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Abstract—In this paper, we define the Inverse of a Finite 
State Transducer. The inverse and the corresponding Finite 
State Transducer are used for encryption and decryption of 
sequential data. The encryption process is designed for error 
detection capability during the decryption phase.  
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1. INTRODUCTION 
      Finite State Transducers [1], [2] convert a given input 
sequence into another output sequence using a Finite State 
Machine. In this paper we are using the Moore model 
where the present output symbol depends only on the 
present state. Also, the Finite State Transducer (FST) is 
designed for invertibility. That is, the input sequence of 
the FST can be recovered from its output sequence using 
the inversion of the FST.  
 

II.  BASIC MODEL, SYMBOLS AND NOTATIONS 
 
A.  Finite State Transducer Model 
      The finite states of the FST model used in this paper 
are designated as integers 1,2,…,N instead of the 
conventional notation Q0, Q1,…, etc. Here, N is the 
number of available states. The temporal state of the 
system at i th iteration is represented by the discrete finite 
state variable, Q(i) for i=1,2,3,…etc. That is, the 
successive states are denoted by the variables Q(1), Q(2), 
…etc. The starting state is Q(1), the next state is Q(2) and 
so on.  The domain of Q(i) is, 
                     Q(i) {1, 2, ..., N}                    (1) 

      We adopt this convention so that the state transition 
rule for the FST can be represented by a state transition 
matrix instead of a state transition table and the domain of 
Q(i) can represent the rows of the State Transition Matrix. 
       The input sequence to this Finite State Transducer is 
represented by vector y, where, 

          y [y(1) y(2) ... y(L)]                (2) 

where, L is the length of the input sequence. 
     Here, y(i) belongs to the input set Σ which is made up 
of integers 1 to N instead of say alphabets as, 
          y(i) {1, 2, ..., N}                     (3)  

     Again, we choose the integer values for the y(i) domain 
so that it can represent the columns of the State Transition 
Matrix. Here the number of input symbols is N. In those 
cases where the input symbols to the FST are not integers, 
they are mapped into integers in the range {1:N}. 
 
B.   State Transition Matrix T 
      Let the state transition be represented by the matrix T 
of size NxN. The present state of the system (FST) 
depends on the previous state and the present input as,                      

 Q(i) = T Q(i -1), y(i)                        (4)                              

for i=2,3,…,L, where L is the number of elements in the 
sequence y.  For the sake of convenience the initial 
(starting) state Q(1) is taken as 1. That is, 
             Q(1) 1                                 (5) 

In Eq.(4), the previous state Q(i-1) is the row index and 
the present input y(i) is the column index of the matrix T. 
The corresponding matrix element T(Q(i-1),y(i)) gives the 
present state in terms of the previous state and the present 
input. Thus T is basically a mapping table. 
 
C.   FST output sequence 
       In the Moore model, the present output depends on the 
present state. Here, the output sequence x(i) is taken equal 
to  Q(i) itself, for i = 1,2,…etc. Thus, 
        x(i) Q(i)                                            (6) 

Therefore, the domain of x and Q are same. 
Thus, x(i) {1, 2, ..., N}  . 

Substituting from Eq.(6) for Q in Eqs.(4) and (5), we get, 

        x(i) T x(i 1), y(i)                            (7) 

  for i = 2,3,…,L, and 
        x(1) 1  for i =1.     (8) 

Thus, Eqs.(7) and (8) determine the output sequence from 
the input sequence y of length L for the transition matrix T 
of size NxN. 
 
D.    Size and elements of T 
       Since the columns of T are specified by the values of 
y(i) which has a domain of {1:N}, the number of columns 
required is N. Among the column numbers 1 to N, the 
present column number exactly corresponds to the value of 
the present input y(i). For a given Q(i–1) and y(i), the 
element at row Q(i–1) and column y(i) in T gives the next 
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state and output of the FST. This acts as the row index for 
the next iteration. Hence the number of rows of T should 
be N which represents the range of x. Also the element at 
location (Q(i–1),y(i)) represents the output. Therefore, the 
domain of the matrix element should also have to be 
{1:N}. This holds good for all the elements of T, because 
every element of T is covered by taking all possible 
combinations of (Q(i–1),y(i)). Thus the size of T is NxN 
and its elements belong to the domain {1:N}.          
 
III.   INVERTIBILITY AND INVERSION OF THE FINITE STATE 

TRANSDUCER 
A.   Translational Inverse 
      The FST should be designed for invertibility, in the 
sense, it should be possible to determine the input 
sequence of the FST from its output sequence. From 
Eq.(7), we see that x(i), x(i–1) and y(i) are related 
according to the mapping specified by T. The value of y(i) 
uniquely determines x(i) for a given x(i–1). Therefore, it 
should be possible to determine, that y(i), which 
corresponds to a specific x(i) and a given x(i–1). 
Therefore, y(i) can be expressed as, 

                 y(i) S x(i 1), x(i)                    (9) 

Here, S is called as the translational inverse matrix of T. 
The matrix S is realised such that the element at x(i–1) th 
row and x(i) th column gives y(i). Thus, x(i–1) is the row 
index and x(i) is the column index of S that gives y(i). 
 
B.    Size of  S 
       Since x(i–1), having the domain {1:N}, specifies the 
row number of S, the number of rows of S has to be N to 
take care of the N possible distinct values of x(i–1). 
Similarly, x(i) whose domain is {1:N} specifies the 
column numbers of S. Therefore, the number of columns 
of S should be N. Therefore the size of S is NxN. 
 
C.    Derivation of S from T 
        Consider Eq.(7). For matrix T, call the x(i–1) th row 
as r and y(i) th column as c. Then from Eq.(7),  

             T r,c x(i)                                      (10) 

Here, r x(i 1)      (11) 

 
with   r {1, 2, ..., N}  

and    c y(i)      (12) 

with     c {1, 2, ..., N}  

Using Eqs. (10), (11) and (12) in Eq.(9) yields, 

         S r,T(r,c) c                               (13)   

Let   d T r,c . Then Eq.(13) can be expressed as, 

          S r,d c                                               (14) 

where  d T r,c
   

 (15)   

 
D.    Algorithm to realize S from T 

        Determine the elements of S at row r and column d as 
follows.  
  Outer loop:    for r = 1,2,…, N  
  Inner Loop:        for c = 1,2,…, N 
                                 d = T(r,c); 
                                 S(r,d) = c; 
                             end 
                          end 
At the end of the inner loop, all elements of row r of S are 
assigned. The outer loop covers all the rows.  
 
E.    Uniqueness of the row elements of T 
        We see that the column indices of S are the elements 
of T in a given row. Since we cannot have duplicate 
column indices for a matrix, the elements of T cannot have 
duplicate values along a row. This condition should be 
satisfied for the proper realization of S. For example, 
consider the case of duplicate entries in a row of T as, 

      T(r, c ) T(r, c ) d1 2                      (16) 

Here, on row r, at two columns c1 and c2, the elemental 
values are same. Therefore, from Eqs.(13) and (16), 

                   S r,d c1                                                           

and             S r,d c2                                                           

The above equations cannot be satisfied simultaneously. 
They form an inconsistent system of equations. That is 
S(r,d) value cannot be determined uniquely. Therefore, for 
the correct realization of S, the rows of T should not 
contain duplicate entries. 
 
F.    Uniqueness of the column elements of T 
       Another constraint on T is, for any column of T, all 
the elements of that column should be unique. That is, 
there should not be any duplicate elements along any 
column of T. This requirement should be satisfied for the 
purpose of error detection as will be described later. 
      Thus there should not be any repeating elements along 
the rows of T and also along the columns of T. Since there  
are N elements in a row or column in the range {1:N}, the 
above constraint means that the rows and columns of T are 
permutations in the range {1:N}.  
       Under these conditions, S can be obtained from T as 
follows. In Eq.(13), let 

              T r, c d                                           (17) 

Then we can rewrite Eq.(13) as, 

               S r, d c                                          (18) 

where,     d T r, c                    

For a given row r, d is the row element of T at column 
location c. Since the elements of row r form a permutation 
in the range {1:N}, d covers all the values in this range. 
Therefore, from Eq.(18), all the column elements of S are 
determined for this r. In this way all the rows of S are 
determined when r takes values 1,2,…,N. From Eqs.(17) 
and (18), we can see that each row of S is the permutation 
inverse of the corresponding row of T and vice-versa. 
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G.     Invertibility of S 
        From Eqs.(17) and (18) we see that c, the output of S, 
used as the input to T, gives d which is the corresponding 
input of S. Therefore T is the translational inverse of S. 
Thus the data encoded by S can be uniquely recovered by 
T and vice-versa. T and S are the translational inverses of 
each other. 
         
H.    T and S Example 
       Here, N=6 and each row of T is generated using the 
random permutation generation function randperm(N) [3]. 
While generating the next row of T, It is ascertained that it 
has no duplicate elements along any column. S is obtained 
from T using the algorithm described earlier. T and S thus 
obtained are shown below. 

4 5 2 6 3 1

1 2 3 5 6 4

2 6 5 1 4 3
T

3 4 6 2 1 5

6 3 1 4 5 2

5 1 4 3 2 6



 
 
 
 
 
 
 
 

     

6 3 5 1 2 4

1 2 3 6 4 5

4 1 6 5 3 2
S

5 4 1 2 6 3

3 6 2 4 5 1

2 5 4 3 1 6



 
 
 
 
 
 
 
 

 

 
IV. ENCRYPTION AND DECRYPTION USING S AND T 

 A.     Encryption using S 
       The given data sequence to be encrypted is designated 
by x(i)  whose domain is x(i) {1 : N} for i = 1,2,…, L–1 

where (L–1) is the length of the sequence. An additional 
element whose value is always 1 is appended at the end of 
the sequence for the purpose of error detection. Thus the 
total length of the augmented array x is L. Here after, x 
refers to the augmented array. The last element could have 
been any other value in the range {1:N}. But it is chosen 
as 1 for convenience. Thus for any input sequence,  
                  x(L) 1                                (19) 

      Matrix S which has been determined from a specific T, 
is kept ready and is used for encryption to get the 
encrypted sequence y form x as given by Eq.(9) which is 
reproduced here. 

                  y(i) S x(i 1), x(i)            (20) 

for i = 2,3,…, L. 
For convenience, y(1) is taken equal to x(1). That is, 
                 y(1) x(1)                             (21) 

Eqs.(20) and (21) form the encryption equations. Here, 
x(i) is the plain sequence and y(i) is the cipher sequence. 

The cipher sequence is transmitted to the destination and 
decrypted using the T matrix which is already made 
available at the destination.  
 
B.     Decryption using T 
        The decryption equations are given by Eqs.(7) and (8) 
which are reproduced here as, 

                x(i) T x(i 1), y(i)                (22) 

for i = 2,3,…, L, and 

               x(1) y(1)   for i=1.               (23) 

During decryption, the original input sequence x is 
recovered because T is the translational inverse of S. 
      The basic block diagram is shown in Fig.1. 

 
V.    ERROR DETECTION 

      The data sequence received by the destination is y(i) 
for i = 1,2,…, L. The sequence y(i) is decoded using 
Eq.(22). Suppose a single error has occurred at position i = 
k for certain k where k can be anywhere in the range 1 to 
L. That is, y(k) is the single error term in the received 
sequence. Therefore, all the terms before y(k) are error 
free. Hence all the terms decoded up to k are also error 
free. Therefore, the decoded sequence x(i) is error free for 
i = 1,2,…,(k-1). Let the original, error free value of y(k) be 
u(k). Because of the error, the value of y(k) is now 
different from u(k). Call this as v(k). That is, 
               ŷ(k) v(k)                     (24) 

The cap symbol on y(k) indicates that it is the error term. 
v(k) is different from the error free value u(k). 
      Consider the decoding result for i = k given by 
Eq.(22). When i = k, Eq.(22) gives, 

        ˆ ˆx(k) T x(k 1), y(k)        (25) 

The cap symbol on x(k) indicates that it is the response 
term for the error term ŷ(k) . From Eqs.(24) and (25), 

         x̂(k) T x(k 1), v(k)        (26) 

If there were no error, x(k) by Eq.(22) would have been,  

          x(k) T x(k 1), u(k)        (27) 

where u(k) is the error free value of y(k). 
From Eqs.(26) and (27), x(k) and x̂(k) are two elements of 

T along the row x(k 1)  at two distinct column locations 

u(k) and v(k). Since the row elements of T are unique, 
x̂(k) would be different from x(k).  

                    Now consider the (k+1) th decrypted value 
x(k+1) under the error condition with x̂(k)  and y(k+1) as 

inputs. From Eq.(22) with i = k+1,  

 Encypted  Sequence 

[ y(1)  y(2)  … y(L) ] 

 Encypted  Sequence    Input Sequence 

[ x(1)  x(2)  … x(L) ] 

 Encryptor 

  S 

[ x(1)  x(2)  … x(L) ] 

 original  Sequence 

[ y(1)  y(2)  … y(L) ] 

 Decryptor 

  T 

      Fig.1. Basic Encryption and Decryption using S and T 
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         ˆ ˆx(k 1) T x(k), y(k 1)             (28) 

The error free output would have been, 

         x(k 1) T x(k), y(k 1)               (29)   

In Eqs.(28) and (29), x̂(k 1)  and x(k+1) are the elements 

of T in the common column y(k+1) at different row 
locations. Since the column elements of T are unique, ( T 
is so designed.)  x̂(k 1)  and x(k+1) will be different. 

Now the error at symbol location k+1 causes the error at 
location k+2 and so on. Thus the error at location k 
propagates to the succeeding locations. 
       In this way, with error at location k, the encrypted sub 
sequence [ ˆ ˆ ˆ ˆx(k), x(k 1), x(k 2), ..., x(L)  ] will be 

different from their respective error free values. This is an 
important property and can be stated as, 
               x̂( j) x( j)                               (30) 

for j = k, k+1,…, L. 
Hence the last element x̂(L) also would be different from 

x(L) which is always 1. Hence, with a single error at 
location k, the last decrypted element x̂(L) would be 

different from 1. This fact identifies the presence of an 
error. Thus, during decryption, if the last element is not 
equal to 1, it indicates the presence of an error.  
 

VI.   ERROR DETECTION EXAMPLE 
      Here, S and T matrices are as given in the Example of 
section III A, with N = 6. The plain text sequence to the 
encrypter is taken as, 

 x 4 3  5  4 5 2  6 5  1           (31) 

L, the length of the sequence is, L =  9 and  x(9) = 1. 
The encrypted cipher sequence obtained using Eqs.(20) 
and (21) is, 

 y 4 1  3  4 6 6  5 1  3             (32) 

The decryption using Eqs.(22) and (23) exactly reproduces 
the original plain text x when there is no error.  
      Now, let an error occur at location k =2. Let y(2) 
change to 2 instead of 1. Then the cipher sequence with 
error would be, 

ˆŷ 4 2  3  4 6 6  5 1  3                  (33) 

The error term is shown with the cap in Eq.(33). 
Under this condition the decrypted sequence using 
Eqs.(22) and (23) is found to be, 

 x̂ 4 4  6  3 3 3  4 3  5               (34) 

Here, the last term of x̂  is 5 instead of expected 1. Hence 
the conclusion is that an error has occurred. Also we can 
see that the terms of x̂  in locations 2 to 9 ( k to L) are all 
different from those of x. This confirms Eq.(30). 
 

VII.    GENERATION OF LARGE SIZED T AND S 
              All the rows and columns of T and S are 
permutations in the range {1:N}. When permutations are 
generated say, row by row, it should satisfy the constraint 

that the column elements should not repeat for any 
column. When N is large, the above constraint may pose a 
challenge while generating T. One simple solution is to 
use the random permutation function to generate the first 
row of T. Then apply circular left shift (rotation), by one 
element, to the first row to get the second row and so on. 
That is, 
       T(i 1, j) T(i, j 1)              (35) 

for i = 1,2,…, N-1 and j = 1,2,…, N.  
        When j reaches N, take j+1=1 which represents 
circular fold back of the column index.  
      The circular shift of a permutation is also a 
permutation. Hence all the rows of T are permutations. 
Now consider the columns of T. The circular left rotation 
operation to get successive rows of T, from the first row, is 
shown in Fig.2. Here the first row having only 4 elements 
are taken for the purpose of demonstration. 

 
From fig.2, it can be seen that all the columns of 

T are also permutations. Instead of circular left shift, 
circular right shift also can be used. Then T will be a 
circulant matrix [4]. The following algorithm generates T 
and S.        
1. Generate the first row of T, a random permutation in 

the range {1:N} as, 
         P1 = randperm(N). 
 2.    Generate the remaining rows as, 
             for j = 1  to N-1    
                 Pj+1 = circular_left_shift(Pj) 
             end  
3.     Obtain S from T as described earlier. 
          

VII.   CONCLUSION 
A new technique of encryption and decryption with error 
detection capability is presented.  This technique can be 
applied to ASCII and Unicode character strings.  
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        Fig.2. Circular Left shift of successive rows 
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