
Probing Agent Based Anomaly Solving Strategies
for Dynamic Distributed Scheduling in Railway

Transportation
M.Hema Madhuri#1, Divya Vadlamudi#2, Movva N.V Kiran Babu#3Bollimuntha.Kishore Babu#4

#1,#4M .Tech student, Department of CSE, K L University, Andhrapradesh.

#2Assistant professor, Department of CSE, K L University, Andhra Pradesh
#3Associate Professor, Department of CSE, Mother Theresa Institute of Science &Technology,

Sathupally, AP
#1metlamadhuri@gmail.com,#2divyaonlineid@yahoo.co.in,
#3kiranbabuonline@yahoo.co.in,#4bkishore002@gmail.com

Abstract: The agent computing paradigm is rapidly
emerging as one of the powerful technologies for the
development of large scale distributed systems to deal with
the uncertainty in a dynamic environment. Railway
dispatching or scheduling has been usually modeled using
classical technologies, such as operations research and
constraint programming. But these strategies are suitable to
provide static solutions where the information is complete,
but they are not suitable for dynamic environment for
distributed scheduling. In order to cope up with dynamic
environment, several problem solving strategies have been
proposed based on agent technology. In this paper, we first
investigate the problems in agent based systems for railway
transportation. Finally we explore different agent based
problem solving strategies for dynamic scheduling in railway
transportation.
Key words-agent, agent technology,mobileagent, net
manager

I.INTRODUCTION

Agent can be defined to be independent, problem solving
computational entities capable of effective operation in
dynamic and open environment[1] .agents are often
deployed in environment in which they interact, and work
together with other agent including people and software
they have possibly contradictory aims such environments
are known as the multi agent systems .agents can operate
without the direct involvement of humans and others.[2]
Agent can be used as a design symbol for designers and
developers in the way of structuring an application around
autonomous, communicative elements, and elements, and
lead to the constructing of software tools and
infrastructure to support the design symbol. In this sense,
they offer a new and often more appropriate route to the
development of complex systems, especially in open and
changing environments. Agent technologies span a range
of specific techniques and algorithm for dealing with
interactions with others in changing and open
environment. Agent-based systems are one of the most
effective and important areas in research and development
to have emerged in information technology in the

1990s.[3]an agent is a computer system that is capable of
flexible autonomous action in dynamic, unpredictable,
typically multiage domains the characteristics of dynamic
and open environments in which, for example,
heterogeneous systems must interact, span organizational
boundaries, and operate effectively within rapidly
changing circumstances and with dramatically increasing
quantities of available information, suggest that
improvements on traditional computing models and
paradigms are required .thus the need for some degree of
autonomy, to allow components to respond dynamically
to changing circumstances while trying to achieve over-
arching objectives, is seen by many as fundamental. Many
observers therefore believe that an agent represents the
most important new paradigm for software development
since object orientation. The concept of an agent has
found wide range of sub-disciplines of information
technology, including computer networks, software
engineering, artificial intelligence, human-computer
interaction, distributed and concurrent systems, mobile
systems, telematics, computer-supported cooperative
work, control systems, decision support, information
retrieval and management, and electronic commerce. In
practical developments, web services, for example, now
offer fundamentally new ways of doing business through
a set of standardized tools, and support a service-oriented
view of different and independent software components
interacting to provide valuable functionality. In the
context of such developments, agent technologies have
gradually come to the foreground. Because of its
horizontal nature, it is likely that the successful adoption
of agent technology will have a profound, long-term
impact both on the competiveness and capability of IT
industries, and on the way in which future computer
systems will be conceptualized and implemented. Many
researchers and programmers see agents as programs
roaming a network to collect business-related data in
order help users to buy goods, or implement platform
independent code-on-demand, for example this need for

M.Hema Madhuri et al IJCSET |January 2012| Vol 2, Issue 1,817-822

817

mobile agents is acknowledged, and builds on European
strengths, but mobility brings added security problems.
The research effort concentrates on how to guarantee
termination, security or exactly-once protocols. To protect
against malicious hosts, agents should contain time limit
validity, and electronic money with an expiration date. A
key issue that needs to be addressed here is
administrability of mobile agent systems, e.g.,
authorization policies; this has been a major reason why
mobile agents have not yet been taken up by the
mainstream. Note also that hosts need to be protected as
well as agents End users already encounter the situation
that, while ample bandwidth is available on the backbones
of network service providers, their experience is limited
by the constraints of the infamous last mile. Mobile
agents may improve the end user experience by
offloading application-specific filtering, media adaptation,
and other pre-processing to a node with high bandwidth
connectivity. This is particularly interesting for mobile
phones and portable devices. One of the commercial
application areas in which the added value of mobile
agents is very high, is large-scale distributed or
decentralized system integration with highly adaptive and
dynamic business logic. Existing solutions are generally
centralized, pulling everything onto one platform, limiting
the complexity and changes that can be handled. A
decentralized agent approach divides and conquers
complexity by pushing a large part of the business logic
out onto source systems so that much monitoring and
aggregation can be done on each. This distributes
workload and increases robustness because the local
processing can be performed independently of other
systems, resulting in fewer and more relevant interactions
with these systems, at a higher level of abstraction. In
turn, mobility, mainly single hop, is the answer to the
increasing need for flexibility and adaptability in business
logic. Agents can easily be deployed to source systems,
carrying new database drivers, code to interact with new
application or file types, or new data processing rules.
Software is updated at the component-level, at runtime,
proving a level of dynamism and flexibility that goes far
beyond current release policies. Agent communication
and behavior capabilities complete the picture, being very
well suited to high-level service-based Interactions, the
decentralized implementation of business logic, and for
adapting and handling change in their environment. A
nice property of the dynamic, component-level approach
is that it naturally fits step-by-step system integration,
with each step resulting in added value for the business.
This is a particularly significant advantage in the current
economic climate, in which many companies have seen
mega-projects, fail. For example, Global IDs Inc in the
US offers a next-generation product suite for data
integration based on the Tryllian mobile agent platform.
Their data integration products are capable of
simultaneously monitoring many hundreds of enterprise
systems for relevant changes in data or metadata, by
deploying mobile agents onto those systems. The agents

tap into local databases or applications, keep track of
changes, can pre-process data and only forward relevant
events or structured derived data to centralized collectors
– in real time if required. The mobility of the agents
allows highly customized functionality, which can be
dynamically updated. Thus, the business user can change
the business rules that are being executed at any point in
time, while only relevant drivers and adapters are
transferred to a source system. Agents can assess the
impact of changes in the business rules and handle that
impact throughout the integration process in this Paper we
see an agent-based approach and its applications in
railway transportation.

II.AGENT-BASED SYSTEMS FOR RAILWAY TRANSPORTATION

Efficient transportation is it of persons or goods is a key
issue in today’s industrial world. Because of the immense
amount of transportation tasks, it is necessary to use the
available resources most effectively. Thus, computer
aided or entirely controlled scheduling systems are key
technologies in the forthcoming century. Due to the
constantly increasing demand of short-term train
schedules, automatic tools for decision support that can be
used by Transport Operators in the management of freight
trains traffic are more and more necessary. [4] This is
particularly true when the number of trains running on a
railway line and the availability of tracks are only known
on a day by- day basis. Decision support systems can
prove very useful to maximize tracks demand granting
and optimize the traffic flow. Railway dispatching or
scheduling has been usually modeled using classical
technologies, such as operations research and constraint
programming. These technologies are suitable to model
static situations where the information is complete, but
they lack the ability to cope with the dynamics and
uncertainty of freight-train-traffic management. The
complexity of dispatching and scheduling problems in the
transportation domain has attracted researchers from the
multiagent community [5] an MAS system that models a
society of transportation companies whose goal is to
deliver a set of dynamically given orders satisfying the
given cost and time constraint. The distributed scheduling
is achieved by giving individual vehicles local planning
capability, and the global scheduling plans are generated
from local decisions and problem-solving strategies.
Railroad freight haulage as it is performed today is
depicted in Figure 1: a company that wants to ship
something via railroad to its customers delivers the freight
to the local freight center (usually a railroad station)
where it is stored until enough freight from other
companies has arrived to justify a train to the regional
freight center. At the regional freight center, containers
from other local freight centers that have the same
direction are assembled and sent to the next interregional
freight center where another re-assemblance process takes
place. The decomposition of the trains is achieved in
reverse order [6].

M.Hema Madhuri et al IJCSET |January 2012| Vol 2, Issue 1,817-822

818

 Interregional freight center

 Regional freight center

 Local freight center

Figure 1: Hierarchical freight haulage

An alternative approach [7] to the classical freight
haulage process uses small railroad transportation
modules (or simply modules, e.g. [8] instead of complete
trains. Whereas a normal train is made up of one railcar
and several freight cars, a transportation module is a unit
of an engine and a storage area with approximately the
size of an individual freight car. When a company wants
to deliver some freight to a customer, it orders a
transportation module at a local freight center and loads
its goods on this module. The module itself is then
responsible to find its way through the railroad network.
The problems now, that a location route in a railroad
network cannot be used by two independent modules at
the same time, i.e. either a route is blocked by a single
module or two (or more)modules share a route by
hooking together at the beginning of a location route and
splitting up afterwards. In order to use the underlying
railroad infrastructure most efficiently, the railroad
modules should share as many location routes as possible.
The main advantage of this approaches that it avoids a
central planning authority that schedules all transportation
modules. Instead, each module is responsible to achieve
its goal which is to deliver its freight to some destination
node in the network. Additionally, each module performs
some local optimization of the network throughput by
sharing as many location routes with other modules as
possible. The local optimization process of all modules
eventually leads to a high, though usually not optimal,
degree of resource efficiency. Besides this major
advantage, a decentralized approach implies less coupling
operations during the train composition process, a high
degree of customer accessibility and lower costs because
of the effective location route usage the coordination of
the local optimization processes of many thousand
modules in a practical scenario is a computationally
demanding process and requires a sophisticated
algorithmic framework. The major requirements towards
a real-world system are listed in the following paragraphs.
First of all, a scheduling system should be capable of
dealing with an incomplete problem specification. The

classical operations research based approaches assume
that the entire problem specification is given at the
systems start-up time. Unfortunately, this assumption
often does not hold in the real world! Transportation
companies usually receive customer tasks over time and
not only at the beginning of the planning process. Thus,
the company cannot wait until all task specifications are
available, then start the planning process in order to find
an optimal plan and finally start to execute this plan.
Instead, the company must overlap the planning process
based on the available data and plan execution
monitoring. Incoming tasks must then be integrated in the
ongoing planning and execution process. The second
requirement is highly related to the first point and deals
with the problem to establish a proper relation between
the system and the real world it is supposed to model. A
prominent example for the gap between research and
reality are order dispatching systems for haulage
companies: usually, the respective systems try to compute
optimal routes and schedules for the companies trucks,
but they fail to monitor the plan execution process and are
thus not able to react to unforeseen situations such as
mechanical failure of trucks or traffic jams making it
impossible to maintain the original schedule. An
exception from this shortcoming is the TELETRUCK
system presented in [9] which uses a multi-agent
approach for planning and monitoring of transportation
tasks. Finally, a system should not necessarily try to find
an optimal solution for a given problem. Although
optimality is a desirable property of a solution, it is often
the case that the computational effort to find an optimal
solution is too high for realistic problems. Thus, a
mechanism that is capable of finding a rather good
solution quickly and then improving this solution if
sufficient time is available, is an alternative to classical
approaches. Algorithms of this type are usually referred to
as anytime-algorithms. The name stems from the fact, that
these algorithms can be aborted at any time and still
yields a solution. The quality of the solution simply
depends on the resources assigned to the algorithm.

III PROBLEM DISCRIPTION

The overall goal of the system presented in this paper is to
reduce the cost for a given set of transportation tasks in a
railroad network. Each task is specified as a tuple
consisting of the origin and the destination node, the
earliest possible departure time (EDT), the latest allowed
arrival time (LAT) and an additional time stamp
indicating when the task is announced to the system.
Thus, the set of tasks is not fully known to the system at
start-up time, new tasks arrive during the planning
process and may require a revision of the already
assembled plan in order to reduce cost. A typical time
profile for incoming tasks is depicted in Figure 2: at start-
up time, 2000 tasks are known to the system; during the
next 24 hours (=1440 minutes) additional tasks arrive,
summing up to a total of 5000 tasks at the end of the day.

M.Hema Madhuri et al IJCSET |January 2012| Vol 2, Issue 1,817-822

819

Figure 2: Task arrival time profile

Each task can be served by a single module, i.e. there is
no need to hook two or more modules together to serve a
single task. Vice versa, we assume also that a module
cannot serve more than one task at a time. All tasks
occurring in the system are transportation requests in a
railroad network; in the current version of the system, we
use an abstracted map of the German railroad network
with approximately 250 nodes and 350 links. The net
consists of several nodes connected via so-called location
routes. The numbers on the routes in Figure 3 indicate the
distance between two nodes connected via a location
route.
Whenever a module serves a transportation task, it
computes the path from the origin to the destination node
with a shortest path algorithm. The module then rents the
intermediate location routes for a certain time window
from the net manager. The time window for each location
route is uniquely determined by the earliest departure time
and the latest arrival time of the transportation task. When
a location route is allocated by a certain module, the route
is blocked for other modules during this time interval. In
order to reduce route blocking, however, two or more
modules can decide to share a particular location route.

 6

 10 11

 13

 12 5

Figure 3: An example railroad network

4) Agent-Oriented Problem Solving
Agent oriented problem solving is a programming
paradigm based on autonomous entities – the agents.
Besides their autonomy, agents are supposed to react to
changes in their environment and to be capable of
planning their actions in order to achieve their goals. The
field of multi-agent systems considers agent based
systems with more than one agent. In these systems, an
additional agent capability gains importance – the ability
to communicate and cooperate with other agents in the
system. Multi-agent systems are particularly well-suited
for the scenario described in the previous section because
they allow a very natural mapping from the entities
occurring in the scenario to agents. At first glance, it
seems very natural to model the transportation modules
introduced in the previous section as agents that pursue
their local goals. Doing this, however, results in a
conceptual break when it comes to modeling the coupling
activities that are necessary for location route sharing.
Coupling two or more modules together to form a union
requires an election process in order to decide which
module should represent the resulting union towards the
other unions. Additionally, this approach implies a high
degree of intra-union communication whenever the union
leader wants to integrate a new module in the existing
union. To avoid these problems, we have decided to
model the unions as the agents in our system. Applying
this scheme results in an important simplification of the
system design and the resulting implementation. Merging
several unions into a single union does no longer require
an election a coordination process among the participating
modules as they are straightforwardly integrated in
another existing union. The roles of the participating
unions (either master or slave) are determined by the
negotiation protocol. Whenever a new task is announced
to the system, a new union, consisting only of a single
module, is created; we will sometimes refer to unions
with only one module as degenerated unions. The
advantage of applying this scheme is that we do not have
to differentiate between modules and unions; every active
entity in the system is a union and that’s it!
Any agent cooperation within a multi-agent system is
based on a negotiation process during which the agents
try to figure out a deal that results in mutual benefits for
them. The negotiation process amongst several agents is
steered by so-called cooperation protocols. These
protocols tell the individual agents what messages to
expect from the peer agents or what messages to send to
them, respectively. The two protocols used in our system
are the contract-net [10] protocol described in Section 4.1
and the simulated trading [11] protocol explained in
Section 4.2 We have combined these protocols in our
scheduling approach to achieve the aforementioned
properties (incrementality and anytime) in the following
way: an initial solution for the module schedule is
obtained by running the contract-net protocol whenever a
new task is announced to the system. New tasks are
incrementally integrated in the existing scheduling which

 A

B

D

C

E

F G

M.Hema Madhuri et al IJCSET |January 2012| Vol 2, Issue 1,817-822

820

guarantees that always a solution for the problem (as far
as it is known to the system) exists. However, this
solution may be (and usually is) not optimal. In order to
improve the quality of the existing solution, the simulated
trading protocol is run on the set of tasks (or the
respective modules) currently known to the system.
Unfortunately, executing the simulated trading protocol is
a computationally expensive operation and so it is
executed only periodically – either after a fixed number of
new tasks has been added to the existing solution or
explicitly triggered by a user request. In the following
sections, we present the contract-net and simulated
trading protocols in detail.

A. Contract-Net Protocol
In the context of the contract-net protocol (Smith, 1980)
depicted in Figure 4, there are two types of participants:
one manager and a group of bidders. The protocol is
initiated by the manager which sends a description of the
task under consideration to the bidders. Note, that “task”
is a not transportation task mentioned earlier but rather
some abstract description of a problem to be solved. We
will present the instantiation of the general protocol to our
scenario later. After the bidders have received the task
description, each of them computes a bid that informs the
manager about costs that will be charged if the task is
assigned to that particular bidder. After all bidders have
submitted their bids to the manager, the manager selects
the bid that minimizes his cost and assigns the task to the
respective bidder (+) and rejects the offers of the other
bidders (-). In our system, this protocol is adopted by
creating a new (degenerated) union when a new task is
announced to the system. The module in the union plans
its path and time constraints for the task and then the
parent union initiates the contract-net protocol as the
manager and offers the modules plan to the other
currently active unions. These unions check if they
contain one or more modules that are potential sharing
peers and if this is the case, they offer a sharing
commitment

 T T T Manager: announce task

 Bidders: compute bid
 B B B

 Manager: collect bids
 Select best bid

 Inform bidders
 + - -

 Figure 4: ContractNet Protocol

To the new union. The new union collects these offers
and selects the one that has the largest cost saving
potential. It then transfers the module to the winning
union and ceases to exist because it does not contain other
modules. If no union offers a sharing commitment, the
new union remains active as degenerated union

B.Simulated Trading
The simulated trading protocol is an algorithm designed
to improve existing solutions, not to construct new
solutions from scratch. In our case, the input and the
output of the protocol are valid schedules where the cost
of the output are always less or equal to the cost of the
input. This is trivially true since the output can always be
the input if no cheaper schedule exists. However, this
property is nonetheless important because it guarantees
that the protocol can be aborted at any time and still yield
a valid solution. Furthermore, if the protocol is given
enough computation time, it is guaranteed to find the
optimal solution. Now, how does this work the protocol is
initiated by a special agent, the

 Agents: select actions
 B B S

Stock manager:
collect actions

 distribute actions

 Agents: select actions

 B S B

Stock manager:
collect actions

 distribute actions
 Iterate

Stock manager: find trading
match

 Agents: execute actions

Figure 5: Simulated Trading

Stock manager. In the course of the protocol execution,
the agents (here called traders) perform several rounds of
hypothetical trading, i.e. the traders either choose to sell
some of their goods or to buy something from others. In
our context a sell operation corresponds to removing a
module from a union and a buy operation corresponds to
integrating a module in a union. Thus, the unions try to
optimize their cost by exchanging unprofitable modules
with better ones. The decision which module to sell
depends on a probability distribution induced by the
potential cost reduction if the module was sold. Vice
versa, the decision to buy a module offered by another
union depends on the potential cost reduction if the

M.Hema Madhuri et al IJCSET |January 2012| Vol 2, Issue 1,817-822

821

module would be integrated in the union. After the stock
manager has collected the hypothetical sell and buy
actions, it must find a valid trading match in the set of
actions. There a several validity requirements for a
trading match e. g. there must be no two buy actions on
the same sell operation, etc. Finding a trading match is a
nontrivial task and accounts for the computational
complexity of the simulated trading protocol If a trading
match is found, the stock manager informs the traders
which actions must be executed, i.e. which modules must
be exchanged. In this section, we have outlined some
basic ideas of agent-oriented problem solving. In the next
section, we will present the local planning algorithm of
the unions. The plan integration operator developed in
there enables a union to find a module schedule with a
maximum number of location route sharing.
.

CONCLUSION:
Software agents and their applications in railway
transportation systems have been proposed for over one
decade to solve he dynamic scheduling problems. A
number of agent-based systems have already been
reported in the literature. In this paper we discussed,
different agent based systems for railway transportation
and then in the end we explored different agent problem
solving strategies for dynamic scheduling. Finally we
conclude that the research results obviously show the
probable usage of agent technology to improve the
performance of railway transportation systems.

ACKNOWLEDGEMENTS
We like to express our gratitude to all those who gave us
the possibility to carry out the paper. We would like to
thank Mr.K.Satyanarayana, chancellor of K.L.University,
Dr.K.Raja Sekhara Rao, Dean, and K.L.University for
stimulating suggestions and encouragement. We have
further more to thank Prof.S.Venkateswarlu,
Dr.K.Subrahmanyam, who encouraged us to go ahead
with this paper

REFERENCES
[1] Agent Technology: Enabling Next Generation Computing: A

Roadmap for Agent-Based Computing by Michael Luck,
Peter McBurney and Chris Priest January 2003, Version
1.0, ISBN 0854 327886

[2] Bo Chen, Member, IEEE, and Harry H. Cheng, Senior
Member, IEEE,” A Review of the Applications of Agent
Technology in Traffic and Transportation Systems” IEEE
TRANSACTIONS ON INTELLIGENT
TRANSPORTATION SYSTEMS, VOL. 11, NO. 2, JUNE
2010.

[3] Agent Technology: Computing as Interaction: A Roadmap
for Agent Based Computing by Michael Luck, Peter
McBurney, Onn Shehory, Steve Willmott and the
AgentLink Community, © September 2005, AgentLink III
ISBN 085432 845 9

[4] A. Cuppari, P. L. Guida, M. Martelli, V. Mascardi, and F.
Zini, “Prototyping freight trains traffic management using
multi-agent systems,” in Proc. Int. Conf. Inf. Intell. Syst.,
Los Alamitos, CA, 1999, pp. 646–653

[5] K. Fischer, N. Kuhn, H. J. Muller, J. P. Muller, and M.
Pischel, “Sophisticated and distributed: The transportation
domain,” in Proc. 9th Conf. Artif. Intell. Appl., Los
Alamitos, CA, 1993, p. 454

[6] J. Lind, K. Fischer. Transportation scheduling and simulation
in a railroad scenario: A Multi-Agent Approach. December
1998

[7] Krummheuer, E. (1997). Rendezvous und schnelle Sprinter.
Verkehrsforum.
http://www.verkehrsforum.de/magazin/archiv/1 97/1 97
2.html.

[8] Windhoff AG (1996). CargoSprinter.
http://www.windhoff.de
http://www.fortunecity.de/anlagen/atlantik/23/sprinter.htm.

[9] B¨urckert, H.-J., Fischer, K., and Vierke, G. (1998).
Transportation scheduling with HolonicMAS, the
TeleTruck approach. In Proc. PAAM98

[10] Smith, R. (1980). The contract net protocol: High-level
communication and control in a distributed problemsolver.
IEEE Trans. on Computers.

[11] Bachem, A., Hochst¨attler, W., and Malich, M. (1992).
Simulated Trading: A New Approach For Solving Vehicle
Routing Problems. Technical Report 92.125,
Mathematisches Institut der Universit ¨at zu K¨oln.

M.Hema Madhuri et al IJCSET |January 2012| Vol 2, Issue 1,817-822

822

