

Semantic Search through Pattern Recognition

Shanti Gunna,
Dept of Computer Science & Engineering

DRK Institute of Science & Technology, Hyderabad
shantireddy22@yahoo.com

 N. Raghava Rao

HOD, Dept of CSE
DRK Institute of Science & Technology, Hyderabad

raghavarao.n@gmail.com

Abstract— Semantic search on databases often return a large
number of results, only a small subset of which is relevant to the
user. We present a semantic search technique considering the
type of desired Web resources and the semantic relationships
between the resources and the query keywords Ranking and
categorization, which can also be combined, to alleviate this
information overload problem. Results refinement for databases
is the focus of this work. A novel search interface that enables
the user to navigate large number of query results using the
Pattern recognition. First, the query results are matched with
the key word using full Pattern matching. In contrast, previous
works expand the hierarchy in a predefined static manner,
without navigation refinement modeling. We show that the
problem of selecting the best concepts to reveal at each
refinement and propose an efficient Pattern matching
algorithm. We show experimentally that how results are refined
using full Pattern matching at first level and half pattern
matching at second level

Keywords: Indexing, Location monitoring, Optimal String
matching, Pattern matching, Search process, Semantic Search

I. INTRODUCTION

 Search has many parameters and it is, of course, necessary
to set up a few of them with independent data in order to
reduce the number of degrees of freedom in the model. The
main interest of the model is in the interaction between
pattern recognition and search. Semantic search seeks to
improve search accuracy by understanding searcher intent
and the contextual meaning of terms as they appear in the
searchable data space, whether on the Web or within a closed
system to generate more relevant results. To address the
scalability issue in a large, distributed and dynamic setting
such as the Semantic (Web), it is often desirable to identify
which sources might be potentially relevant to a query before
these sources are accessed. We consider an approach for
identifying the minimal set of potentially relevant Semantic
Web data sources for a given query. In our framework, a
Potentially Relevant data source can make assertions about its
content’s relevance by means of REL statements. A data
source provider can use REL statements to summarize the
contents of a data source in terms of classes whose instances
the data source has information about and the properties used
to relate them. REL statements allow us to develop
algorithms to choose data sources that may be relevant to a

query and ignore sources that are definitely irrelevant.
Semantic search systems consider various points including
context of search, location, intent, and variation of words,
synonyms, generalized and specialized queries, concept
matching and natural language queries to provide relevant
search results. Two major forms of search: navigational and
research. In navigational search, the user is using the search
engine as a navigation tool to navigate to a particular
intended document. Rather than using ranking algorithms
such as Google's Page Rank to predict relevancy, semantic
search uses semantics, or the science of meaning in language,
to produce highly relevant search results. In most cases the
information queried by a user rather than have a user sort
through a list of loosely related keyword results.
The size of the query result makes it difficult for the user to
find the citations that the user is most interested in, and a
large amount of effort is expended searching for these results.
In recent years, many researchers have worked on how to
apply the methodology of classification to semantic search
for acquiring the optimization of search. Theoretically at
least, such a search engine could offer advanced querying and
browsing of structured data with search results automatically
aggregated from multiple documents and rendered directly in
a clean and consistent user-interface, thus reducing the
manual effort required of its users. Indeed, there has been
much research devoted to this topic, with various incarnations
of (mostly academic) RDF-centric Web search engines
emerging.
Many solutions have been proposed to address this
problem—commonly referred to as information overload [1],
[2], These approaches can be broadly classified into two
classes: ranking and categorization—which can also be
combined. Ranking presents the user with a list of results
ordered by some metric of relevance [9] or by content
similarity to a result or a set of results. In categorization [1],
[2], [3], query results are grouped based on hierarchies,
keywords, tags, or attribute values. User studies have
demonstrated the usefulness of categorization in finding
relevant results of exploratory queries [12]. While ranked
results are useful when the ranking function is aligned with
user preferences or the result list is small in size,
categorization is generally employed by users when ranking
fails or the query is too “broad” [12].Which rely on the

IJCSET |November 2012 | Vol 2, Issue 11, 1483-1487 www.ijcset.net | ISSN:2231-0711

1483

detection of certain patterns in web content that could
potentially be harmful. There are many existing string
matching algorithms, such as SBOM (Set Backward Oracle
Matching) [3], Aho- Corasick [4], Set Horspool [5], Wu-
Manber [6], SOG [7], etc. These matching algorithms are
classified into two categories: prefix matching and suffix
matching. In general, suffix matching is faster and more
effective in handling long patterns than prefix matching; thus,
it is used more widely.

II. RELATED WORK
The MEDLINE database, on which the Pub Med search
engine operates, contains over 18 million citations and is
currently growing at the rate of 500,000 new citations each
year Other biological sources, such as Entrez Gene and
OMIM witness similar growth. As claimed in previous work
the ability to rapidly survey this literature constitutes a
necessary step toward both the design and the interpretation
of any large-scale experiment. Biologists, chemists, medical
and health scientists are used to searching their domain
literature—such as Pub Med—using a keyword search
interface. Here, query language is based on the conjunctive
query language for DLs that has been proposed by Horrocks
et al.. This query language overcomes the inadequacy of
description logic languages in forming extensional queries.
Furthermore, it corresponds to the most common SPARQL
queries. We refer to the left hand side of :- as the head of the
query and the right hand side as the body of the query. The
variables that appear in the head must appear also in the body
and are universally quantified. Such variables are called
distinguished variables and describe the form of a query’s
answers. All other variables in the query are called non-
distinguished variables and are existentially quantified. For a
given query Q and substitution θ, we use Q θ as a shorthand
for B1θ ^ B2 θ . . .^ Bn θ.
Currently, in an exploratory scenario where the user tries to
find citations relevant to her line of research and hence not
known a priori, she submits an initially broad keyword-based
query that typically returns a large number of results.
Subsequently, the user iteratively refines the query, if she has
an idea of how to, by adding more keywords, and resubmits
it, until a relatively small number of results are returned.
Haase and Motik [6] have described a mapping system for
OWL and proposed a query answering algorithm. They
identify a mapping language that is similar to ours. However,
as their language adds rules to OWL, it is undesirable and as
such they need to introduce restrictions to achieve
decidability. Our language, on the other hand, is a sub
language of a decidable language. Furthermore, similar to the
DRAGO approach, Haase and Motik do not rely on an
explicit reformulation step and process all the maps for a
query reformulation. Peer-to-peer systems like Bibster [2]
and Some Where have shown promises in providing query
answering solutions for the Semantic Web. However, a peer-
to-peer system needs special software installed at every
server. Our system on the other hand makes use of the
existing infrastructure of the Web. A recent work by Liarou

et al. [11] uses Distributed Hash Tables (DHT) to index and
locate relevant RDF data sources. However, they do not
address the schema mapping issue and therefore work on a
single ontology environment. Furthermore, DHTs are
targeted for a more P2P architecture as opposed to client
server web architecture.

2.1Commonly used searching methodologies

The annotation process can be generally divided into two
steps. The first is to establish mappings between existing
Semantic Web terms and those needs to be annotated in data.
The second step is to come up with a local ontological
structure constituting the semantic web terms to model the
data. Most of previous works in annotating semi structured
data focus on the second step. Some skip the first step and
bootstrap the ontological terms and structure from the local
data itself. For example, a number of systems that map data
in RDB to RDF format leverage a set of rules such as “table
to class and column to predicate”. The Semantic Web may
represent a future direction for bringing deep-Web
information to the surface, leveraging RDF as a common and
exible data model for exporting the content of such databases,
leveraging RDFS and OWL as a means of describing the
respective schemata, and thus allowing for automatic
integration of such data by Web search engines. Efforts such
as D2R(Q) [13] seem a natural fit for enabling RDF exports
of such online databases. Offering search and querying over a
raw RDF dataset collected from the Web would thus entail
many duplicate results referring to the same entity, emulating
the current situation on the HTML Web where information
about different resources is fragmented across source
documents. Given a means of identifying equivalent entities
in RDF data { entities representing the same real-world
individual but identified incongruously} would enable the
merging of information contributions on an entity given by
heterogeneous sources without the need for consistent URI
naming of entities.
The majority of users are accustomed to expressing their
information needs in terms of keywords. It would be
interesting to have a semantic search that has a traditional
“Google-like” interface (keyword queries), but at the same
time performs semantic processing. A semantic search that
enables both textual information and RDF annotations
querying is presented in [5]. Froogle [7] also presents a very
interesting approach for product searches. It is a search
engine specialized in querying for products, where the user
expresses the products he wants to search
for using keywords that are associated with the product (i.e.
its brand, name, model, etc.). Froogle tries to guess the
product the user wants to search for by associating the
keywords in the query with the metadata that describe the
products in their knowledge base. Another interesting
semantic searcher is SCORE [15]. It uses automatic
classification and information-extraction techniques together
with metadata and ontology information to enable contextual
multi-domain searches that try to understand the exact user
information need expressed in a keyword query.

Shanti Gunna, et al IJCSET |November 2012 | Vol 2, Issue 11, 1483-1487 www.ijcset.net | ISSN:2231-0711

1484

In general the common search algorithms are
RDF Path Traversal - traversing the net formed by the RDF
data format.
Keyword to Concept Mapping
Graph Patterns - used to formulate patterns for locating
interesting connecting paths between resources. Also
commonly used in data visualization.
Logics - by using inference based on OWL
Fuzzy concepts, fuzzy relations, and fuzzy logics
2.2 Single pattern algorithms
This algorithm requires a preprocessing phase, which
prepares a table of occurrences of the first and the last
characters of the pattern in the given input text. The
preprocessing phase time complexity of the Native string
search algorithm is less than the Rabin-Karp string search
algorithm and the Quick Search algorithms. The
preprocessing phase time complexity of the Rabin-Karp string
search algorithm is compared with the Native string search
algorithm and Quick Search algorithms and is presented in
the table tab 1,
Let m be the length of the pattern and let n be the length of
the searchable text. Asymptotic times are expressed using O,
Ω, and θ notation. Before introducing our method, we first
investigate the influence on searching time cost when using
different strategies of Exact Pattern Matching and Partial
Pattern matching algorithm; we extract partial strings from
three positions: the leftmost, the rightmost, and the middle of
the pattern. Above figure shows the comparison of their
corresponding searching speed. We can see that the speed of
extracting partial strings from the left most characters is the
fastest, while extracting from the rightmost is the slowest.
Speed of extracting from the middle position lies.

Algorithm
Preprocessing

Time
Matching Time

Native string search
algorithm

0(no preprocessing) θ((n-m+1)m)

Rabin-Karp string
search algorithm

θ (m)
average(n+m),

worst θ((n-m+1)m)
Finite-state
automaton based

h

θ(m|Σ|) θ (n)

Knuth-Morris-Pratt
algorithm

θ (m) θ (n)

Boyer-Moore string
search algorithm

θ(m+|Σ|) Ω(n/m), O(n)

In this phase, we find the occurrences of the first and last
characters of the pattern in the given input text. Here, we will
get two cases: first and last characters of the pattern are
similar and the other, dissimilar.

III.SYSTEM MODEL
When user searches first refinement take place and here on
first search button user enters his key word by looking at the
description given to it server hit the database location
information by raising a query, the server takes it gives
information to user. This is the proposed system architecture.
In order to make this system to overcome information
overload problem at first search exact Pattern Matching used

and at the second level of refinement Partial Pattern Matching
is used two algorithms are proposed. They are known as
Exact Pattern Matching algorithm and Partial Pattern
Matching algorithm. Here, we get two cases: first and last
characters of the pattern in the given input text may be of
similar or dissimilar.
Case 1: If the first and the last characters of the Patterns are
similar
If the difference between any two occurrences of the first
character of the pattern in the pre-computed table is less than
the size of the pattern by one, then, it is taken as one
probability for occurrence of an exact pattern match.
Case 2: If the first and the last characters of the Patterns are
dissimilar
If the difference between any two occurrences of the last and
the first characters of the pattern in the pre computed table is
less than the size of the pattern by one, then, it is taken as one
probability for occurrence of an exact pattern match.
An interesting functionality is that the system provides, for
each node obtained as a result of the propagation, the shortest
path from one of the origin nodes. This allows recovering the
path followed in the graph to obtain the inference. The node
which contributed most for the activation of each node in the
result set is also provided. Both these data are very important
since they allow the knowledge engineer to better evaluate
the results presented, and tune the search engine when
necessary. If the results are not satisfactory, this information
gives clues that show where the configuration should be
changed in order to obtain better results. The result given by
the traditional search engine is a set of node instances ordered
by their similarity with the query. This set of nodes is
supplied to the spread activation algorithm as the initial set of
nodes for the propagation. In addition, the ordering
information given by the traditional search engine is also
used. For each node, the traditional search engine provides a
real number that measures the relative importance of that
node with respect to the given query. This numeric value is
used as the initial activation value for the node. Therefore, the
nodes that were ranked well by the traditional search engine
will have priority in the propagation since the exploration
starts at the nodes with the highest activation values.
The basic Search look like following Figure .1

Figure.1: Semantic Search Interface

Shanti Gunna, et al IJCSET |November 2012 | Vol 2, Issue 11, 1483-1487 www.ijcset.net | ISSN:2231-0711

1485

3.1Exact Pattern Matching Algorithms
The proposed location algorithms are meant for achieving
three purposes. The first purpose is that they can enhance the
quality of location services. The second purpose is to
minimize the computational resources and communication
overhead. The third purpose of them is to ensure anonymity
of personal location privacy.

Figure. 2: Exact Pattern Matching algorithm

IV. IMPLEMENTATION
Pattern-matching algorithms scan the text with the help of a
window, whose size is equal to the length of the pattern.
The first step is to align the left ends of the window and the
text and then compare the corresponding characters of the
window and the pattern; this procedure is known as attempt.
After a match or a mismatch of the pattern, the text window
is shifted to the right. The question is how many characters
are required to shift the window on the text. This shift value
varies based on the methodology used by various algorithms.
This procedure is repeated until the right end of the window
is within the right end of the text. The order of comparisons is
carried out by comparing the last character of the window and
the pattern, and after a match, the algorithm further compares
the first character of the window and the pattern. By doing so,
an initial resemblance can be established between the pattern
and the window, and the remaining characters are compared
from right to left until a complete match or a mismatch
occurs. After each attempt, the skip of the window is gained
by the Quick-Search bad character (qsBc) shift value for the
character that is placed next to the window.
By using these algorithm first refinement can be done and no
of citations to navigate is also reduced and it will look like
follows from fig1 we are selecting books from 12 citations it
is reduced to 2 and it look like following figure fig.3

Figure. 3:After first refinement using Exact Pattern Matching

Now at second level refinement we are using for example
Fig illustrates the searching process with a certain pattern
set. In Figure two pointers have moved d1 off the last
position in this window, which means there are only d1
characters that were successfully matched. The window is
then shifted after the failed search by the oracle. The two
pointers are set to the last position of the new window again.
These two pointers are decreased until the pointed characters
fail to match. These steps are iterated until the end of the text,
with the total number of times in which the window is slid
being k. Within the i-th window, the comparisons between
the corresponding two characters have been completed for di
times. Location algorithm is presented as follows:

Our algorithm allows the proper partial strings extraction
from a pattern set, with random pattern lengths meeting most
suffix matching algorithms' requirements. Each of the
experiments discussed here shows that choosing the partial
strings extracted by our method can achieve better searching
speed than those by other methods. Moreover, the advantage
of our method is more obvious on the Snort pattern set. When

Shanti Gunna, et al IJCSET |November 2012 | Vol 2, Issue 11, 1483-1487 www.ijcset.net | ISSN:2231-0711

1486

the scale of pattern set increases, our method can achieve
more graceful degradation.

V. RESULTS ANALYSIS
To assess the performance of our algorithm, we considered
all the well-known algorithms for comparison with the
proposed algorithm. We have analyzed two types of data,
consisting of small (ó) 4) and big (ó) 20) alphabet sizes.The
first one is the pattern set available in the and the second is
the searching speed sequences. We have executed and tested
all the algorithms under study using a 3.06 GHz processor, 1
GB of RD-RAM with 512 KB of cache memory.

Figure 4. Speed comparisons of partial string extractions at different

positions with pattern sets changing. Pattern sets are from Snort.
(pattern number range: 1000-3500, pattern length range: 5-18).

IV.CONCLUSION AND FUTURE WORK

Information overload is a common phenomenon encountered
by users searching huge databases We address this problem
by organizing the query results according to their associations
to concepts In this paper, we propose a novel method to
Semantic Search using both Exact Pattern Matching and
optimal partial strings based on achieving the fastest
searching speed. these citations are refined such that the
information overload observed by the user is minimized. We
propose database indexing for large data. A database index is
a data structure that improves the speed of data retrieval
operations on a database table at the cost of slower writes and
increased storage space. Indices can be created using one or
more columns of a database table, providing the basis for
both rapid random lookups and efficient access of ordered
records For example, an index could be created on upper(last
name), which would only store the upper case versions of the
last name field in the index. Another option sometimes
supported is the use of "filtered" indices, where index entries
are created only for those records that satisfy some
conditional expression. A further aspect of flexibility is to

permit indexing on user-defined functions, as well as
expressions formed from an assortment of built-in functions.

REFERENCES
[1] J.S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis, “Automated Ranking

of Database Query Results,” Proc. First Biennial Conf. Innovative Data
Systems Research, 2003.

[2] K. Chakrabarti, S. Chaudhuri, and S.W. Hwang, “Automatic
Categorization of Query Results,” Proc. ACM SIGMOD, pp. 755- 766,
2004.

[3] Z. Chen and T. Li, “Addressing Diverse User Preferences in SQLQuery-
Result Navigation,” Proc. ACM SIGMOD, pp. 641-652, 2007.

[4] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite
Expansions, pp. 176-177, Reidel, 1974.

[5] R. Delfs, A. Doms, A. Kozlenkov, and M. Schroeder, “GoPubMed
Ontology-Based Literature Search Applied to Gene Ontology and
PubMed,” Proc. German Conf. Bioinformatics, pp. 169-178, 2004.

[6] D. Demner-Fushman and J. Lin, “Answer Extraction, Semantic
Clustering, and Extractive Summarization for Clinical Question
Answering,” Proc. Int’l Conf. Computational Linguistics and Ann.
Meeting of the Assoc. for Computational Linguistics, pp. 841-848,
2006.

[7] Entrez Programming Utilities, http://www.ncbi.nlm.nih.gov/
entrez/query/static/eutils_help.html, 2008.

[8] U. Feige, D. Peleg, and G. Kortsarz, “The Dense k-Subgraph Problem,”
Algorithmica, vol. 29, pp. 410-421, 2001.

[9] V. Hristidis and Y. Papakonstantinou, “DISCOVER: Keyword Search in
Relational Databases,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), 2002.

[10] R. Hoffman and A. Valencia, “A Gene Network for Navigating the
Literature,” Nature Genetics, vol. 36, no. 7, p. 664, 2004.

[11]iHOP—Information Hyperlinked over Protein, http://www. ihop-
net.org/UniPub/iHOP/, 2008.

[12] M. Kaki, “Findex: Search Results Categories Help When Document
Ranking Fails,” Proc. ACM SIGCHI Conf. Human Factors in
Computing Systems, pp. 131-140, 2005.

[13] Snort Rule. http://www.snort.org/snort-rules
[14] ClamAV Rule. http://www.clamav.net/lang/en/download/cvd/
[15] C. Allauzen, M. Crochemore and M. Raffinot, “Efficient Experimental

String Matching by Weak Factor Recognition”, in Proc. 12th Annu.
Symp. on Combinatorial Pattern Matching, Jerusalem, July 1–4, 2001,
pp. 51-72.

[16] A. Aho and M. Corasick, Bell Laboratories. “Efficient String
Matching:An Aid to Bibliographic Search”, in Communications of the
ACM, vol. 8, 1975, pp. 333-340.

[17] G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings:
Practical on-line search algorithms for texts and biological sequence.
Cambridge: Cambridge University Press, 2002.

[18] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching”,
Dept. of Computer Science, University of Arizona, Tucson, AZ, TR-
94-17, 1994.

.

 Mrs. Shanti Gunna is pursuing M.Tech
from DRK Institute of Science and Technology,
Hyderabad.Her main research interest includes
Data Mining, Compiler design.

Mr. N. Ragha Rao has received his M.Tech degree
in Computer Science Engineering. He has many
years of experience in teaching field, presently
working as HOD and Associate Professor, Computer
Science & Engineering at DRK Institute of Science
and Technology, Hyderabad, Andhra Pradesh.

Shanti Gunna, et al IJCSET |November 2012 | Vol 2, Issue 11, 1483-1487 www.ijcset.net | ISSN:2231-0711

1487

