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Abstract—This paper discuss the design, implementation and 
evaluation of a new network layer for Mozart. Mozart is one 
of the distributed programming platform which is based on 
the multi paradigm language namely Mozart supplies a factual 
network transparent implementation by maintaining network 
awareness, openness, and also fault tolerance. Its network 
layer provides message passing service to its higher layers 
which run protocols to uphold the state of distributed entities. 
In the study of the old network layer problems, a new model 
was designed and implemented. With this the Solutions 
achieved includes  less fragmented sending of data, more 
efficient usage of file descriptors and similar resources, leaner 
memory usage, improved multiplexing over communication 
channels and a monitor mechanism for error handling. This 
paper also focuses on some other languages distribution 
models and the message passing services. It come out that the 
many different aspects of a multi paradigm language also 
require more of such service. When we compare the 
performance of the network layer of Mozart with Java’s RMI 
it is competitive , or even higher than the performance of 
Java’s RMI, which uses a more simplistic message passing 
service. 
 
Keywords— Distributed, layer, ByteBuffer , message passing, 
binding,  remote.  

I. INTRODUCTION 
Distributed environment has become demand of the day 

now a day’s. This distributed application involves much 
extra programming which is not of interest for the 
application to run. In simple terms it still involves getting 
into low-level networking or perhaps using some 
abstraction that scarcely hides the networking. Mostly this 
is because network tools and abstractions have been 
designed with the idea to provide a nice interface directly to 
the low-level communication. A different perspective is to 
design an environment which distributes a centralized 
application without openly defining any communication. 
From the application programmers' point of view, Mozart is 
a multi paradigm language that provides distribution [1].  
Still here also the low-level networking needs to be taken 
care  and the creative parts of this paper  is about the design 
and implementation of new networking support for Mozart 
which is described in sections below. 

All distribution models need some means of 
communication in the form of a message passing system. 
This is referred to as a network layer throughout this paper. 
The design of network layer usually can be done with the 
help of operating system or some internet protocols which 
provide directly, but they do not provide all that is expected 
of the communication. Typical issues here are use of 
synchronous or asynchronous message passing and how to 
uphold connections. This is dealt with respect to single or 
multiple connections between each virtual machine and 
limited resources such as file descriptors or port numbers, 
what communication protocol to use and lastly how to 
reflect errors to higher layers. 

1)   The network layer of Mozart:  Unlike RMI the network 
layer of Mozart does not have one single protocol to serve, 
it has several protocols to handle variety of entities as 
shown in figure 1. These protocols include sending 
messages to one or more sites, synchronous or 
asynchronous. To efficiently serve the various needs, the 
network layer of Mozart implements an asynchronous 
message passing service [2].  
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Distribution
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Distribution
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Fig 1.  Architecture of distributed Mozart 
 

For example in Mozart to utilize allocated network 
resources as well as possible, there will always be at most 
one virtual connection to every site. This is depicted in 
Error! Reference source not found.2. Here 
communication is multiplexed over the shared connections. 
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Since a typical Mozart application runs several threads, 
several messages to one site can be collected and sent in 
one chunk, which will lower the overhead on each message. 
When resources are low, physical connections can be 
temporarily closed to let other connections be opened [3].  
To upper layers, this is only visible as higher latency as 
shown in figure 2. 
 

 
Fig 2.  Utilization of Resources in Mozart 

2)  Design and implementation of the new Network Layer: 
In the previous model, the distributed subsystem is divided 
into a distribution layer and a network layer. The 
distribution layer maintains information on where different 
sites are physically located. The network layer passes the 
messages. This structure is kept for the new model, but the 
network layer is now divided into one communication layer 
and one transport layer as shown in Figure 3. 

Fig 3.  Architecture of the new model. 

 
In Figure 3 the boxes represents controllers that exist 
whenever the distribution is running. Controllers are 
responsible for creating and garbage collecting the multiple 
objects of each layer. The oval represents object instances 
on each layer that are exclusive for every remote peer. 

3)  Distribution layer: The objects S1-S6 represent site 
objects. In Mozart the word site is used to denote processes 
that might reside on different machines, and in this model 
site-objects are used as references to remote sites that are 
known to the own site[3]. A site object contains all the 
necessary information to connect to a remote site, such as 

the physical location and what transport media to use when 
connecting to it. When a reference is passed to some other 
site, the information in the site is marshaled and transmitted. 
When information about a site is received and unmarshaled, 
a site-object is created in the system if it does not exist. 

4)  Communication layer:  Every ComObject takes care of 
the communication for one site-object. It gets a channel, 
sets up properties for the communication over that channel, 
keeps track of when a channel can be closed, queues 
messages, and assures that messages reach their destination 
or are reported unsent and provides probes for network 
monitoring.  
5)  Transport layer: A TransObject T1, T2 provides an 
abstraction for some means of a reliable physical 
communication channel. Several different types of 
TransObjects can coexist in the system, providing different 
types of communication between sites depending of their 
relative physical location.  When a ComObject needs a 
TransObject it requests it from a special "Physical Media 
Mediator", that with the help of the site object decides on 
what type of transport media to use. The different 
TransControllers are kept by this mediator and used to 
extract the TransObject. The connection is then established 
with the connection procedure as described in [7]. 
Resources are also controlled by TransControllers. If too 
many are in use, ComObjects will be queued to get a 
resource when there is one free. A ComObject should 
always be sure to sooner or later get a TransObject, i.e. 
resources are handled fair in the same aspect as threads [5]. 
To begin with, one TransObject is implemented to use TCP, 
and one to use shared memory, but it is left open to add 
communication via UDP or similar protocol. 
6)  Messages and MsgContainers: Messages are stored in 
MsgContainers that act as transporters of information. 
MsgContainers are created by the distribution protocols 
when a message is to be sent or by the transport layer when 
a message has been received. Except for storing the type 
and content of the message, a MsgContainer can also store 
information on when a message was sent.  All the 
knowledge of how to marshal and unmarshal a message of a 
certain type and what to do during garbage collection is also 
kept in the MsgContainer.  

- Connecting to a Remote site 
ComObjects "connect" to remote sites by getting a 
TransObject (physically connected) and running an open 
protocol to set some properties for the communication. 
Connections are originally initiated when a ComObject is 
ordered to send. A remote peer will accept the connection. 
Being an initiator or acceptor are two cases that need to be 
treated in different ways. The reason for this is that an 
accepting ComObject cannot know who is trying to connect 
to it, until the remote peer has introduced itself [4]. 
7) Building the architecture as an accepting site: Whenever 
a connection is accepted a TransObject is created and 
handed over to the ComController. The ComController 
creates an anonymous ComObject since the remote site is 
not yet known. This ComObject gets to run the open 
protocol that will determine if another ComObject to this 
site exists.  In those cases where the remote site is known 
prior to the accept, a ComObject may or may not exist for 
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that site. If an object does exist, that ComObject is to be 
used since it may contain queued messages and valuable 
information from prior connections. The anonymous one is 
discarded. If the old ComObject also has a TransObject this 
means the two sites must be trying to connect to each other 
simultaneously and the open protocol described below 
determines which channel is to be used. The old ComObject 
then adopts the TransObject of that channel. 
8)  Connect and accept with the Physical Media Mediator: 
This design is based on “Physical Media Mediator" for the 
establishment of a physical channel. The idea of the 
"Physical Media Mediator" is to make it achievable to 
control what transport media to use from oz-level. It should 
work for both standard and added on transport layers. This 
architecture is described in the following Fig 4. 

Physical Media 
Mediator

TransController A TransController B

Com
Object

Site

Connection 
procedure

Accept 
procedure

Oz-level

 
Fig 4.  Graphical view of   architecture with a "Physical Media Mediator". 

 
Every site object has one connection and one accept 
procedure. When a reference to a site is given, the 
connection procedure to be used to connect to that site is 
included. Locally every site runs an accept procedure 
dedicated to accept connections from the connection 
procedure. The interface to the network layer is given 
through a built-in. 
 
9) Open protocol: The open protocol is used to negotiate 
some communication properties and to assure that both sites 
are using the same period version and know whom they are 
talking to. It also determines what channel to use in case 
both sites initiate communication simultaneously. It 
consists of three regular messages created and sent by the 
ComObjects . 

• The anonymous ComObject sends 
PRESENT(Version, Site). 

• The initiating ComObject sends 
NEGOTIATE(Version, Site, ChannelInfo) 

At any point, either side can close the channel without 
sending any prior warning. Sending a specific abort 
message has been considered, but whenever there is a 
version mismatch (the other site might not even be an 
ozengine) that technique cannot be used [5][8]. Therefore 
the transport layer must always detect a lost channel, and a 
lost channel during the open protocol will be interpreted as 
aborting the entire connection. The first four are definite, 
but the buffer size needs to be equal for good performance 

with big messages. Therefore the initiating side gives a 
suggestion; the accepting side can either accept this or 
choose a smaller size, but never a larger (to make a natural 
end of the protocol). When the open protocol is run the 
ByteBuffer is already in use. An effect of this is that the 
ByteBuffer must always be large enough to fit a received 
open-protocol message, and the size has to be possible to 
change during runtime. Decisions on what size the buffer 
should have, is completely up to the used transport layer, 
and the corresponding TransObject should be asked for this. 
10) Close protocol:   A channel can be closed either 
because it is no longer needed which is detected at garbage 
collection, or because one site is running out of resources 
and needs to give the resources to another ComObject for a 
while. When garbage collection is run the other side is 
given a chance to keep the channel, but when resources are 
out, the connection must be closed. This implies two 
different close messages: 

• CLOSE_WEAK, sent at garbage collection 

• CLOSE_HARD, sent at lack of resources 

A ComObject that is being closed will also be understood 
and one of the close messages as CLOSE_ACCEPT. After 
sending a CLOSE_HARD or CLOSE_WEAK the state of 
the ComObject changes to closing hard or closing weak. No 
more messages will be sent until a CLOSE_REJECT is 
received or the channel has been closed and reopened. At 
the remote peer the state will be closing wait for disconnect 
if it accepts the close.  If the close is accepted the close 
initiator will close the channel and the remote peer should 
notice the disconnection as a lost channel. On both sides, 
the TransObject is handed back to the TransController, but 
the ComObject will stay until removed from the site [9]. 

11.) Passing Messages 
The responsibility of transport layer is the actual 
transportation of messages. This can be done in different 
ways depending on what type of media used and thus on 
what type of TransObject is used. The communication layer 
expects the transport layer to provide a entirely reliable 
service. Messages may only be lost when a channel is lost. 
Messages sent should be received at their remote peer in the 
same order. Some priority levels could be defined non-
FIFO. In this case, an extra parameter needs to be added to 
the communication that allows these messages to be 
received out of order. When a ComObject has something to 
send, it will order its TransObject to deliver. The 
TransObject should then pull messages when it is allowed 
to send. The scheduler in the Mozart Virtual Machine could 
be used to schedule when each TransObject can run [5]. A 
more naive approach is used, where it is checked at each 
thread switch whether input or output is possible, and 
TransObject will be invoked. When a message is received 
by the TransObject it should be put in a MsgContainer and 
handed up to the ComObject. The TransObject is also 
responsible for sending acknowledgement numbers that will 
be provided when a message to be sent is pulled. 
12)  Byte Buffers: As most of the media are assumed to 
transmit serialized consecutive data, a MsgContainers 
provides one method that marshals a message into a 
ByteBuffer and one that unmarshals it from a ByteBuffer. 
To make marshaling and unmarshaling independent of 
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when data is sent from, or received to the ByteBuffer, it is 
convenient to have a continuous ByteBuffer. Therefore, the 
ByteBuffer is implemented as a circular structure. The 
marshaler and the read handler, who write to the bytebuffer, 
must assure that the ByteBuffer is not overfilled. This 
requires a suspendable marshal. A suspendable marshaler 
can stop when the ByteBuffer is occupied, and continue 
later where it left off. This assumes the unmarshaler can 
handle unmarshaling of the fragments produced by such a 
marshaler.Each TransObject use exactly one ByteBuffer for 
incoming and one for outgoing data which confines the 
amount of memory used by each TransObject. 
13) Big Messages:  One of the problems of the old 
distribution engine was that one large transfer was allowed 
to monopolize the channel [11]. The complete message had 
to be sent before any other message could be sent. In 
addition, the complete message had to be received before 
unmarshaling could be done which made the memory of the 
distribution engine to grow temporarily. Therefore, the new 
model introduces the concept of marshaling and sending 
only parts of a big message at a time. This is made possible 
through the suspendable marshaler mentioned in the 
previous section. The unmarshaler will require a full 
fragment to be received before beginning to work, and 
therefore the ByteBuffer of the receiving side, must be at 
least large enough to fit the complete contents of the 
ByteBuffer at the sending side [11]. 
14) Specifics of the TCP-transport layer: When the TCP 
TransObject is initialized, it registers a read handler with 
the I/O-handler and when it is ordered to deliver, it registers 
a write handler. The I/O-handler will then offer the control 
back to the TransObject at certain times. These are the 
times that messages will be marshaled and written, and 
when messages will be read and unmarshaled. Messages are 
marshaled from MsgContainers into frames. The contents 
of the frames are stored in ByteBuffers. One message can 
be put in one or more frames. One or more frames can be 
put in each ByteBuffer. On every chance the TransObject 
gets to write, it will try to write up to one full ByteBuffer. 
The chosen structure means the first nine bytes must always 
be received before trying to use any data. Then the frame 
size can be compared to the received amount and a frame 
can possibly be unmarshaled. The acknowledgement is 
received earlier since it is independent of the message, and 
might wait for the probe usage. 

-    Priorities 
In the delivery of messages five different priority levels are 
used, where level 1 and 5 are reserved for special system 
messages and levels 2 through 4 are used for all other 
messages. Levels 2-4 are scheduled like threads, but on 
number of bytes sent instead of on time. The relation 
between these priority levels can be altered from 
application level [10].  
Level 5: Send as fast as possible, Level 4: High priority, 
Level 3: Medium priority, Level 2: Low priority, Level 1: 
Send when no messages are waiting on levels two through 
five. At regular intervals, messages on this level will be 
moved to level two to ensure throughput. 

- Acknowledgements and retransmission 

  Since the transport layer is expected to provide a reliable 
transfer, the only case when messages can be lost is when 
the connection is lost [10]. Therefore, the only time that 
messages need to be retransmitted is at reconnection but for 
this scenario messages must be stored at the sender until 
they are acknowledged. Messages from the protocol layer 
are implicitly numbered by the ComObjects at the sending 
and at the receiving side. Whenever such a message is sent, 
an acknowledgement number telling the number of the last 
received message is attached to the frame. Messages 
produced by the ComObject are not desirable to 
acknowledge. In this approach a big message that was 
almost completely transmitted in a number of frames needs 
to be resent if one frame is lost since only the complete 
message is acknowledged. However with a reliable 
transport media, this will rarely happen and the 
implementation of the TransObject is free to add an extra 
acknowledgement schema if the protocols or media used 
are likely to cause lost messages. 
15)   Reference protocol: The only message exchange 
needed is when a channel is opened and for clearing a 
reference. Therefore, a field in the ChannelInfo declares the 
need when a channel is opened, and one message, the 
CLEAR_REFERENCE message clears a remote reference. 
16) Garbage collection: When Mozart does garbage 
collection, the distributed subsystem needs to be checked in 
two phases.: 

• All queued or unacknowledged MsgContainers need 
to be traversed since they can hold references to oz-
entities and therefor are roots for garbagecollection. 
Especially they can hold references to sites, which 
imply the two phases. MsgContainers are found 
through the ComController that maintains a list of 
all (including anonymous) ComObjects. 

• The site table is traversed. All sites that were not 
marked need to check if they can be 
garbagecollected. This  is done by asking the 
collection of garbage collection through the 
instruction. If the ComObject still has a TransObject 
but no need, it will send a 
C_CLEAR_REFERENCE message. If it also thinks 
that the remote peer has no need, it will send a 
C_CLOSE_WEAK message. Then it will answer 
no. If it is closeable the close protocol will close the 
connection and at the next garbage collection, the 
ComObject will be collected to [4]. 

17). Resource caching: Using a transport media is often 
connected to some limited resource. In the case with TCP, 
this resource is file descriptors; with UDP it is port numbers 
and with shared memory it is number of shareable memory 
pages. In order not to put a limit on the number of 
connected sites, the available resources have to be shared 
fairly between connections. In this model, this is done by a 
mechanism called resource caching. A positive side effect 
of resource caching in this way is that the memory usage is 
also limited. TransObjects contain ByteBuffers that may be 
large, and this way there will always be a limited number of 
ByteBuffers. The number of resources available can be set 
from oz-level as a weak and a hard limit. The weak limit 
may be temporarily exceeded for incoming requests, but the 
hard limit is definite. When the resources available run out, 
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the TransController will start a timer and try to preempt the 
resources of some ComObjects. The ComObjects then have 
to nicely close their connections and hand back the 
TransObject to the TransController who can grant it to the 
first waiting ComObject. 

18)  Preemption:   A big issue for efficiency with e.g. 
servers is whom to preempt, how many and when [5]. This 
is a scheduling problem. For now a naive model is adopted: 

- Whenever a resource for accept is granted, and the 
weak limit is exceeded, or else if a connect is 
requested and the weak limit is reached; start a 
timer. 

- The timer will preempt the resources of one 
ComObject at regular intervals. The decision on 
which one to  preempt is done  as follows: list of 
running ComObjects is traversed and the first one 
that can be closed (currently defined as being in 
state working) will be chosen with the following 
prioritizing: 

        1.Has non-empty buffers. 
        2.Has empty buffers but queued messages. 

The basic advantage of this model is its disadvantages  
 are plenty as given in the following: 

- No respect is given to incoming messages. Thus the 
one connection where a message resolving a 
suspension in this engine is to come might be 
closed, or a server might close an active client 
instead of a client that just forgot to disconnect. 

- The empty buffer criteria might not be appropriate 
for all transport mediums. 

- Clients behind firewalls should be treated 
separately since it might be unfeasible to reconnect 
from the outside. 

- No guaranties are given on how long a connection 
can be up prior to it will be closed again. 

19) Error handling 

 In the cases where it can be definitely known that a remote 
site is permanently down, this needs to be reported to upper 
layers. Those cases are when the open protocol determines 
the remote site to run the wrong version or to be a different 
site than expected, or possibly if the transport media reports 
that the site is permanently down. The new fault model will 
give the application programmer some way to close the 
communication with a remote site. The importance in being 
able to do so is to free resources such as memory and any 
other resources connections use.  

II.  PERFORMANCE EVALUATION  
For the complete evaluation of the performance changes, 
one would have to study how the performance has changed 
for each of the distributed entities as well as for larger 
applications performing various different tasks. The 
performance can be evaluated based on different parameters, 
throughput, simultaneous connections, multiplexing and the 
memory usage. A generic test measuring roundtrip times is 
constructed. It consists of one server and a number of 
clients. The server listens to a port for incoming messages, 

and simply sends these messages back. It also triggers the 
clients to begin and measures the total time from the trigger 
to when all clients are done. The server can also poll its 
memory usage. Every client sends lists of a specified size 
and waits for it to come back. They measure the total time 
for a number of iterations. Specifiable parameters are 
number of clients, size of lists, and number of iterations. All 
tests are run over a LAN at off peak hours. The server runs 
on a workstation and all clients on a CPU server. 
Comparative tests are run in a sequence of new, old, new, 
old to verify reproducible results. 

A. Throughput 
Throughput is measured by starting one client and using 

larger and larger lists to send data for a number of iterations. 
The average roundtrip time is recorded and plotted in Error! 
Reference source not found.5 . This indicates that the 
performance has improved for all sizes i.e. the size of the 
list (x) in elements versus the average roundtrip time (y) in 
milliseconds. It should be noted that these results depend on 
the number of iterations. At 1000 number of iterations the 
differences vanish for list sizes below about 300 elements, 
but remain for larger lists. At less iterations the differences 
increase. 

B. Simultaneous connections 
The list size is set rather small, and the number of clients is 
gradually increased. The total times at server and clients are 
measured and plotted. It is also attempted to find an upper 
limit on the number of clients one server can handle 
simultaneously. The engine per default allows thirty file 
descriptors to be used simultaneously .Results are displayed 
in Error! Reference source not found.5. And a 
comparative study for old and new engine is also shown in 
table 1. 

 
List size: 100, Iterations: 100 

 
Fig 5. The average round trip at each client(y) in ms verses 
Number of clients (x). The total number of servers(y) 
Verses Number of clients (x). 
 

TABLE 1. TEST ON MULTIPLEXING 
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With many clients, the old engine test only rarely came to a 
result, explaining the lack of data in that graph. With the 
new engine, tests with up to 170 clients were successful. 
Beyond that, the operating system did not permit more 
processes on the CPU server. Further testing with more 
machines will be conducted in the future. When viewing the 
total time of the server in Figure 5, it is evident that the 
performance has improved, The strange shape of the curves 
can be explained by the way the test is written. All clients 
introduce themselves and then wait for the server to react 
before they start their timer. This is to make sure that they 
really run simultaneously. With many clients, the response 
from the server will be delayed until there is a connection to 
a particular client. This means a client can starve for some 
time and then still measure a short time. The fact that the 
clients running with the old engine get a lower time comes 
from the preemption decision. The old engine has a more 
sophisticated algorithm that closes the least recently used 
connection. Hence we can conclude that performance has 
improved, but resource scheduling can be further refined. It 
should be considered that different applications might favor 
clients getting done fast, while others might want to let 
clients use resources fairly. 

C. Multiplexing 
Roundtrip when several threads at one client send to the 
same server is measured and compared to the results of 
simultaneous connections above. Since all threads in one oz 
engine use the same communication channel, this will test 
effects on the performance due to messages being sent in 
one or more chunks.  
 

III.  CONCLUSION 
It was possible to implement a new network layer with 
more complex features, and still pertain or even enhance the 
performance of the existing and working network layer of 
Mozart. It was also likely to achieve a higher scalability 
than the network layers of Java and Mozart with effortless 
means. The maximum amount of memory needed for 
message passing can be known in advance. There is much 
more to be done to refine this model and further improve its 
performance and make it dynamically changeable. 
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	1.Has non-empty buffers.
	2.Has empty buffers but queued messages.



