
Proactive Approach:
Proactive security is based on threshold and

key refreshment is performed
By different cryptography function

Rashmi Singh1,Minu Choudahry2

1MTech (SE), RCET, Bhilai
Rashmi.28nov@rediffmail.com

2Prof. in Dept of IT, RCET, Bhilai
minukum@gmail.com

Abstract- The security of public key cryptosystems relies
heavily on the secrecy of the private key. Thus such
cryptosystems should be augmented with methods for
protecting the secret key while providing continuous
availability of the system. A naive solution may be to share
the private key using a proactive secret sharing scheme. This
solution provides the necessary protection as long as the key
is not used. However, in order to generate a signature the
private key would need to be reconstructed in a single site,
thus losing the advantage of distribution: A single break-in
to this site will compromise the security. Instead, a proactive
threshold signature scheme allows the servers to individually
generate valid signatures in a special way that prevents an
attacker from generating fake signatures. In particular, the
scheme makes sure that the key is never reconstructed at a
single site.
Refreshment of key is based on threshold value. Each node
which is participated in the network, generates random
number if the random number is match on threshold then
key is not refreshed otherwise it will be refreshed.
In this paper, we have developed different function for key
refreshment but key refreshment is depending on threshold.
Keywords— Proactive Security, Threshold, Key
Refreshment, Cryptography Function.

1. INTRODUCTION:

A proactive signature scheme involves three phases: the
key generation phase (preferably done without a trusted
dealer), the joint signature-generation phase and finally a
special proactive key refreshment phase of the servers' key
shares which is done periodically. The signature is
generated in a distributed fashion from the shares of the
key. Moreover, it has to hold that despite proactivization
of the signing key, the signature on a message m,
computed under any of the representations of the key is
the same. The scheme withstands attackers that eventually
break into all servers, as long as only a limited number of
the servers are broken into between two consecutive
invocations of the refreshment protocol. Proactive
solutions for few signature schemes have been devised;

among them is a solution to RSA signatures and to DSS
(Digital Signature Standard) signatures.

2. CRYPTOGRAPHY

Cryptography offers a set of sophisticated security tools
for a variety of problems, from protecting data secrecy,
through authenticating information and parties, to more
complex multi-party security goals. Yet, the most
common attacks on cryptographic security mechanisms
are `system attacks' where the cryptographic keys are
directly exposed, rather than crypto analytical attacks
(e.g., by analyzing cipher texts). Such `system attacks' are
done by intruders (hackers, or through software trapdoors
using viruses or Trojan horses), or by corrupted insiders.
Unfortunately, such attacks are very common and
frequently quite easy to perform, especially since many
existing environments and operating systems are insecure
(in particular Windows). As a result, computer and
network security involve set tools to prevent and detect
intrusions, and to regain control over a computer from the
attacker. Detection is particularly important, since once an
attack is detected on any one computer; system
administrators are alarmed and are likely to regain control
from the attacker - on most or all computers. Furthermore
security measures are likely to be tightened, and at least
some security exposures found and fixed. Therefore,
attackers often do their best to avoid detection, and indeed
often give up control over a computer rather than risk
being detected.
2.1 DISTRIBUTED CRYPTOGRAPHY

Distributed cryptography is currently a very active
research field that is related to many different areas in
cryptology. There are several open problems whose
solution would lead to the construction of more efficient
and versatile distributed cryptosystems. Many of these
problems are related to the different cryptographic
protocols that are used as pieces of a distributed
cryptosystem.

Rashmi Singh et al IJCSET |January 2012| Vol 2, Issue 1,801-804

801

In general, it is not convenient that the security of a
system relies on the behavior of a single agent. Let us
consider, for instance, the case of a certification authority,
a trusted entity that certifies that a given public key
corresponds to a given user. Clearly, a certification
authority that is composed by several independent servers
is more reliable than one that is formed by a single server.
In this way, the security of the system is increased,
because the loss or theft of several shares of the secret key
does not necessarily break the system’s security. Several
distributed cryptosystems have been proposed until now.
Most of them have a threshold structure, that is, the sets of
users that are able to execute the protocol are those having
a certain number of elements. Due to this fact, distributed
cryptography is called also in general threshold
cryptography.

3. PROBLEM WITH KEY REFRESHMENT

In the existing paper key refreshment is periodically
performed by Shamir’s polynomial which is available on
every node. Each node generates new share and
distributed to other nodes, now each node has own share
and new shares which is received by other nodes, all the
shares are combined and generate new share but problem
is that if attacker is find out that polynomial then he can
easily compute new shares or during the share
distribution, attacker attack on that particular share then
he can generate new shares.
We consider the example of key refreshment for three
nodes. Every node generates three shares, one share is
hold by node and other two are distributed. This procedure
is followed by other nodes. Now each node has got three
new shares, combine them and generate new sub shares.

Figure 1. Share Refreshment process

Share refreshing: given an (n, t+1) sharing (s1, . . . , sn) of
a private key k, with share si assigned to server i. To
generate a new (n, t+1) sharing (s01, . . . , s0n) of k, each
server i generates subshares si1, si2, . . . , sin, which
constitute the ith column in the figure. Each subshare sij
is then sent securely to server j. When server j gets all the
subshares s1j , s2j , . . . , snj, which constitute the jth row,

it can generate its new share s’j from these subshares and
its old share sj .

4. SOLUTION APPROACH

PROACTIVE APPROACH

Proactive security provides a method for maintaining the
overall security of a system, even when individual
components are repeatedly broken into and controlled by
an attacker. In particular it provides for automated
recovery of the security of individual components,
avoiding the use of expensive and inconvenient manual
processes (unless perhaps when an ongoing attack is
detected). The technique calls for the distribution of trust
among several components (servers), together with
periodic refreshments of the sensitive data held by the
servers. This way, the proactive approach guarantees
uninterrupted security as long as not too many servers are
broken into at the same time. We describe the proactive
approach and review some algorithms, implementations,
and applications. We elaborate on two of the most
important results: proactive signatures and proactive
secure communication. Proactive signatures provide a
solution for long-lived secret keys, such as the key of a
certification authority. Proactive secure communication
ensures secrecy and authenticity of communication, with
automated refresh of the secret keys.
A common approach to enhancing the security is periodic
refreshments of secrets. Examples include refreshments of
passwords, and of session-key refreshment in secure
communication protocols. The idea is to make `old
secrets' useless for the attacker. Thus the attacker is forced
to either lose control or to be constantly active, thus
risking detection. Another approach to enhancing the
security is the distribution of cryptographic trust among
several or servers. This approach is exemplified in secret
sharing algorithms and taken to a much greater extent in
the notion of threshold cryptography .Here a secret key is
split into shares, and each share is given to one of a group
of servers. The server’s engage in a protocol that
`emulates' the behavior of the centralized solution. The
protocol ensures security as long as at most some
predefined number of servers is broken into. Threshold
cryptography can indeed enhance the security against
break-in attacks in many scenarios. However, it is also
limited: Given sufficient amount of time, an attacker can
break into the servers one by one, thus eventually
compromise the security of the system. This danger is
particularly eminent in systems that must remain secure
for long periods of time or where secure recovery may be
difficult. Proactive security is a mechanism for protecting
against such long-term attacks. Proactively secure system
does not wait until a break-in is detected. Instead, it
invokes the refreshment protocol periodically (and
proactively) in order to maintain uninterrupted security
but key refreshment is performed by different function
which is held by nodes.

Rashmi Singh et al IJCSET |January 2012| Vol 2, Issue 1,801-804

802

5. WORKS ON PROACTIVE SECURITY

Ostrovsky and Yung showed how a large class of
multiparty protocol problems can be solved in a proactive
way, in a setting where secure communication channels
are available. Their solution, based on the general
paradigm of multiparty computation is of significant
theoretical interest but leaves the door open to efficient,
practical solutions to specific problems. In the proactive
approach as a security enhancement to centralized systems
is considered, and a practical proactive pseudo-random
generator with applications to secure sign-on is presented.
Another basic task that has been `proactivized' is secret
sharing, and in particular verifiable secret sharing (i.e.,
secret sharing resilient against malicious faults). This
algorithm played a key role in proactive solutions for
public-key cryptosystems and in particular in proactive
signature systems (extending the threshold signature).
Proactive solutions were found for the DSS signature
algorithm and for RSA. Proactive signatures are a
powerful tool. They were used in to provide a proactive,
automated solution to key refresh. Namely, show how to
use cryptography to ensure authenticated and secret
communication among servers, with recovery from
penetrations and key exposures. This provides an
alternative to manual key refresh.

6. PROACTIVE SECURE COMMUNICATION

Another cryptographic task where the proactive approach
seems called for is maintaining authenticated and secret
communication among a set of parties. Here the parties
must keep the integrity and secrecy of the relevant keys:
shared keys (such as session keys), private signature and
decryption keys, as well as the integrity of public keys (of
other parties).
It is a standard practice to keep two levels of keys: short-
lived `session' keys, and long-lived `master' keys. The
`master' keys are used to periodically refresh the `session'
keys. This provides recovery from exposure of the session
keys - but not of the master keys. Protecting against the
exposure of the master keys is considered a hard problem;
when deemed necessary, it is achieved via manual master
key refresh process, done periodically but infrequently.
Some mechanisms, most notably perfect forward secrecy
(e.g., implemented by the IP-SEC standard) provide
protection of past session keys from a future exposure to
the master keys. However, this does not protect future
session keys from active impersonation attacks. Proactive
security provides a more complete solution, where
exposing a master key does not reveal either future or past
session keys even from active attackers - achieving the
same effect as the manual key refresh process, at much
lower costs.
A solution may seem straightforward at first: at each
refreshment phase, each party will choose a new pair of
public and private keys, distribute the new public key to
other parties (signed using the old secret key), receive new

public keys (signed) from each other party, and then use
the new public keys to agree on new shared keys.
However, an intruder who also controls the
communication links can successfully impersonate an
attacked party by sending a fake public key on its behalf.
Moreover, if the attacker broke into two machines, it can
select fake public keys for both of them and thereby
permanently `insert' itself between the two parties. This
way the attacked parties lose their ability to authenticate
each other, even long after the intruder lost control of the
machines.

7. PROACTIVE SYSTEM

Proactive security shows how to maintain the overall
security of a system even under such conditions. In
particular it provides automated recovery of the security
of individual components, avoiding the use of expensive
and inconvenient manual processes (except for some
`aggressive` attacks, which cannot be prevented but are
definitely and clearly detected). The technique combines
two well-known approaches to enhance the security of the
system: distributed (or threshold) cryptograph, which
ensures security as long as a threshold (say half) of the
servers are not corrupted; and periodic refresh (or update)
of the sensitive data (e.g. keys) held by the servers.
This way, the proactive approach guarantees uninterrupted
security as long as not too many servers are broken into at
the same time. Furthermore, it does not require
identification when a system is broken into, or after the
attacker loses control; instead, the system proactively
invokes recovery procedures every so often, hoping to
restore security to components over which the attacker
lost control. Proactive security is highly desirable in many
realistic settings, in particular: When a high level of
security is required, together with fault tolerance (as
redundancy improves fault tolerance but opens more
points for attack).
To ensure acceptable level of system security using
weakly secure components such as most commercially
available operating systems. (Examples of specific
applications are given below.) Recent results show that
much fundamental cryptographic functionality may be
achieved even under the proactive security model - as
long as most components are secure most of the time. In
particular, proactively secure protocols have been devised
for the following problems:
1. Secret sharing
2. Discrete-log-based digital signatures, and in
 particular DSA
3. Secure end-to-end communication
4. RSA , and in particular generation of the RSA shared
key
5. Pseudo-random generation
6. Key distribution center
This substantial set of known results in proactive security
did not yet produce any practical security product or
solution. (In fact, there are only a few deployments of

Rashmi Singh et al IJCSET |January 2012| Vol 2, Issue 1,801-804

803

distributed security) the most well known may be the SET
credit card standard’s certificate authority.
The creation of such a proactive solution is non-trivial, as
the protocols are often quite complex and nontrivial to
implement. Here we assume some features for the project,
to allow practical deployment of proactive security.
The main new contributions (assumptions) are:
1. A secure initialization mechanism, with reasonable,
practical requirements from the computer and operating
system. Specifically, all we require is a secure boot
process (which is a good idea anyway, against viruses -
and easily done with signed code); and a per-machine
secret-private key pair, with the public key protected from
modification (e.g. in ROM or write-once EEROM), and
the secret key in erasable memory (e.g. disk). Previous
results required storage of parameters specific to the
particular application (such as the group’s public key) in
secure storage, which is not practical.
2. A set of application program interfaces (APIs) that
allow the use of the toolkit to improve security,
specifically provide security in spite of break-ins into
computers, of existing applications, as well as the
development of new applications which are proactive
secure.
The security of any proactive solution relies heavily upon
its correct architecture and integration with existing, non-
proactive, operating system. The design of system, which
does not view the proactive model as series of protocols
but, rather, as a security enhancement of the operating
system which transforms it into a proactively secured
system via the appropriate use of proactive protocols, has
not been defined nor implemented in the past. We show
that it is possible to transform general applications which
are required to remain secure for long periods of time to
operate in a proactive environment, namely proactivizing
applications.
To this end, we define architecture for a proactive
operating environment which serves as a platform on
which standard applications can be proactivized. This
operating environment consists of a network of servers
which are set up once, which we call the proactive
network.
Each server is instantiated at boot time by the operating
system and is checked periodically, also by the operating
system.
Servers can recover data (both public and private data)
from other servers in the proactive network, if such data is
corrupted or lost. Once the proactive network is set up,
any application can run on the top of the network and
request proactive services by the means of API.

Assumption: we are assuming here that we have
already a system where threshold cryptography is
implemented.

8. CONCLUSIONS

The proactive program should first provide a toolkit
consisting of communication and cryptographic primitives

who are needed to implement any proactive algorithm. In
addition, it should be able to support multiple instances of
proactive applications running concurrently. An essential
component of such a program is a module responsible for
refreshing the on-going proactive tasks of the system.
Proactive schemes are proposed as a countermeasure to
mobile adversaries. A proactive threshold cryptography
scheme uses share refreshing based on different
cryptography function, which enables servers to compute
new shares in collaboration without disclosing the service
private key to any server. The proposed direction for the
future work could be the spanning of number of nodes in a
large internet environment. Also some verification
techniques could be incorporated with this application for
more secure communication.

REFERENCES
[1]. Rajkumari Retoliya. “A Novel Approach Share Key Refreshing for

Long Term Protection in Distribute Cryptography by Protective
Security”. IJCSET | July 2011,Vol 1,Issue 6,290-295.

[2]. D. Boneh and M. Franklin. “Efficient generation of shared RSA
keys”. In Proc. Crypto ‘97, pp. 425-539.

[3]. R. Canetti, R. Gennaro, A. Herzberg and D. Naor, “Proactive
Security: Long-term protection against break-ins”.
CryptoBytes: the technical newsletter of RSA Labs, Vol. 3,
number 1 - Spring, 1997.

[4]. P. Feldman. “A Practical Scheme for non-interactive verifiable
secret sharing”. In Proc.28t Annual Symp. on Foundations of
Computer Science, pp. 427-437. IEEE, 1987.

[5]. Y. Frankel, P. Gemmell, P. Mackenzie, and M. Yung. “Optimal
resilience proactive public-key cryptosystems”. In Proc. 38th
Annual Symp. on Foundations of Computer Science. IEEE,
1997.

[6]. Y. Frankel, P. Gemmell, P. Mackenzie, and M. Yung. Proactive
RSA. In Proc. of Crypto97. 12. P. Gemmell. “An introduction to
threshold cryptography”. In Cryptobytes, Winter 97, pp. 7-12,
1997.

[2] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness
Theorems for Noncryptographic Fault-Tolerant Distributed
Computations. In Proc. 20th Annual Symp. on the Theory of
Computing, pages 1{10. ACM, 1988.

[3] G. R. Blakley. Safeguarding cryptographic keys. In Proc. AFIPS
1979 National Computer Conference, pages 313{317. AFIPS,
1979.

[4] D. Boneh, Ed Felten, Bill Aiello, and Matt Franklin.
http://gump.bellcore.com:7700.

[5] G. Brassard, D. Chaum and C. Crepeau, \Minimum Disclosure Proofs
of Knowledge", Journal of Computing and System Sciences, Vol.
37, No. 2, 1988, pp. 156-189.

[6] D. Chaum, C. Crepeau, and I. Damgard. Multiparty Unconditionally
Secure Protocols. In Proc. 20th Annual Symp. on the Theory of
Computing, pages 11{19. ACM, 1988.

[7] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable
Secret Sharing and Achieving Simultaneity in the Presence of
Faults. In Proceeding 26th Annual Symposium on the Foundations
of Computer Science, pages 383{395. IEEE, 1985.

[8] R. Canetti and A. Herzberg. Maintaining security in the presence of
transient faults. In Y. Desmedt, editor, Advances in Cryptology |
Crypto '94, pages 425{438, 1994. SpringerVerlag. Lecture Notes in
Computer Science No. 839.

[9] R. Canetti, S. Halevi, and A. Herzberg. Maintaining Authenticated
Communication in the Presence of Break-ins. In Proc. 16thth ACM
Symp. on Principles of Distributed Computation.ACM, 1997.

[10]. http://www.research.sun.com/projects/crypto.
[11]. http://www.rsa.com/rsalabs/.
[12]. L. Ertaul and N. Chavan, “Security of Ad Hoc Networks and

Threshold Cryptography”, in MOBIWAC 2005.

Rashmi Singh et al IJCSET |January 2012| Vol 2, Issue 1,801-804

804

