
Ensuring Privacy and Preventing Silent Data
Corruptions in Cloud

R.Sivakami1, Dr.R.Saravanan2, N.Pandeeswari3

1,3Dept of IT, PSNACET, Dindigul, Tamilnadu, India.
2Dept of CSE, PSNACET, Dindigul, Tamilnadu, India.

1sivakami81@yahoo.co.in,2hodcse@psnacet.edu.in,3ponds_it@yahoo.co.in

Abstract— Cloud storage systems provide storage service on
the internet. Since cloud is accessed via internet, data stored
in clouds should remain private. Towards privacy and
correctness of the data in cloud, several intrusion detection
techniques, authentication methods and access control
policies are being used. But they suffer from storage
overhead. To minimize this overhead, several designs are
currently using erasure codes. Now, the current research on
cloud storage systems focuses on efficiency and robustness.
But here, the major challenge is how to prevent silent data
corruptions during reconstruction of data. This paper uses
secure decentralized erasure-coded storage systems to
guarantee a better privacy, efficiency and robustness and
proposes a method that can reconstruct data in clouds by
preventing silent data corruptions.

Keywords-cloud, privacy, silent data corruptions

I. INTRODUCTION

Internet is a public environment that anyone can freely
access. Cloud is a distributed network of storage systems
storing data reliably over a very long period of time.
Security is essential in cloud because cloud is a multi-
tenant environment with more than one company sharing
the same cloud service provider. If we use security
principles of cloud service provider, our security in the
cloud will be as good as, or better, than our current
security in most cases. Typically, the level of security we
get will be designed to meet the needs of the most risky
client in the cloud. But when others have an interest in the
contents of our data, privacy is compromised. So it is
important to consider the privacy issue of the stored
information of the users. Silent Data Corruption occurs
when incorrect data is delivered by a computing system to
the user without any error being logged. Users need to get
correct answers and the resulting data/output needs to
have its integrity maintained. So in addition to ensuring
privacy in clouds, it is equally important to deal with
silent data corruptions in clouds.

The remainder of the paper is organized as follows: In
Section 2, we give the existing models to achieve security
and privacy in clouds. In Section 3, privacy-preserving
public auditing scheme is explained and in section 4, we
propose a secure decentralized erasure codes for ensuring
privacy in clouds. In Section 5, silent data corruption and
its counter-measure are addressed with an efficient
adaptive data reconstruction method. Finally, Section 6
concludes our work.

II. EXISTING MODELS

This section explains various methods currently used to
achieve security and privacy where data are available on
cloud systems. The usual approach to retaining control of
data requires the encryption of all cloud data.

A. Identity-Based Authentication for Cloud Computing

For providing authentication of both users and services,
SSL Authentication Protocol (SAP), was early used in
cloud computing. But complications arise in both
computation and communication. So based on the
identity-based hierarchical model for cloud computing
(IBHMCC), a new method is proposed to achieve security
in cloud computing using encryption and signature
schemes [2].

Steps:

In step (1), the client C sends a ClientHello message to
server S. The message contains a random number nC, the
session identifier ID and specificationC.

In step (2), the server S responds to client C with a
ServerHello message. The message contains a new
random number nS, the session identifier ID and
specificationS. Then C chooses a pre-master secret FCS
and encrypts it with the public key PC. The ciphertext is
transmitted to C as ServerKeyExchange message. Then S
generates a signature []

SSSig M as the IdentityVerify

message to forward to C.
In step (3), C verifies the signature []

SSSig M with the

help of IDS. Pass of verification means S is the valid
owner of IDS. This completes authentication from S to C.
Then C decrypts the []

CP CSE F with its private key SC. The

correct decryption indicates C is the valid owner of IDC.

1. C→ S: ClientHello(nC, ID, specificationC)
ClientHelloDone
2. S→C: ServerHello(nS, ID, specificationS)
ServerKeyExchange ([]

CP CSE F)

IdentityVerify ([]
SSSig M)

ServerHelloDone
3. C→S : ClientFinished

R.Sivakami et al IJCSET |February 2012| Vol 2, Issue 2,903-907

903

B. Secure Role based Data Access Control in Cloud
Computing

This method [5] associates a set of attributes with each
data file and assigns an expressive access structure to
each user. This access structure is defined as a unique
logical expression of attributes to reflect the scope of data
files that the user is allowed to access. As the logical
expression can represent any desired data file set,
finegrainedness of data access control is achieved. To
enforce these access structures, a public key component
for each attribute is defined. Data files are encrypted
using public key components corresponding to their
attributes. User secret keys are defined to reflect their
access structures so that a user is able to decrypt a
ciphertext if and only if the data file attributes satisfy his
access structure. But the challenge with this approach is
finegrainedness, data confidentiality, and scalability may
not be achieved simultaneously.

C. Virtualization Intrusion Tolerance System

 To address the problem of intrusion tolerance of cloud
computing platform and sensitive data, a virtualization
intrusion tolerance system is constructed based on cloud
computing by researching on the existing virtualization
technology, and a method of intrusion tolerance is
proposed to protect sensitive data in cloud data center [4].
This method allows the system to tolerate F faulty
replicas in N=2F+1 replicas and ensure that only F+1
active replicas to execute during the intrusion-free stage.
The remaining replicas are all put into passive mode,
which significantly reduces the resource consuming in
cloud platform.

D. Erasure coded Storage Systems

An erasure code provides redundancy without the
overhead of strict replication. Erasure codes divide an
object into m fragments and recode them into n
fragments, where n>m. We call r=m/n <1 the rate of
encoding. The key property of erasure codes is that the
original object can be reconstructed from any m
fragments. Erasure coding in a malicious environment
requires the precise identification of failed or corrupted
fragments. Without the ability to identify corrupted
fragments, there is potentially a factorial combination of
fragments to try to reconstruct the block. As a result, the
system needs to detect when a fragment has been
corrupted and discard it. A secure verification hashing
scheme can serve the dual purpose of identifying and
verifying each fragment. It is necessarily the case that any
correctly verified fragments can be used to reconstruct the
block.

E. Decentralized Erasure Coded storage systems

Decentralized erasure codes are used in distributed
networked storage [7]. They are random linear codes over
a finite field Fq with a specific randomized structure on
their generator matrix. Each data packet Di is seen as a
vector of elements of a finite field fi. This system of
coding has a set of data nodes V1 with | V1 |= k and
storage nodes V2 with | V2 |= n. Towards the construction

of a bipartite graph that corresponds to the creation of a
decentralized erasure code, every data node i  V1 is
assigned a random set of storage nodes N(i). This set is
created as follows: a storage node is selected uniformly
and independently from V2 and added in N(i) and this
procedure is repeated d(k) times. Therefore N(i) will be
smaller than d(k) if the same storage node is selected
twice.

1() { : ()}N j i V j N i   denotes the set of data

nodes that connect to a storage node. Each storage node
will create a random linear combination of the data nodes
it is connected with:

()
j ij i

i N j

S f D
 

  where the

coefficients fij are selected uniformly and independently
from a finite field Fq. Each storage node also stores the fij
coefficients, which requires an overhead storage of

2 2()(log () log ())N j q k bits.

III. PRIVACY-PRESERVING PUBLIC AUDITING
SCHEME

To ensure the correctness and privacy of users’ data in
the cloud, an effective and flexible distributed scheme is
proposed based on the homomorphic token with
distributed verification of erasure-coded data[1].

Fig 1: The architecture of cloud data storage service

In Fig 1, Third Party Auditor (TPA) is an entity, which
has expertise and capabilities that clients do not have and
is trusted to assess and expose risk of cloud storage
services on behalf of the clients upon request. Clients may
interact with the cloud servers via CSP to access or
retrieve their pre-stored data. To ensure privacy TPA
should not be allowed to derive users’ data content from
the information collected during the auditing process.

Steps:

1) TPA retrieves file tag t, verifies its signature.
 If succeeds, it goes to step (2).
 Else, quits.

2) TPA generates a random challenge {(,)}i i Ichal i v 

and sends it to cloud server.

3) Cloud server computes '
v ii I

v m


  and

iv
ii I

  

R.Sivakami et al IJCSET |February 2012| Vol 2, Issue 2,903-907

904

4) Cloud server randomly selects Pr  and calculates

()h R , where (,)rR e u v . Then it computes
' modr p    .

The storage correctness proof { , , }R  is sent to TPA.

TPA computes ()h R  and then verifies{ , , }R  by

1

. (,) ((()) . ,)
c

i

s
v

i
i s

Re g e H W u v  



 

IV. SECURE DECENTRALIZED ERASURE CODED
STORAGE SYSTEMS

The methods we have described in section II suffer
from storage, computation and communication overhead.
So we propose a secure decentralized erasure coded
storage systems [3] in this section. It is a combination of
data encryption and decentralized erasure codes. Here,
data are stored after encryption. Even though the attacker
compromises all storage servers, information about the
content of data can not be learnt. To achieve this, the
decryption key is shared to a set of key servers so that the
risk of key leakage is reduced.

M1

M2

MK

C1

C2

CK

SS1

SS2

SSN

KS1

KS2

KSM

Owner

messages cloud storage

v u

σ1

σ2

σn

Fig 2: Model of Cloud Storage System

Fig 2 provides an overview of our system. There are k
messages Mi, 1≤ i≤ k, to be stored into n storage servers
SSi, 1 ≤ i ≤ n. Let these messages are the segments of a
file. For those k messages, we assign a message identifier.
Each message Mi is encrypted under the owner’s public
key pk as Ci = E(pk, Mi) and we consider pk=gx .Then,
each ciphertext is sent to v storage servers, where the
storage servers are randomly chosen. Each storage server
SSi combines the received ciphertexts by using the
decentralized erasure code to form the stored data σi. The
owner’s secret key sk is shared among m key servers KSi,
1≤ i ≤ m, by a threshold secret sharing scheme so that the
key server KSi holds a secret key share ski. The threshold
we assume is t, where m≥t≥k. To retrieve the k messages,
the owner instructs the m key servers such that each key
server retrieves stored data from u storage servers and
does partial decryption for the retrieved data. Then, the

owner collects the partial decryption results, called
decryption shares, from the key servers and combines
them to recover the k messages.

Steps:

A.. Storing Data:

1) Message Encryption
The owner encrypts k data M = (M1 ║ M2 ║…║ Mk)
via the threshold public key encryption with the same
hID, where hID = H(M1 ║ M2 ║…║ Mk) is the
identifier. Let the cipher text of be Mi be Ci, where

~

(, ,) (, , (,))i ir rx
i i i ID i IDC g h M e g h     ,

,1i R pr i k    .

 Ciphertext Distribution
For each Ci, the owner randomly chooses v storage
servers and a copy of Ci is sent to each of them.

2) Decentralized Encoding
All ciphertexts with the same hID are grouped into Nj
by the storage server SSj. For each Ci  Nj, SSj then
selects a random coefficient gi,j from p and for each

Ci Nj, gi,j is set to zero. This task results in a
generator matrix G= [gi,j], 1≤i≤k, 1≤j≤n.
Each SSj computes

,i j

i j

g

j i
C N

A


  and ,i j

i j

g

j i
C N

B


 

Then it stores
1, 2, ,(, , , (, , ...,))j j ID j j j k jA h B g g g 

B. Retrieving Data:

1) Retrieval Command
The owner sends a command to the m key servers
with hID.

2) Partial Decryption
Each key server KSi receives at most u stored data σj

with hID from the randomly chosen u storage servers.
Then each key server KSi uses its secret key share ski
to obtain a decryption share of the ciphertext ,i j

where
, (, , ,)isk

i j j ID ID jA h h B  and sends ~
,i j to the

owner where
~
, 1, 2, ,(, , , , (, ,...,))isk

i j j ID ID j j j k jA h h B g g g  .

3) Combining and Decoding

From all received ~
,i j , the owner chooses

1 1 2 2

~ ~ ~
, , ,, ,...,

t ti j i j i j   and computes (0)sk f x
ID ID IDh h h 

by Lagrange interpolation over exponents, where i1≠

i2≠…≠ it and S = { i1, i2,…it }.

Here ,() r S r ii

i
skx r i

ID ID
i S

h h  








After computing x
IDh , the owner again selects

1 1 2 2

~ ~ ~
, , ,, , ...,

k ki j i j i j   with 1 2 ... kj j j   .For

R.Sivakami et al IJCSET |February 2012| Vol 2, Issue 2,903-907

905

all 1 1 2 2(,) {(,), (,),..., (,)}k ki j i j i j i j , the owner decrypts

,i j as wj, where ,

~

(,)

l j

l j

gj
j l

x C N
j ID

B
w M

e A h 

  

Then for K = [gi,j], 1≤i≤k, 1 2{ , ,..., }kj j j j , the owner

computes 1
,[],1 ,i jK d i j k    .

If K is invertible, the owner successfully computes Mi
with the following computation:

1, , 2, , , ,1, 2, , 1 1 1

1 2 1 2... ...
k k k

j l i j l i k j l ii i k i l l ll l l

k

g d g d g dd d d
j j j kw w w M M M    

 1 2
1 2 ... k

kM M M  

 iM

Here, , ,1
1

l

k

r r j l il
g d


   , if r = i

 = 0 , otherwise.
During data retrieval process, the data may be

corrupted by detectable and or silent errors. In erasure-
coded storage systems, the lost data from detectable errors
can be reconstructed by using the redundant data encoded
by erasure codes. But problem arises when there exist
silent data corruptions.

V. DATA RECONSTRUCTION IN THE PRESENCE
OF SILENT DATA CORRUPTIONS

The method explained in section III can be used to
reconstruct lost data in the presence of detectable errors.
Unfortunately, there exist a large number of silent
corruptions where the data is silently corrupted with no
indication from the system that an error has occurred. To
cope with this challenge, the traditional method is to co-
locate metadata with disk data to detect silent corruptions.
This metadata can contain extra information, such as
checksums or version numbers, which can be used to
detect certain types of silent data corruptions. But the
metadata method has a remarkable drawback: it requires
additional storage overhead to store metadata and thus can
involve additional I/O overhead during write operations.

An efficient adaptive data reconstruction method [6] is
proposed in this section. It describes how to efficiently
reconstruct lost data in the presence of silent data
corruptions. We consider a stripe in which f strips are lost
or are identified to be corrupted, and there also exist some
silently corrupted strips. Suppose there are k* data strips
and m* parity strips contained in the set of the remaining

strips, where
* *k m k m f    . We use D* and P* to

denote the corresponding data and parity sets,

respectively, where
* *| |D k and

* *| |P m .

Steps:

1. Let θ be the number of parity strips in a strip
group.

 Set θ = m*.
2. For each combination P of θ parity strips chosen

from P*, determine whether a consistent strip

group containing more than k strips exists in the
set of strip groups containing P.
i) If exists, reconstruct lost strips from this

strip group. Detect and correct silently
corrupted strips according to this strip group
and return true.

 ii) Else, go to step (3)
3. If θ > k – k* + 1, set θ = θ -1 and go to step (1)

 Else, return false.
The condition to perform this algorithm is f<m. In this

algorithm, if true is returned, all the lost strips have been
correctly reconstructed, and all the silently corrupted
strips have also been detected and corrected; and if false
is returned, there exists no consistent strip group
containing more than k strips, and the error scenario is
then considered to be beyond the ability of the adopted k
of (k+m) erasure code to tolerate errors.

The following algorithm determines whether there
exists a consistent strip group with a size (k+1) in the set
of strip groups containing P .

1. Let *

* * * *
0 1 1

{ , ,..., }
k

D D D D


 , | |P 

and k .

For a combination D of  data strips chosen

from *D , we use 0 1 2 1, ,..., ,i i i i  to denote the

subscripts of its  data strips, respectively.

Initially set 0 0,i  1 1,i  …, 2 2,i    and

1 1i    .

2. Perform reconstruction operation D P .

3. For each data strip with a subscript larger than

1i in *D , compare its regenerated value with

its original value in *D . If a data strip *D exists

whose regenerated value is equal to its original

value in *D , return the consistent strip group
*{ }D P D  .

Else go to next step.

4. If *
0 1i k    , return NULL.

Else increase the subscript vector 0 1 1(, ,...,)i i i by

one in lexicographic order and go back to step (2).

VI. CONCLUSION

In this paper, a secure decentralized erasure code is
explained for storing data in a cloud which is a distributed
network of storage systems. This method provides
privacy, efficiency and robustness in both storage service
and key management service, even if all storage services
are compromised. And also it is explained how to prevent
silent data corruptions from propagating during data
reconstruction in the context of erasure coded storage
systems.

R.Sivakami et al IJCSET |February 2012| Vol 2, Issue 2,903-907

906

REFERENCES
[1] Qian Wang, Cong Wang, Kui Ren, Wenjing Louand Jin Li,

“Enabling Public Auditability and Data Dynamics for Storage
Security in Cloud Computing”, IEEE Transactions On Parallel
And Distributed Systems, VOL. 22, NO. 5, pp. 847-859, May
2011.

[2] Hongwei Li, Yuanshun Dail, Ling Tian and Haomiao Yang,
“Identity –Based Authentication for Cloud Computing”, LNCS
5931, pp.157-166, Springer-Verlag Berlin Heidelberg 2009.

[3] Hsiao-Ying Lin and Wen-Guey Tzeng, “A Secure Decentralized
Erasure Code for Distributed Networked Storage”, IEEE
Transactions On Parallel And Distributed Systems, VOL. 21,
NO. 11, pp. 1586-1694, November 2010.

[4] Jingyu Wang, xuefeng Zheng and Dengliang Luo, “ Sensitive
Data Protection Based on Intrusion Tolerance in Cloud
Computing”, I.J. Intelligent Systems and Applications, 2011, 1, 58-
66

[5] V.Sathya Preiya, R.Pavithra Dr. Joshi, “Secure Role based Data
Access Control in Cloud Computing”, International Journal of
Computer Trends and Technology- May to June Issue
2011,pp.146-151.

[6] Mingqiang Li and Jiwu Shu, “Preventing Silent Data Corruptions
from propagating During Data Reconstruction”, IEEE Transactions
on Computers, Vol. 59, No.12, pp. 1611-1624, December 2010.

[7] Alexandros G. Dimakis, Vinod Prabhakaran, and Kannan
Ramchandran, “Decentralized Erasure Codes for Distributed
Networked Storage”, IEEE Transactions on Information Theory,
Vol. 52, No. 6, pp. 2809-2816 , June 2006.

R.Sivakami et al IJCSET |February 2012| Vol 2, Issue 2,903-907

907

