
Protocol Based Approach on Vulnerability
Detection Tools of SQLIA along with Monitoring

Tools
D. Naga Swetha1, B. Shyam Kumar2

Department of Information Technology
 Teegala Krishna Reddy Engineering College
 Hyderabad, India.

1 swetha.tkrecit@gmail.com
2 shyamtkrec@gmail.com

Abstract—SQL injection attacks pose a serious threat to the
security of Web applications and web services because they
can give attackers unrestricted access to databases that
contain sensitive information. In this paper, we proposed a
new, protocol based approach to easily identify the
vulnerability taking place in web applications and web
services. Our approach has both conceptual and practical
advantages. We have presented an experimental evaluation of
security vulnerabilities occurring in web applications and
services with the protocols used for them. The different
approaches to test web applications for vulnerabilities given
the experimental results and statistical analysis based on
today's trend. Solutions are provided for parameter tampering
in SOAP protocol with detection process. As attacks are taking
place on protocols, finally to take control over SQLIAs,
evaluation of attacks on protocols presented with the help of
monitoring tools-a new innovation.

Keywords—Web services, Web applications, Protocols,
SQLIA, Vulnerabilities, Vulnerability Scanners, Monitoring
tools.

I. INTRODUCTION
More and more of the applications we use every day are
moving online nothing but internet. The internet carries an
extensive range of information resources and services, such
as the inter-linked hypertext documents of the World Wide
Web (www) and the infrastructure to support e-mail.
Basically, internet is an insecure channel for exchanging
information. A new challenge is posed on software
engineers for testing web applications and web services
against web security threats. Scattered data over the web or
internet has given a chance to the hackers to gain access on
the data from various data bases. For example, if a hacker
hacks any individual user’s credentials, he can misuse the
user’s account information for various purposes and causes
huge amount of harm to the concerned user. Most of the
database applications such as banking, online shopping etc.
often consist of crucial and valuable information. Mostly,
many of the database applications dynamically generate
commands in the database language that is SQL-Structured
query language. It is a computer language aimed to store,
manipulate, and query data stored in relational databases.
We use SQLcommands/Queries for storing, retrieving and
manipulating data in a relational database. One particular
type of attack, which gives the attackers a way to gain
complete access to the databases underlying web
applications, is an SQL injection attack

(SQLIA). By using this attack, hackers can easily alter or
may delete the information stored in the databases.
Insufficient input validation is the major reason for SQL
injection vulnerabilities.
In this paper, we present all the different types of SQL
injection attacks along with the focusing areas of attackers
whose intension is to hack the crucial data of the concerned
user. Along with this information, a new proposal of
comparison tools of all different categories has presented
with protocol suite. All the tools presented in this paper
play their individual role with respect to their mentioned
areas. To draw the attention of attackers on web
applications and web services, we need to find the
vulnerabilities in web applications that are done with SQL
injections. To overcome this problem and to provide
information to the users we presented all the attacks from
the attackers and detection of attacks also in this paper.

II. MOTIVATION: SQL INJECTION ATTACKS
A SQL Injection attack can occur when a web application
utilizes user-supplied data without proper validation or
encoding as part of a command or query. The specially
crafted user data tricks the application into executing
unintended commands or changing data[1]. Attackers
provide specially crafted input data to the SQL interpreter
and trick the interpreter to execute unintended commands.
With over 20% of all web vulnerabilities being attributed to
SQL Injection, this is the 2nd most common software
vulnerability and having the ability to find and prevent SQL
injection should be top of mind for web developers and
security personnel.
2.1 Web application and SQL injection attack (SQLIA)
with example:
A. Web Application Architecture:

Fig. 1 3-tier web application architecture

IJCSET |November 2012 | Vol 2, Issue 11, 1476-1483 www.ijcset.net | ISSN:2231-0711

1476

In the architectures shown in Fig 1, commands are sent to a
"middle tier" of services, which then sends the commands
to the data source. The data source processes the commands
and sends the results back to the middle tier, which then
sends them to the user.

B. SQL Injection Attack (SQLIA) with example:
An SQL Injection Attack (SQLIA)[2] occurs when an
attacker changes the developer’s intended structure of an
SQL command by inserting new SQL keywords or
operators.
Let’s have a look at the SQL example given below.
String SQLQuery=”SELECT Username, Password
FROM users WHERE Username=’ “ + Username +
“ ‘ AND Password=’ “ + Password + “ ‘ “ ;
Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(SQLQuery);
while (rs.next()) { … }
If an attacker provides ‘or 0=0’ as the username and
password, then the query will be constructed as:
String SQLQuery =”SELECT Username, Password FROM
users WHERE Username=” or 0=0” AND Password=” or
0=0”;

Fig. 2 SQLIA Example

SQL injection can be prevented by adopting an input
validation technique in which user input is authenticated
against a set of defined rules for length, type, and syntax
and also against business rules.

2.2 Classification Parameters and Mechanisms in SQLIA:
The attacking vector contains five main sub-classes
depending on the technical aspects of the attack's
deployment.
The common mechanisms we explain in this section are as
follows:
Injection through user input: In this case, attackers inject
SQL commands by providing suitably crafted user input.
Injection through cookies: Cookies are files that contain
state information generated by Web applications and stored
on the client machine. When a client returns to a Web
application,
cookies can be used to restore the client’s state
information.

TABLE I
CLASSIFICATION PARAMETERS

Injection through server variables: Web applications use
these server variables in a variety of ways, such as logging
usage statistics and identifying browsing trends.
Second-order injection: In second-order injections,
attackers seed malicious inputs into a system or database to
indirectly trigger an SQLIA when that input is used at a
later time.

III. OUR APPROACH
3.1 Different types of SQL Injection Attacks:
This section gives a brief information regarding the various
types of SQL injection attacks took place in web
applications.

A. Tautologies:
Tautology-based attack [4] is to inject code in one or more
conditional statements so that they always evaluate to true.
Example:
In this example attack, an attacker submits “ ’ or 1=1 - -”.
The Query for Login mode is:
SELECT * FROM user info WHERE loginID=’’ or 1=1 - -
AND pass1=’’
The code injected in the conditional (OR 1=1) transforms
the entire WHERE clause into a tautology the query
evaluates to true for each row in the table and returns all of
them. The application would invoke method
user_main.aspx and to access the application.

B. Union Query:
The result of this attack is that the database returns a dataset
that is the union of the results of the original first query and
the results of the injected second query.
Example: An attacker could inject the text
“’ UNION SELECT pass1 from user_info where
LoginID=’secret - -” into the login field, which produces
the following query:

 D. Naga Swetha et al IJCSET |November 2012 | Vol 2, Issue 11, 1476-1483 www.ijcset.net | ISSN:2231-0711

1477

SELECT pass1 FROM user_info WHERE loginID=’’
UNION SELECT pass1 from user_info where
LoginID=’secret’ -- AND pass1=’’
The database takes the results of these two queries, unions
them, and returns them to the application. In many
applications, the effect of this operation is that the value for
“pass1” is displayed along with the account information.

C. Piggy-Backed Queries:
In this attack type, an attacker tries to inject additional
queries into the original query. As a result, the database
receives multiple SQL queries. The first is the intended
query which is executed as normal; the subsequent ones are
the injected queries, which are executed in addition to the
first.
Example: If the attacker inputs “drop table users - -” into
the pass field, the application generates the query:
SELECT accounts FROM users WHERE login='doe' AND
pass= ' ' ,drop table users -- ' AND pin=123

The solution like simply scanning for a query separator is
not an effective way to prevent this type of attack.

IV. OUR IMPLEMENTATION: PROTOCOL

PERFORMANCE
4.1 Vulnerability Detection Techniques for Web Services
4.1.1 Web Vulnerability Scanners:
Web services provide a simple interface between a provider
and a consumer and are supported by a complex software
infrastructure, which typically includes an application
server, the operating system and a set of external
systems(eg. databases).[9] Security vulnerabilities like SQL
injection and XPath injection attacks take advantage of
improper coded applications to change SQL commands that
are sent to the database.
4.1.2 Approaches to test Web Applications for
Vulnerabilities:
White Box testing: It examines the internal source code of
the web application. Because of the complexity of code, we
may not find all security flaws in the code.
Black Box testing: It examines the execution of the
application in search for vulnerabilities.
4.1.3 Vulnerability Types in Web Services:
XPath Injection: It is possible to modify an XPath query to
“be parsed in a way differing from the programmer's
intention”. Attackers may gain access to information in
XML
documents[9].
Code Execution: It is possible to manipulate the application
inputs to trigger server-side code execution[9]. An attacker
can exploit this vulnerability to execute malicious code in
the server machine.
Buffer Overflow: It is possible to manipulate inputs in such
a way that causes buffer allocation problems, including
overwriting of parts of the memory[9]. An attacker can
exploit this causing Denial of Service or, in worst cases,
“alter application flow and force unintended actions”.
Username/Password Disclosure: The web service response
contains information related to usernames and/or
passwords[9]. An attacker can use this information to get
access to private data.

Server Path Disclosure: The response contains a fully
qualified path name to the root of the server storage system.
[9]. An attacker can use this info to discover the server file
system structure and devise other security attacks.

TABLE II
OVERALL RESULTS

Scanners classify these situations as low importance
security issues.

Fig. 3 Application Errors detected

In the above graph, Scanners VS1.1 and VS1.2 detected a
code execution vulnerability. This is a particularly critical
vulnerability that allows attackers to execute code in the
server. VS3 was the only one pointing vulnerabilities
related to buffer overflow, username and password
disclosure, and server path disclosure.

Fig. 4 SQL injection Vulnerabilities

The above figure shows the intersection areas of the circles
which represent the number of vulnerabilities detected by
more than one scanner. It clearly shows that the four
scanners detected different sets of SQL Injection
vulnerabilities and the differences are considerable,
pointing again to relatively low coverage of each
vulnerability scanner individually.

 D. Naga Swetha et al IJCSET |November 2012 | Vol 2, Issue 11, 1476-1483 www.ijcset.net | ISSN:2231-0711

1478

Fig. 5 Vulnerabilities distributed per type

The above figure shows the final distribution of
vulnerabilities
per type, after removing the confirmed false positives but
including the doubtful cases (i.e., optimistic evaluation of
the scanners)

4.2 SOAP: Protocol used for Web Vulnerability Scanner
Simplified Object Access Protocol (SOAP) is a
specification that enables applications to communicate with
other applications. It provides a framework for connecting
Web sites and applications to create Web services.
4.2.1 SOAP Architecture:
The above figure shows the overall architecture of a generic
system built using SOAP. This system uses HTTP protocol
to pass the SOAP message between the client and the
server. The client application calls a client-side proxy
object using its native RPC protocol. The proxy object uses
an XML parser to convert the call into a SOAP packet.
This SOAP packet is then transmitted over the
Internet/Intranet to the web server using the HTTP protocol.
The Web server handles the URL connection point of the
remote service, and launches a SOAP translator which may
be an ASP page, an ISAPI extension, a CGI program, a Perl
script, etc. This translator uses a local XML parser to parse
out the object name, method name and parameter values
from the SOAP package. It uses these values to call the
particular method of the server object by the local ORPC
protocol, and packages the results into a response SOAP
packet. This response is unpackaged by the proxy and
presented to the client.

Fig. 6 SOAP Architecture

4.2.2 SQL Injection through SOAP Parameter Tampering:
An attacker modifies the parameters of the SOAP message
that is sent from the service consumer to the service
provider to initiate a SQL injection attack. On the service
provider side, the SOAP message is parsed and parameters
are not properly validated before being used to access a
database in a way that does not use parameter binding, thus
enabling the attacker to control the structure of the executed
SQL query. This pattern describes a SQL injection attack
with the delivery mechanism being a SOAP message.
Attack Execution Flow:
A. Detect Incorrect SOAP Parameter Handling:

TABLE III
DETECTING SOAP PARAMETER TAMPERING

The attacker tampers with the SOAP message parameters
and looks for indications that the tamper caused a change in
behavior of the targeted application.

B. Inject SQL via SOAP Parameters:
The attacker injects SQL via SOAP parameters identified as
vulnerable during Explore phase to launch a first or second
order SQL injection attack.

TABLE IV
DETECTING VULNERABILITY

C. Solutions and Mitigations:
Properly validate and sanitize user input at the service
provider. Ensure that prepared statements or other
mechanism that enables parameter binding is used when
accessing the database in a way that would prevent the
attacker's supplied data from controlling the structure of the
executed query. At the database level, ensure that the
database user used by the application in a particular context
has the minimum needed privileges to the database that are
needed to perform the operation. When possible, run
queries against regenerated views rather than the tables
directly.

 D. Naga Swetha et al IJCSET |November 2012 | Vol 2, Issue 11, 1476-1483 www.ijcset.net | ISSN:2231-0711

1479

4.3 Vulnerability Detection Techniques for Web
Application
4.3.1 AJECT: Vulnerability Detection Tool

Fig. 7 AJECT Architecture

The Attack inJECtion Tool (AJECT) was designed to look
for vulnerabilities in network server applications, although
it can also be utilized with local daemons. AJECT does not
need the source code of the server to perform the attacks,
i.e., it treats the server as a black box. AJECT has to obtain
a specification of the protocol utilized in the
communication with the server.
In the above shown architecture of AJECT, the Target
System is the entire software and hardware components that
comprise the target application and its execution
environment. The Network Server is typically a service that
can be queried remotely from client programs (e.g., a mail
or FTP server). The Network Server Protocol Specification
is a graphical user interface component that supports the
specification of the communication protocol used by the
server. This specification is utilized by the Attack
Generator to produce a large number of test cases. The
Attack Injector is responsible for the actual execution of the
attacks by transmitting malicious packets to the server.
4.3.2 Example: A Software component with vulnerable
points
Architecture view:

Fig. 8 Architecture view of a software component with vulnerabilities

The external access to the component is provided through a
known Interface Access, which receives the input arriving
in network packets or disk files, and eventually returns
some output. Whether the component is a simple function

that performs a specific task or a complex system, its
intended functionality is, or should be, protected by Input
Data Validation layers. By accessing the interface, an
adversary may persistently look for vulnerabilities by
stressing the component with unusual forms of interaction,
such as sending wrong message types or opening
malformed files.

4.4 Protocols used for AJECT tool
A. POP(Post Office Protocol): The Post Office Protocol is
designed to allow a workstation to dynamically access a
mail drop on a server host. POP3 allows a workstation to
retrieve mail that the server is holding for it. POP3 is not
designed to provide extensive manipulation operations of
mail on the server; which are done by a more advanced
protocol IMAP4. POP3 uses TCP as the transport protocol.
B. SMTP-Simple Mail Transfer Protocol: Simple Mail
Transfer Protocol (SMTP) is a protocol designed to transfer
electronic mail reliably and efficiently. An important
feature of SMTP is its capability to transport mail across
networks, usually referred to as “SMTP mail relaying”.
C. IMAP & IMAP4(version 4): Internet Message Access
Protocol (IMAP) is a method of accessing electronic mail
or bulletin board messages that are kept on a mail server.
IMAP includes operations for creating, deleting and
renaming mailboxes, checking for new messages and many
more.
D. MIME (S-MIME): Multipurpose Internet Mail
Extensions and Secure MIME. MIME is a very flexible
format, permitting one to include virtually any type of file
or document in an email message. A secure version of
MIME, S/MIME (Secure/Multipurpose Internet Mail
Extensions), is defined to support encryption of email
messages.

4.5 Attacks on Protocols used for AJECT Tool
4.5.1 Attack on IMAP:
In this case, command injection is done over the IMAP
server so they must follow the format and specifications of
this protocol. The webmail applications communicate with
the IMAP server to carry out their operations and that's the
reason why they are more vulnerable to this kind of attack.
During user authentication the webmail application
transmits credentials to the IMAP server, so it's possible the
IMAP Injection takes place without the need of having a
valid account in the application, exploiting the
authentication mechanism of the IMAP server.
Example: Let's see an example of IMAP Injection by
exploiting the functionalities of reading a message.
Assume that the webmail application uses the parameter
"message_id" to store the identifier of the message that the
user wants to read. When a request containing the message
identifiers is sent the request would appear as:
http:// <webmail>/read_email.php?message_id=<number>
Suppose that the webpage "read_email.php", responsible
for showing the associated message, transmits the request to
the IMAP server without performing any validation over
the value <number> given by the user. The command sent
to the mail server would look like this:
FETCH <number> BODY[HEADER]

 D. Naga Swetha et al IJCSET |November 2012 | Vol 2, Issue 11, 1476-1483 www.ijcset.net | ISSN:2231-0711

1480

In this context, a malicious user could try to conduct IMAP
Injection attacks through the parameter "message_id" used
by the application to communicate with the mail server.
For example, the IMAP command "CAPABILITY" could
be injected using the next sequence:
http://<webmail>/read_email.php?message_id=1
BODY[HEADER]%0d%0aZ900CAPABILITY%0d%0a
Z901 FETCH 1
This would produce the next sequence on IMAP commands
in the server:
 FETCH 1 BODY[HEADER] Z900 CAPABILITY
 Z901 FETCH 1 BODY[HEADER]
So the page returned by the server would show the result of
the command "CAPABILITY" in the IMAP server:
 * CAPABILITY IMAP4rev1 CHILDREN NAMESPACE
THREAD=ORDEREDSUBJECT
THREAD=REFERENCES SORT QUOTA ACL
ACL2=UNION Z900 OK CAPABILITY completed
4.5.2 Attack on SMTP:
In this case, the command injection is performed to the
SMTP server. Due to the operations permitted by the
application using the SMTP protocol we are basically
imitated to sending e-mail. The use of SMTP Injection
requires that the user be authenticated previously, so it is
necessary that the user have a valid webmail account.
Example: Let's see an example of the SMTP Injection
technique through the parameter that holds the subject of a
message.
A typical request for e-mail sending would look like this:
POST http://<webmail>/compose.php HTTP/1.1-------------
--134475172700422922879687252
Content-Disposition: form-data; name="subject" SMTP
Injection Example-----------
134475172700422922879687252
Which would generate the next sequence of SMTP
commands:
MAIL FROM: <mailfrom> RCPT TO: <rcptto> DATA
Subject: SMTP Injection Example ...
If the application doesn't correctly validate the value in the
parameter "subject", an attacker could inject additional
SMTP commands into it:
POST http://<webmail>/compose.php HTTP/1.1--------
134475172700422922879687252
Content-Disposition: form-data; name="subject"
SMTP Injection Example
MAIL FROM: notexist@external.com
RCPT TO: user@domain.com
DATA Email data-------134475172700422922879687252
...
The commands injected above would produce a SMTP
command sequence that would be sent to the mail server,
which would include the MAIL FROM, RCPT TO and
DATA commands as shown here:
MAIL FROM: <mailfrom>
RCPT TO: <rcptto>
DATA
Subject: SMTP Injection Example
MAIL FROM: notexist@external.com
RCPT TO: user@domain.com
DATA Email data

V. EMPIRICAL EVALUATION
5.1 Evaluation of Attacks on Protocols by using Monitoring
Tools:
The monitoring tool can provide more accurate
identification of unexpected behavior. Its implementation
requires 1) access to the low-level process and resource
management functions of the target system and 2)
synchronization between the injector and the monitor for
each test case execution.
In order to avoid potential monitoring restrictions and to
support as many target systems as possible, three alternative
monitoring components were developed. They are
presented in the following way.
A. Deep Monitor: The Deep monitor observes the target
application’s flow of control, while keeping a record of the
amount of allocated system resources. The tracing
capabilities are achieved with the PTRACE family
functions to intercept any system calls and signals received
by the server process Since the deep monitor is OS-
dependent, it can only be used in UNIX-based systems.

B. Shallow Monitor: The Shallow monitor is platform
independent. It control the server and collect the return
status code after the completion of every test case. At this
moment, both implementations of deep and shallow
monitors have a limitation that they cannot monitor
background processes as they immediately detach
themselves from the main process.

C. Remote Monitor: The Remote monitor infers the server’s
behavior through passive and external observation. It
resides in the injector machine and collects information
about the network connection between the injector and the
server. After every test case execution, the monitor closes
and reopens the connection with the server, signaling the
server’s execution as failed if some communication error
arises.
5.2 Green SQL - A New Innovation Of Monitoring Tools
It is a database firewall engine used to protect open source
databases from SQL injection attacks. It works in proxy
mode. Application logics is based on evaluating of SQL
commands using risk score factors, as well as blocking of
sensitive commands.
A. GreenSQL Database Activity Monitoring (DAM) is a
powerful solution that independently monitors and audits
all database activity across multiple database platforms.
Using administrative access, we can easily define audit trail
policy for all of your sensitive tables and/or columns, and
see a “before and after” view of all changes made.
Architecture of GreenSQL:

Fig. 9 Green SQL architecture

 D. Naga Swetha et al IJCSET |November 2012 | Vol 2, Issue 11, 1476-1483 www.ijcset.net | ISSN:2231-0711

1481

In a client/server model, GreenSQL is placed between the
database(s) and the clients. It acts as a reverse proxy and
analyzes the SQL commands passed to the server. Based on
rules, GreenSQL forward or drop the request. The logic is
based on evaluation of SQL commands using a risk scoring
matrix as well as blocking known db administrative
commands (DROP, CREATE, etc).

TABLE-V
GREEN SQL DASHBOARD

TABLE-V1
DISPLAYING WHITELIST OF APPROVED QUERIES

If the query is considered illegal - whitelist is check. If it
was found in the whitelist, it will be redirected to genuine
MySQL server. If it was not found, an empty result set will
be send to application.
B. Performance Test:
We tested web application, that makes heavy usage of
database (82 SQL requests per page request), we get to
performance decrease of 2-12 % . For high load website,
web application speed will be decreased slightly.

Fig. 10 Graphical representation of Green SQL performance Test

Performance test details:
During the test we perform measurement of the response
time of the website's home page. When homepage is
accessed, 82 SQL queries are executed. Apache Bench tool
is used to measure response time of the web site and
number of requests executed per second. It was executed
like this:

ab -n 400 -c 10 hxxp://test-website.com/
 -c specifies number of concurrent requests
 -n specifies total number of requests to perform

In this test 400 requests are executed playing with the -
c argument (number of concurrent requests).

VI. CONCLUSION AND FUTURE WORK
In this paper, we have presented a classification parameters
and mechanisms in SQLIA. Firstly, we focused on
vulnerabilities taken place in all different kind of web
applications. A survey has been done to identify all the
protocols used for vulnerability detection. We also found
how attacks are injected to web applications with the help
of protocols and provided countermeasures to avoid and
take complete control on the attacks.
Future evaluation work should focus on higher heuristic
detection techniques in practice. Empirical evaluations such
as evaluation of attacks on protocols by using monitoring
tools presented in this paper would allow for comparing the
performance of all the monitoring tools used for different
vulnerability detection tools.

REFERENCES
[1] W. G. Halfond and A. Orso. AMNESIA: Analysis and Monitoring

for NEutralizing SQL-Injection Attacks. In Proceedings of the IEEE
and ACM International Conference on Automated Software
Engineering (ASE 2005), Long Beach, CA, USA, Nov 2005.

[2] W. G. Halfond and A. Orso. Combining Static Analysis and Runtime
Monitoring to Counter SQL-Injection Attacks. In Proceedings of the
Third International ICSE Workshop on Dynamic Analysis
(WODA 2005), pages 22–28, St. Louis, MO, USA, May 2005.

[3] C. Anley. Advanced SQL Injection In SQL Server Applications.
White paper, Next Generation Security Software Ltd., 2002.

[4] G. Wassermann and Z. Su. An Analysis Framework for Security in
Web Applications. In Proc. of the FSE Workshop on Specification
and Verification of Component-Based Systems (SAVCBS 2004),
pages 70–78, Oct. 2004.

[5] Y. Xie and A. Aiken. Static Detection of Security Vulnerabilities in
Scripting Languages. In Proceedings of the 15th USENIX Security
Symposium, July 2006.

[6] F. Valeur, D. Mutz, and G. Vigna. A Learning-Based Approach tothe
Detection of SQL Attacks. In Proc. of the Conference on Detection
of Intrusions and Malware and Vulnerability Assessment
(DIMVA), Vienna, Austria, Jul. 2005.

[7] W. G. Halfond, J. Viegas, and A. Orso. A Classification of SQL-
Injection Attacks and Countermeasures. In Proc. of the
Intl.Symposium on Secure Software Engineering, Mar. 2006.

[8] Stuttard, D., Pinto, M., “The Web Application Hacker's Handbook:
Discovering and Exploiting Security Flaws”, Wiley, ISBN-10:
0470170778, October 2007.

[9] Fonseca, J., Vieira, M., Madeira, H., "Testing and comparing web
vulnerability scanning tools for SQL injection and XSS attacks",
13th IEEE Pacific Rim Dependable Computing Conference
(PRDC 2007), Melbourne, Victoria, Australia, December 2007

[10] Using Web Security Scanners to Detect Vulnerabilities in Web
Services Marco Vieira, Nuno Antunes, and Henrique Madeira
CISUC, Department of Informatics Engineering University of
Coimbra – Portugal

[11] A heuristic-based approach for detecting SQL-injection
vulnerabilities in web applications By Angelo CiampaUniv. Of

 D. Naga Swetha et al IJCSET |November 2012 | Vol 2, Issue 11, 1476-1483 www.ijcset.net | ISSN:2231-0711

1482

Sannio, ItalyCorrado Aaron VisaggioUniv. Of Sannio,
ItalyMassimiliano Di PentaUniv. Of Sannio, Italy.

[12] A Survey of SQL Injection Defense Mechanisms By Kasra
Amirtahmasebi, Seyed Reza Jalalinia and Saghar Khadem, Chalmers
University of Technology, Sweden.

AUTHORS

D. NAGA SWETHA1 done B.Tech in Computer Science and Engineering.
Working as ASSISTANT PROFESSOR in Department of Information
Technology.

B. SHYAM KUMAR2, HEAD OF THE DEPT of Information
Technology, done M.Tech in Software Engineering having 5 years of
teaching and 2 years of Industry experience.

 D. Naga Swetha et al IJCSET |November 2012 | Vol 2, Issue 11, 1476-1483 www.ijcset.net | ISSN:2231-0711

1483

