
 Design and Implementation of a Network Layer
for Distributed Programming Platforms

G. Srinivas Reddy#1, Dr. K. Venkateswara Reddy*2, Prof. T. Venkat Narayana Rao

#3

#1

Hyderabad, India
 Mahatma Gandhi Institute of Technology,

#2

Hyderabad, India
 Principal, MLR Institute of Technology and Management,

#3

Hyderabad, A.P, India
 Professor Department of CSE , Guru Nanak Institutions Technical Campus,

Abstract—This paper discuss the design, implementation and
evaluation of a new network layer for Mozart. Mozart is one
of the distributed programming platform which is based on
the multi paradigm language namely Mozart supplies a factual
network transparent implementation by maintaining network
awareness, openness, and also fault tolerance. Its network
layer provides message passing service to its higher layers
which run protocols to uphold the state of distributed entities.
In the study of the old network layer problems, a new model
was designed and implemented. With this the Solutions
achieved includes less fragmented sending of data, more
efficient usage of file descriptors and similar resources, leaner
memory usage, improved multiplexing over communication
channels and a monitor mechanism for error handling. This
paper also focuses on some other languages distribution
models and the message passing services. It come out that the
many different aspects of a multi paradigm language also
require more of such service. When we compare the
performance of the network layer of Mozart with Java’s RMI
it is competitive , or even higher than the performance of
Java’s RMI, which uses a more simplistic message passing
service.

Keywords— Distributed, layer, ByteBuffer , message passing,
binding, remote.

I. INTRODUCTION
Distributed environment has become demand of the day

now a day’s. This distributed application involves much
extra programming which is not of interest for the
application to run. In simple terms it still involves getting
into low-level networking or perhaps using some
abstraction that scarcely hides the networking. Mostly this
is because network tools and abstractions have been
designed with the idea to provide a nice interface directly to
the low-level communication. A different perspective is to
design an environment which distributes a centralized
application without openly defining any communication.
From the application programmers' point of view, Mozart is
a multi paradigm language that provides distribution [1].
Still here also the low-level networking needs to be taken
care and the creative parts of this paper is about the design
and implementation of new networking support for Mozart
which is described in sections below.

All distribution models need some means of
communication in the form of a message passing system.
This is referred to as a network layer throughout this paper.
The design of network layer usually can be done with the
help of operating system or some internet protocols which
provide directly, but they do not provide all that is expected
of the communication. Typical issues here are use of
synchronous or asynchronous message passing and how to
uphold connections. This is dealt with respect to single or
multiple connections between each virtual machine and
limited resources such as file descriptors or port numbers,
what communication protocol to use and lastly how to
reflect errors to higher layers.

1) The network layer of Mozart: Unlike RMI the network
layer of Mozart does not have one single protocol to serve,
it has several protocols to handle variety of entities as
shown in figure 1. These protocols include sending
messages to one or more sites, synchronous or
asynchronous. To efficiently serve the various needs, the
network layer of Mozart implements an asynchronous
message passing service [2].

OS

Centralized
Mozart

Distribution
Protocols

Network
Layer

Centralized
Mozart

Distribution
Protocols

Network
Layer

Fig 1. Architecture of distributed Mozart

For example in Mozart to utilize allocated network
resources as well as possible, there will always be at most
one virtual connection to every site. This is depicted in
Error! Reference source not found.2. Here
communication is multiplexed over the shared connections.

IJCSET |December 2012 | Vol 2, Issue 12, 1510-1515 www.ijcset.net | ISSN:2231-0711

1510

Since a typical Mozart application runs several threads,
several messages to one site can be collected and sent in
one chunk, which will lower the overhead on each message.
When resources are low, physical connections can be
temporarily closed to let other connections be opened [3].
To upper layers, this is only visible as higher latency as
shown in figure 2.

Fig 2. Utilization of Resources in Mozart

2) Design and implementation of the new Network Layer:
In the previous model, the distributed subsystem is divided
into a distribution layer and a network layer. The
distribution layer maintains information on where different
sites are physically located. The network layer passes the
messages. This structure is kept for the new model, but the
network layer is now divided into one communication layer
and one transport layer as shown in Figure 3.

Fig 3. Architecture of the new model.

In Figure 3 the boxes represents controllers that exist
whenever the distribution is running. Controllers are
responsible for creating and garbage collecting the multiple
objects of each layer. The oval represents object instances
on each layer that are exclusive for every remote peer.

3) Distribution layer: The objects S1-S6 represent site
objects. In Mozart the word site is used to denote processes
that might reside on different machines, and in this model
site-objects are used as references to remote sites that are
known to the own site[3]. A site object contains all the
necessary information to connect to a remote site, such as

the physical location and what transport media to use when
connecting to it. When a reference is passed to some other
site, the information in the site is marshaled and transmitted.
When information about a site is received and unmarshaled,
a site-object is created in the system if it does not exist.

4) Communication layer: Every ComObject takes care of
the communication for one site-object. It gets a channel,
sets up properties for the communication over that channel,
keeps track of when a channel can be closed, queues
messages, and assures that messages reach their destination
or are reported unsent and provides probes for network
monitoring.
5) Transport layer: A TransObject T1, T2 provides an
abstraction for some means of a reliable physical
communication channel. Several different types of
TransObjects can coexist in the system, providing different
types of communication between sites depending of their
relative physical location. When a ComObject needs a
TransObject it requests it from a special "Physical Media
Mediator", that with the help of the site object decides on
what type of transport media to use. The different
TransControllers are kept by this mediator and used to
extract the TransObject. The connection is then established
with the connection procedure as described in [7].
Resources are also controlled by TransControllers. If too
many are in use, ComObjects will be queued to get a
resource when there is one free. A ComObject should
always be sure to sooner or later get a TransObject, i.e.
resources are handled fair in the same aspect as threads [5].
To begin with, one TransObject is implemented to use TCP,
and one to use shared memory, but it is left open to add
communication via UDP or similar protocol.
6) Messages and MsgContainers: Messages are stored in
MsgContainers that act as transporters of information.
MsgContainers are created by the distribution protocols
when a message is to be sent or by the transport layer when
a message has been received. Except for storing the type
and content of the message, a MsgContainer can also store
information on when a message was sent. All the
knowledge of how to marshal and unmarshal a message of a
certain type and what to do during garbage collection is also
kept in the MsgContainer.

- Connecting to a Remote site
ComObjects "connect" to remote sites by getting a
TransObject (physically connected) and running an open
protocol to set some properties for the communication.
Connections are originally initiated when a ComObject is
ordered to send. A remote peer will accept the connection.
Being an initiator or acceptor are two cases that need to be
treated in different ways. The reason for this is that an
accepting ComObject cannot know who is trying to connect
to it, until the remote peer has introduced itself [4].
7) Building the architecture as an accepting site: Whenever
a connection is accepted a TransObject is created and
handed over to the ComController. The ComController
creates an anonymous ComObject since the remote site is
not yet known. This ComObject gets to run the open
protocol that will determine if another ComObject to this
site exists. In those cases where the remote site is known
prior to the accept, a ComObject may or may not exist for

 G. Srinivas Reddy et al IJCSET |December 2012 | Vol 2, Issue 12, 1510-1515 www.ijcset.net | ISSN:2231-0711

1511

that site. If an object does exist, that ComObject is to be
used since it may contain queued messages and valuable
information from prior connections. The anonymous one is
discarded. If the old ComObject also has a TransObject this
means the two sites must be trying to connect to each other
simultaneously and the open protocol described below
determines which channel is to be used. The old ComObject
then adopts the TransObject of that channel.
8) Connect and accept with the Physical Media Mediator:
This design is based on “Physical Media Mediator" for the
establishment of a physical channel. The idea of the
"Physical Media Mediator" is to make it achievable to
control what transport media to use from oz-level. It should
work for both standard and added on transport layers. This
architecture is described in the following Fig 4.

Physical Media
Mediator

TransController A TransController B

Com
Object

Site

Connection
procedure

Accept
procedure

Oz-level

Fig 4. Graphical view of architecture with a "Physical Media Mediator".

Every site object has one connection and one accept
procedure. When a reference to a site is given, the
connection procedure to be used to connect to that site is
included. Locally every site runs an accept procedure
dedicated to accept connections from the connection
procedure. The interface to the network layer is given
through a built-in.

9) Open protocol: The open protocol is used to negotiate
some communication properties and to assure that both sites
are using the same period version and know whom they are
talking to. It also determines what channel to use in case
both sites initiate communication simultaneously. It
consists of three regular messages created and sent by the
ComObjects .

• The anonymous ComObject sends
PRESENT(Version, Site).

• The initiating ComObject sends
NEGOTIATE(Version, Site, ChannelInfo)

At any point, either side can close the channel without
sending any prior warning. Sending a specific abort
message has been considered, but whenever there is a
version mismatch (the other site might not even be an
ozengine) that technique cannot be used [5][8]. Therefore
the transport layer must always detect a lost channel, and a
lost channel during the open protocol will be interpreted as
aborting the entire connection. The first four are definite,
but the buffer size needs to be equal for good performance

with big messages. Therefore the initiating side gives a
suggestion; the accepting side can either accept this or
choose a smaller size, but never a larger (to make a natural
end of the protocol). When the open protocol is run the
ByteBuffer is already in use. An effect of this is that the
ByteBuffer must always be large enough to fit a received
open-protocol message, and the size has to be possible to
change during runtime. Decisions on what size the buffer
should have, is completely up to the used transport layer,
and the corresponding TransObject should be asked for this.
10) Close protocol: A channel can be closed either
because it is no longer needed which is detected at garbage
collection, or because one site is running out of resources
and needs to give the resources to another ComObject for a
while. When garbage collection is run the other side is
given a chance to keep the channel, but when resources are
out, the connection must be closed. This implies two
different close messages:

• CLOSE_WEAK, sent at garbage collection

• CLOSE_HARD, sent at lack of resources

A ComObject that is being closed will also be understood
and one of the close messages as CLOSE_ACCEPT. After
sending a CLOSE_HARD or CLOSE_WEAK the state of
the ComObject changes to closing hard or closing weak. No
more messages will be sent until a CLOSE_REJECT is
received or the channel has been closed and reopened. At
the remote peer the state will be closing wait for disconnect
if it accepts the close. If the close is accepted the close
initiator will close the channel and the remote peer should
notice the disconnection as a lost channel. On both sides,
the TransObject is handed back to the TransController, but
the ComObject will stay until removed from the site [9].

11.) Passing Messages
The responsibility of transport layer is the actual
transportation of messages. This can be done in different
ways depending on what type of media used and thus on
what type of TransObject is used. The communication layer
expects the transport layer to provide a entirely reliable
service. Messages may only be lost when a channel is lost.
Messages sent should be received at their remote peer in the
same order. Some priority levels could be defined non-
FIFO. In this case, an extra parameter needs to be added to
the communication that allows these messages to be
received out of order. When a ComObject has something to
send, it will order its TransObject to deliver. The
TransObject should then pull messages when it is allowed
to send. The scheduler in the Mozart Virtual Machine could
be used to schedule when each TransObject can run [5]. A
more naive approach is used, where it is checked at each
thread switch whether input or output is possible, and
TransObject will be invoked. When a message is received
by the TransObject it should be put in a MsgContainer and
handed up to the ComObject. The TransObject is also
responsible for sending acknowledgement numbers that will
be provided when a message to be sent is pulled.
12) Byte Buffers: As most of the media are assumed to
transmit serialized consecutive data, a MsgContainers
provides one method that marshals a message into a
ByteBuffer and one that unmarshals it from a ByteBuffer.
To make marshaling and unmarshaling independent of

 G. Srinivas Reddy et al IJCSET |December 2012 | Vol 2, Issue 12, 1510-1515 www.ijcset.net | ISSN:2231-0711

1512

when data is sent from, or received to the ByteBuffer, it is
convenient to have a continuous ByteBuffer. Therefore, the
ByteBuffer is implemented as a circular structure. The
marshaler and the read handler, who write to the bytebuffer,
must assure that the ByteBuffer is not overfilled. This
requires a suspendable marshal. A suspendable marshaler
can stop when the ByteBuffer is occupied, and continue
later where it left off. This assumes the unmarshaler can
handle unmarshaling of the fragments produced by such a
marshaler.Each TransObject use exactly one ByteBuffer for
incoming and one for outgoing data which confines the
amount of memory used by each TransObject.
13) Big Messages: One of the problems of the old
distribution engine was that one large transfer was allowed
to monopolize the channel [11]. The complete message had
to be sent before any other message could be sent. In
addition, the complete message had to be received before
unmarshaling could be done which made the memory of the
distribution engine to grow temporarily. Therefore, the new
model introduces the concept of marshaling and sending
only parts of a big message at a time. This is made possible
through the suspendable marshaler mentioned in the
previous section. The unmarshaler will require a full
fragment to be received before beginning to work, and
therefore the ByteBuffer of the receiving side, must be at
least large enough to fit the complete contents of the
ByteBuffer at the sending side [11].
14) Specifics of the TCP-transport layer: When the TCP
TransObject is initialized, it registers a read handler with
the I/O-handler and when it is ordered to deliver, it registers
a write handler. The I/O-handler will then offer the control
back to the TransObject at certain times. These are the
times that messages will be marshaled and written, and
when messages will be read and unmarshaled. Messages are
marshaled from MsgContainers into frames. The contents
of the frames are stored in ByteBuffers. One message can
be put in one or more frames. One or more frames can be
put in each ByteBuffer. On every chance the TransObject
gets to write, it will try to write up to one full ByteBuffer.
The chosen structure means the first nine bytes must always
be received before trying to use any data. Then the frame
size can be compared to the received amount and a frame
can possibly be unmarshaled. The acknowledgement is
received earlier since it is independent of the message, and
might wait for the probe usage.

- Priorities
In the delivery of messages five different priority levels are
used, where level 1 and 5 are reserved for special system
messages and levels 2 through 4 are used for all other
messages. Levels 2-4 are scheduled like threads, but on
number of bytes sent instead of on time. The relation
between these priority levels can be altered from
application level [10].
Level 5: Send as fast as possible, Level 4: High priority,
Level 3: Medium priority, Level 2: Low priority, Level 1:
Send when no messages are waiting on levels two through
five. At regular intervals, messages on this level will be
moved to level two to ensure throughput.

- Acknowledgements and retransmission

 Since the transport layer is expected to provide a reliable
transfer, the only case when messages can be lost is when
the connection is lost [10]. Therefore, the only time that
messages need to be retransmitted is at reconnection but for
this scenario messages must be stored at the sender until
they are acknowledged. Messages from the protocol layer
are implicitly numbered by the ComObjects at the sending
and at the receiving side. Whenever such a message is sent,
an acknowledgement number telling the number of the last
received message is attached to the frame. Messages
produced by the ComObject are not desirable to
acknowledge. In this approach a big message that was
almost completely transmitted in a number of frames needs
to be resent if one frame is lost since only the complete
message is acknowledged. However with a reliable
transport media, this will rarely happen and the
implementation of the TransObject is free to add an extra
acknowledgement schema if the protocols or media used
are likely to cause lost messages.
15) Reference protocol: The only message exchange
needed is when a channel is opened and for clearing a
reference. Therefore, a field in the ChannelInfo declares the
need when a channel is opened, and one message, the
CLEAR_REFERENCE message clears a remote reference.
16) Garbage collection: When Mozart does garbage
collection, the distributed subsystem needs to be checked in
two phases.:

• All queued or unacknowledged MsgContainers need
to be traversed since they can hold references to oz-
entities and therefor are roots for garbagecollection.
Especially they can hold references to sites, which
imply the two phases. MsgContainers are found
through the ComController that maintains a list of
all (including anonymous) ComObjects.

• The site table is traversed. All sites that were not
marked need to check if they can be
garbagecollected. This is done by asking the
collection of garbage collection through the
instruction. If the ComObject still has a TransObject
but no need, it will send a
C_CLEAR_REFERENCE message. If it also thinks
that the remote peer has no need, it will send a
C_CLOSE_WEAK message. Then it will answer
no. If it is closeable the close protocol will close the
connection and at the next garbage collection, the
ComObject will be collected to [4].

17). Resource caching: Using a transport media is often
connected to some limited resource. In the case with TCP,
this resource is file descriptors; with UDP it is port numbers
and with shared memory it is number of shareable memory
pages. In order not to put a limit on the number of
connected sites, the available resources have to be shared
fairly between connections. In this model, this is done by a
mechanism called resource caching. A positive side effect
of resource caching in this way is that the memory usage is
also limited. TransObjects contain ByteBuffers that may be
large, and this way there will always be a limited number of
ByteBuffers. The number of resources available can be set
from oz-level as a weak and a hard limit. The weak limit
may be temporarily exceeded for incoming requests, but the
hard limit is definite. When the resources available run out,

 G. Srinivas Reddy et al IJCSET |December 2012 | Vol 2, Issue 12, 1510-1515 www.ijcset.net | ISSN:2231-0711

1513

the TransController will start a timer and try to preempt the
resources of some ComObjects. The ComObjects then have
to nicely close their connections and hand back the
TransObject to the TransController who can grant it to the
first waiting ComObject.

18) Preemption: A big issue for efficiency with e.g.
servers is whom to preempt, how many and when [5]. This
is a scheduling problem. For now a naive model is adopted:

- Whenever a resource for accept is granted, and the
weak limit is exceeded, or else if a connect is
requested and the weak limit is reached; start a
timer.

- The timer will preempt the resources of one
ComObject at regular intervals. The decision on
which one to preempt is done as follows: list of
running ComObjects is traversed and the first one
that can be closed (currently defined as being in
state working) will be chosen with the following
prioritizing:

 1.Has non-empty buffers.
 2.Has empty buffers but queued messages.

The basic advantage of this model is its disadvantages
 are plenty as given in the following:

- No respect is given to incoming messages. Thus the
one connection where a message resolving a
suspension in this engine is to come might be
closed, or a server might close an active client
instead of a client that just forgot to disconnect.

- The empty buffer criteria might not be appropriate
for all transport mediums.

- Clients behind firewalls should be treated
separately since it might be unfeasible to reconnect
from the outside.

- No guaranties are given on how long a connection
can be up prior to it will be closed again.

19) Error handling

 In the cases where it can be definitely known that a remote
site is permanently down, this needs to be reported to upper
layers. Those cases are when the open protocol determines
the remote site to run the wrong version or to be a different
site than expected, or possibly if the transport media reports
that the site is permanently down. The new fault model will
give the application programmer some way to close the
communication with a remote site. The importance in being
able to do so is to free resources such as memory and any
other resources connections use.

II. PERFORMANCE EVALUATION
For the complete evaluation of the performance changes,
one would have to study how the performance has changed
for each of the distributed entities as well as for larger
applications performing various different tasks. The
performance can be evaluated based on different parameters,
throughput, simultaneous connections, multiplexing and the
memory usage. A generic test measuring roundtrip times is
constructed. It consists of one server and a number of
clients. The server listens to a port for incoming messages,

and simply sends these messages back. It also triggers the
clients to begin and measures the total time from the trigger
to when all clients are done. The server can also poll its
memory usage. Every client sends lists of a specified size
and waits for it to come back. They measure the total time
for a number of iterations. Specifiable parameters are
number of clients, size of lists, and number of iterations. All
tests are run over a LAN at off peak hours. The server runs
on a workstation and all clients on a CPU server.
Comparative tests are run in a sequence of new, old, new,
old to verify reproducible results.

A. Throughput
Throughput is measured by starting one client and using

larger and larger lists to send data for a number of iterations.
The average roundtrip time is recorded and plotted in Error!
Reference source not found.5 . This indicates that the
performance has improved for all sizes i.e. the size of the
list (x) in elements versus the average roundtrip time (y) in
milliseconds. It should be noted that these results depend on
the number of iterations. At 1000 number of iterations the
differences vanish for list sizes below about 300 elements,
but remain for larger lists. At less iterations the differences
increase.

B. Simultaneous connections
The list size is set rather small, and the number of clients is
gradually increased. The total times at server and clients are
measured and plotted. It is also attempted to find an upper
limit on the number of clients one server can handle
simultaneously. The engine per default allows thirty file
descriptors to be used simultaneously .Results are displayed
in Error! Reference source not found.5. And a
comparative study for old and new engine is also shown in
table 1.

List size: 100, Iterations: 100

Fig 5. The average round trip at each client(y) in ms verses
Number of clients (x). The total number of servers(y)
Verses Number of clients (x).

TABLE 1. TEST ON MULTIPLEXING

 G. Srinivas Reddy et al IJCSET |December 2012 | Vol 2, Issue 12, 1510-1515 www.ijcset.net | ISSN:2231-0711

1514

With many clients, the old engine test only rarely came to a
result, explaining the lack of data in that graph. With the
new engine, tests with up to 170 clients were successful.
Beyond that, the operating system did not permit more
processes on the CPU server. Further testing with more
machines will be conducted in the future. When viewing the
total time of the server in Figure 5, it is evident that the
performance has improved, The strange shape of the curves
can be explained by the way the test is written. All clients
introduce themselves and then wait for the server to react
before they start their timer. This is to make sure that they
really run simultaneously. With many clients, the response
from the server will be delayed until there is a connection to
a particular client. This means a client can starve for some
time and then still measure a short time. The fact that the
clients running with the old engine get a lower time comes
from the preemption decision. The old engine has a more
sophisticated algorithm that closes the least recently used
connection. Hence we can conclude that performance has
improved, but resource scheduling can be further refined. It
should be considered that different applications might favor
clients getting done fast, while others might want to let
clients use resources fairly.

C. Multiplexing
Roundtrip when several threads at one client send to the
same server is measured and compared to the results of
simultaneous connections above. Since all threads in one oz
engine use the same communication channel, this will test
effects on the performance due to messages being sent in
one or more chunks.

III. CONCLUSION
It was possible to implement a new network layer with
more complex features, and still pertain or even enhance the
performance of the existing and working network layer of
Mozart. It was also likely to achieve a higher scalability
than the network layers of Java and Mozart with effortless
means. The maximum amount of memory needed for
message passing can be known in advance. There is much
more to be done to refine this model and further improve its
performance and make it dynamically changeable.

REFERENCES
[1] Seif Haridi, Peter Van Roy, Per Brand, Christian Schulte.

Programming Languages for Distributed Applications, 1998
[2] Java Remote Method Invocation Specification, JDK 1.2. Sun

Microsystems, 1998.
[3] Andrew S. Tanenbaum. Distributed Operating Systems, ISBN 0-13-

143934-0, 1995
[4] Luca Cardelli. A Language with Distributed Scope. Digital

Equipment Corporation, Systems Research Center, 1995.
[5] Ralf Scheidhauer. Design, Implementierung und Evaluiering einer

virtuellen Maschine für Oz. Dissertation, Universität des Saarlandes,
1998

[6] Andrew Birrell, Greg Nelson, Susan Owicki, Edward Wobber.
Network Objects. Research Report 115, Digital Equipment
Corporation, Systems Research Center, 1995.

[7] Connection procedure, being designed and described by Konstantin
Popov and Erik Klintskog

[8] Frequently Asked Questions - RMI and Object Serialization.
Available at:
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/faq.html,
January 2000

[9] Java Remote Method Invocation. Available at:
http://java.sun.com/marketing/collateral/rmi_ds.html, 1999

[10] Andrew S. Tanenbaum. Computer Networks, ISBN 0-13-394248-1,
1996

[11] Jan Tångring. Mozart: koncis och snabb, Datateknik 3.0, No 3 1999

 G. Srinivas Reddy et al IJCSET |December 2012 | Vol 2, Issue 12, 1510-1515 www.ijcset.net | ISSN:2231-0711

1515

	1.Has non-empty buffers.
	2.Has empty buffers but queued messages.

