 
ciphertext if and only if the data file attributes satisfy his 
access structure. But the challenge with this approach is 
finegrainedness, data confidentiality, and scalability may 
not be achieved simultaneously.  

C. Virtualization Intrusion Tolerance System 

 To address the problem of intrusion tolerance of cloud 
computing platform and sensitive data, a virtualization 
intrusion tolerance system is constructed based on cloud 
computing by researching on the existing virtualization 
technology, and a method of intrusion tolerance is 
proposed to protect sensitive data in cloud data center [4]. 
This method allows the system to tolerate F faulty 
replicas in N=2F+1 replicas and ensure that only F+1 
active replicas to execute during the intrusion-free stage. 
The remaining replicas are all put into passive mode, 
which significantly reduces the resource consuming in 
cloud platform. 

D. Erasure coded Storage Systems 

An erasure code provides redundancy without the 
overhead of strict replication. Erasure codes divide an 
object into m fragments and recode them into n 
fragments, where n>m. We call r=m/n <1 the rate of 
encoding. The key property of erasure codes is that the 
original object can be reconstructed from any m 
fragments. Erasure coding in a malicious environment 
requires the precise identification of failed or corrupted 
fragments. Without the ability to identify corrupted 
fragments, there is potentially a factorial combination of 
fragments to try to reconstruct the block. As a result, the 
system needs to detect when a fragment has been 
corrupted and discard it. A secure verification hashing 
scheme can serve the dual purpose of identifying and 
verifying each fragment. It is necessarily the case that any 
correctly verified fragments can be used to reconstruct the 
block. 

E.   Decentralized Erasure Coded storage systems 

Decentralized erasure codes are used in distributed 
networked storage [7]. They are random linear codes over 
a finite field Fq with a specific randomized structure on 
their generator matrix. Each data packet Di is seen as a 
vector of elements of a finite field fi. This system of 
coding has a set of data nodes V1 with | V1 |= k and 
storage nodes V2 with | V2 |= n. Towards the construction 

of a bipartite graph that corresponds to the creation of a 
decentralized erasure code, every data node i   V1 is 
assigned a random set of storage nodes N(i). This set is 
created as follows: a storage node is selected uniformly 
and independently from V2 and added in N(i) and this 
procedure is repeated d(k) times. Therefore N(i) will be 
smaller than d(k) if the same storage node is selected 
twice. 

1( ) { : ( )}N j i V j N i   denotes the set of data 

nodes that connect to a storage node. Each storage node 
will create a random linear combination of the data nodes 
it is connected with: 

( )
j ij i

i N j

S f D
 

   where the 

coefficients fij are selected uniformly and independently 
from a finite field Fq. Each storage node also stores the fij 
coefficients, which requires an overhead storage of 

2 2( )(log ( ) log ( ))N j q k  bits.  

III. PRIVACY-PRESERVING PUBLIC AUDITING 
SCHEME 

To ensure the correctness and privacy of users’ data in 
the cloud, an effective and flexible distributed scheme is 
proposed based on  the homomorphic token with 
distributed verification of erasure-coded data[1].  

 

 
Fig 1: The architecture of cloud data storage service 

 

In Fig 1, Third Party Auditor (TPA) is an entity, which 
has expertise and capabilities that clients do not have and 
is trusted to assess and expose risk of cloud storage 
services on behalf of the clients upon request. Clients may 
interact with the cloud servers via CSP to access or 
retrieve their pre-stored data. To ensure privacy TPA 
should not be allowed to derive users’ data content from 
the information collected during the auditing process. 

Steps: 

1) TPA retrieves file tag t, verifies its signature. 
     If succeeds, it goes to step (2). 
     Else, quits. 

2) TPA generates a random challenge {( , )}i i Ichal i v   

and sends it to cloud server. 

3) Cloud server computes '
v ii I

v m


  and 

iv
ii I

    
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4) Cloud server randomly selects Pr  and calculates 

( )h R , where ( , )rR e u v . Then it computes 
' modr p    . 

The storage correctness proof { , , }R  is sent to TPA. 

TPA computes ( )h R  and then verifies{ , , }R   by 

1

. ( , ) (( ( ) ) . , )
c

i

s
v

i
i s

Re g e H W u v  



   

IV. SECURE DECENTRALIZED ERASURE CODED 
STORAGE SYSTEMS 

The methods we have described in section II suffer 
from storage, computation and communication overhead. 
So we propose a secure decentralized erasure coded 
storage systems [3] in this section. It is a combination of 
data encryption and decentralized erasure codes. Here, 
data are stored after encryption. Even though the attacker 
compromises all storage servers, information about the 
content of data can not be learnt. To achieve this, the 
decryption key is shared to a set of key servers so that the 
risk of key leakage is reduced. 
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M2
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C2

CK

SS1

SS2

SSN

KS1

KS2

KSM

Owner

messages cloud storage

v u

σ1

σ2

σn

 
Fig 2: Model of Cloud Storage System 

Fig 2 provides an overview of our system. There are k 
messages Mi, 1≤ i≤ k, to be stored into n storage servers 
SSi, 1 ≤ i ≤ n. Let these messages are the segments of a 
file. For those k messages, we assign a message identifier. 
Each message Mi is encrypted under the owner’s public 
key pk as Ci = E(pk, Mi) and we consider pk=gx .Then, 
each ciphertext is sent to v storage servers, where the 
storage servers are randomly chosen. Each storage server 
SSi combines the received ciphertexts by using the 
decentralized erasure code to form the stored data σi. The 
owner’s secret key sk is shared among m key servers KSi, 
1≤ i ≤ m, by a threshold secret sharing scheme so that the 
key server KSi  holds a secret key share ski. The threshold 
we assume is t, where m≥t≥k. To retrieve the k messages, 
the owner instructs the m key servers such that each key 
server retrieves stored data from u storage servers and 
does partial decryption for the retrieved data. Then, the 

owner collects the partial decryption results, called 
decryption shares, from the key servers and combines 
them to recover the k messages. 

Steps: 

A.. Storing Data: 

1) Message Encryption 
The owner encrypts k data M = (M1 ║ M2 ║…║ Mk ) 
via the threshold public key encryption with the same 
hID, where hID = H(M1 ║ M2 ║…║ Mk ) is the 
identifier. Let the cipher text of be Mi be Ci, where 

~

( , , ) ( , , ( , ))i ir rx
i i i ID i IDC g h M e g h     , 

,1i R pr i k    .  

 Ciphertext Distribution 
For each Ci, the owner randomly chooses v storage 
servers and a copy of Ci is sent to each of them. 
 
2) Decentralized Encoding 
All ciphertexts with the same hID are grouped into Nj 
by the storage server SSj. For each Ci   Nj, SSj then 
selects a random coefficient gi,j from p and for each 

Ci Nj,  gi,j is set to zero. This task results in a 
generator matrix G= [gi,j], 1≤i≤k, 1≤j≤n. 
Each SSj computes  

,i j

i j

g

j i
C N

A


   and ,i j

i j

g

j i
C N

B


    

Then it stores 
1, 2, ,( , , , ( , , ..., ))j j ID j j j k jA h B g g g    

 
B. Retrieving Data: 

1) Retrieval Command 
The owner sends a command to the m key servers 
with hID. 
 
2) Partial Decryption 
Each key server KSi receives at most u stored data σj 

with hID from the randomly chosen u storage servers. 
Then each key server KSi uses its secret key share ski 
to obtain a decryption share of the ciphertext ,i j   

where 
, ( , , , )isk

i j j ID ID jA h h B   and sends ~
,i j  to the 

owner where  
~
, 1, 2, ,( , , , , ( , ,..., ))isk

i j j ID ID j j j k jA h h B g g g  . 

 
3) Combining and Decoding 

From all received ~
,i j , the owner chooses 

1 1 2 2

~ ~ ~
, , ,, ,...,

t ti j i j i j   and computes (0)sk f x
ID ID IDh h h   

by Lagrange interpolation over exponents, where i1≠ 

i2≠…≠ it    and S = { i1, i2,…it }. 

Here ,( ) r S r ii

i
skx r i

ID ID
i S

h h  







 

 

After computing x
IDh , the owner again selects 

1 1 2 2

~ ~ ~
, , ,, , ...,

k ki j i j i j   with 1 2 ... kj j j   .For 
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all 1 1 2 2( , ) {( , ), ( , ),..., ( , )}k ki j i j i j i j , the owner decrypts 

,i j  as wj, where ,

~

( , )

l j

l j

gj
j l

x C N
j ID

B
w M

e A h 

    

Then for K = [gi,j], 1≤i≤k, 1 2{ , ,..., }kj j j j , the owner 

computes 1
,[ ],1 ,i jK d i j k    . 

If K is invertible, the owner successfully computes Mi 
with the following computation: 

1, , 2, , , ,1, 2, , 1 1 1

1 2 1 2... ...
k k k

j l i j l i k j l ii i k i l l ll l l

k

g d g d g dd d d
j j j kw w w M M M      

                       1 2
1 2 ... k

kM M M    

                       iM  

Here, , ,1
1

l

k

r r j l il
g d


    , if r = i 

                                      = 0 , otherwise. 
During data retrieval process, the data may be 

corrupted by detectable and or silent errors. In erasure-
coded storage systems, the lost data from detectable errors 
can be reconstructed by using the redundant data encoded 
by erasure codes. But problem arises when there exist 
silent data corruptions. 

V. DATA RECONSTRUCTION IN THE PRESENCE 
OF SILENT DATA CORRUPTIONS 

The method explained in section III can be used to 
reconstruct lost data in the presence of detectable errors. 
Unfortunately, there exist a large number of silent 
corruptions where the data is silently corrupted with no 
indication from the system that an error has occurred. To 
cope with this challenge, the traditional method is to co-
locate metadata with disk data to detect silent corruptions. 
This metadata can contain extra information, such as 
checksums or version numbers, which can be used to 
detect certain types of silent data corruptions. But the 
metadata method has a remarkable drawback: it requires 
additional storage overhead to store metadata and thus can 
involve additional I/O overhead during write operations. 

An efficient adaptive data reconstruction method [6]  is 
proposed in this section. It describes how to efficiently 
reconstruct lost data in the presence of silent data 
corruptions. We consider a stripe in which f strips are lost 
or are identified to be corrupted, and there also exist some 
silently corrupted strips. Suppose there are k* data strips 
and m* parity strips contained in the set of the remaining 

strips, where
* *k m k m f    . We use D* and P* to 

denote the corresponding data and parity sets, 

respectively, where 
* *| |D k  and 

* *| |P m . 

Steps: 

1. Let θ be the number of parity strips in a strip 
group. 

              Set θ = m*. 
2. For each combination P of θ parity strips chosen 

from P*, determine whether a consistent strip 

group containing more than k strips exists in the 
set of strip groups containing P. 
i) If exists, reconstruct lost strips from this 

strip group. Detect and correct silently 
corrupted strips according to this strip group 
and return true. 

              ii)    Else, go to step (3) 
3. If θ > k – k* + 1, set θ = θ -1 and go to step (1) 

              Else, return false. 
The condition to perform this algorithm is f<m. In this 

algorithm, if true is returned, all the lost strips have been 
correctly reconstructed, and all the silently corrupted 
strips have also been detected and corrected; and if false 
is returned, there exists no consistent strip group 
containing more than k strips, and the error scenario is 
then considered to be beyond the ability of the adopted k 
of (k+m) erasure code to tolerate errors. 

The following algorithm determines whether there 
exists a consistent strip group with a size (k+1) in the set 
of strip groups containing P . 

 

1. Let *

* * * *
0 1 1

{ , ,..., }
k

D D D D


 , | |P   

and k . 

For a combination D  of   data strips chosen 

from *D , we use 0 1 2 1, ,..., ,i i i i   to denote the 

subscripts of its   data strips, respectively. 

Initially set 0 0,i  1 1,i  …, 2 2,i    and 

1 1i    . 

 
2. Perform reconstruction operation D P . 

 
3. For each data strip with a subscript larger than 

1i  in *D , compare its regenerated value with 

its original value in *D . If a data strip *D  exists 

whose regenerated value is equal to its original 

value in *D , return the consistent strip group 
*{ }D P D  . 

Else go to next step. 
 

4. If *
0 1i k    , return NULL. 

Else increase the subscript vector 0 1 1( , ,..., )i i i  by 

one in lexicographic order and go back to step (2). 
 

VI. CONCLUSION 

In this paper, a secure decentralized erasure code is 
explained for storing data in a cloud which is a distributed 
network of storage systems. This method provides 
privacy, efficiency and robustness in both storage service 
and key management service, even if all storage services 
are compromised. And also it is explained how to prevent 
silent data corruptions from propagating during data 
reconstruction in the context of erasure coded storage 
systems. 
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