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Abstract— In structured chord & P Grid systems finding the 
successor nodes, Load balancing and dynamic routing are the 
challenging issues because nodes are heterogeneous and 
dynamically nodes may join the network or old node may 
release from network. We present a general framework, 
HiGLOB, for global load balancing in structured Chord 
systems. Current load balancing, finding optimized node and 
dynamic routing algorithms are based on their own 
mechanisms they typically adhoc, heuristic based, and 
localized. Each node in HiGLOB has three key components: 

1) A Histogram manager maintains a histogram that 
reflects a global view of the distribution of the load  
in the system 

2) A Replication Load Balancing manager redistributes 
the load whenever the node becomes overloaded or 
underloaded. 

3) A Routing Manager finds the best configured and 
optimized node and also finds the way how nodes are 
selected to overlay routing tables.    We implement 
this mainly for Chord networks demonstration. 
 

Keywords- Histogram, peer-peer networks, Chord networks, 
overlay networks, P Grid networks, DHT 
 

I.  INTRODUCTION  
 

Load balancing problems in P2P systems come along in 
many facets. In this paper we report on our results on 
solving simultaneously a combination of two important 
load balancing problems with conflicting requirements—
storage and replication load balancing–in the construction 
and maintenance of distributed hash tables [1] (DHTs) to 
provide an efficient, distributed, scalable, and decentralized 
indexing mechanism in P2P systems like chord and P Grid. 
The basic principle of distributed hash tables is the 
association of peers with data keys and the construction of 
distributed routing data structures to support efficient 
search. Existing approaches to DHTs mainly differ in the 
choice of topology (rings [2], multi-dimensional spaces [3], 
or hypercubes [4]), the specific rules for associating data 
keys to peer keys (closest, closest in one direction), and the 
strategies for constructing the routing infrastructure. 
 
To use the available resources of peer best, a storage load 
balancing approach is applied in all DHTs, i.e., associating 
keys to peers in a way so that the number of data items 
each peer is associated with, is uniform in terms of storage 
consumption. Most existing solutions achieve this by first 
mapping data keys and peer identifiers into the same space 
using uniform hashing. Using this approach storage load 
balancing essentially translates into the classical balls into 
bins problem [5], where peers are the bins (the peer 

identifier determines the data space) and the data items are 
the balls. Adapting the classical load-balancing 
mechanisms in the context of P2P systems, such as load-
stealing and load-shedding schemes, in which peers share 
load with random peers, e.g., [6, 7], or power of two 
choices [8], lead to the need of redirections which 
compromise the search efficiency, because keys become 
increasingly decoupled from the peers associated with the 
corresponding key space and other structural properties are 
violated, since routing needs additional redirections. The 
problem is further aggravated with the growing recognition 
of the fact that uniform hashing to generate keys which are 
uniformly distributed on the key space jeopardizes the 
possibility to do searches on data using the data key 
semantics, typically the ordering of keys to enable 
semantically rich queries like range queries. 
 
The approach which we will follow in this paper is to have 
peers dynamically change their associated key space (“bin 
adaptation”) decoupled from their (unique and stable) 
identifier, and the routing between peers is based on the 
associated key space, rather than on the peer identifiers. 
Following this approach, the partitioning of the key space 
dynamically adapts to any data distribution, such that 
uniform distribution of data items over each partition of the 
key space is achieved. This leads to uneven sizes of the 
partitions of the key space, which can be viewed in the one-
dimensional case analogously to having an unbalanced 
search tree. This implies a risk of sacrificing search 
efficiency. However, we show that due to the distributed 
and randomized routing process we propose (in PGrid), this 
risk can be contained, such that searches can be performed 
with communication cost of O(log(|Π|)) with high 
probability where |Π| is the number of partitions of the key 
space, irrespective of the key space partitioning. This 
satisfies the condition of efficient searches in the context of 
Chord systems under the (standard) assumption that in a 
P2P network, local resources such as computation and 
storage are cheap, but communication costs (messages or 
latency) and network maintenance (routing) are expensive. 
 

Beyond search efficiency, another important issue in 
Chord systems is resilience against failures. The standard 
response to this problem is to introduce redundancy. In the 
context of DHTs this corresponds to associating multiple 
peers with the same partition of the search space, i.e., peers 
being replicas of each other. A fair use of resources implies 
uniform replication of all data partitions, which introduces 
the replication load balancing problem. 
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II. THE P-GRID DATA STRUCTURE  
 

We use our DHT-based P-Grid P2P system [13, 14] to 
evaluate the approach described in this paper. We assume 
that the reader is relatively familiar with the standard 
distributed hash table (DHT) approach [1] and thus only 
provide P-Grid’s distinguishing characteristics. In P-Grid, 
peers refer to a common underlying tree structure in order 
to organize their routing tables (other topologies in the 
literature include rings [2], multi-dimensional spaces [3], or 
hypercube [4]). In the following, for simplicity of 
presentation, we will assume that the tree is binary. This is 
not a fundamental limitation as a generalization of P-Grid 
to k-ary structures has been introduced in [15]. Note that 
the underlying tree does not have to be balanced but may 
be of arbitrary shape, thus facilitating to adapt the overlay 
network to unbalanced data distribution [16]. 
 
Each peer  p € P is associated with a leaf of the binary tree. 
Each leaf corresponds to a binary string π € Π. Thus each 
peer p is associated with a path π(p). For search, a peer 
stores for each prefix π(p, l) of π(p) of length l a set of 
references ρ(p, l) to peers q with property π(p, l) = π(q, l), 
where π is the binary string π with the last bit inverted. This 
means that at each level of the tree the peer has references 
to some other peers that do not pertain to the peer’s subtree 
at that level. This enables the implementation of prefix 
routing for search. Each peer stores a set of data items δ(p). 
Ideally for d € δ(p) the key κ(d) of d has π(p) as prefix. 
However, we do not exclude that temporarily other data 
items are also stored at a peer, that is, the set δ(p, π(p)) of 
data items whose key matches π(p) can be a proper subset 
of δ(p). In addition, peers also maintain references σ(p) to 
peers having the same path, i.e., their replicas.  In a stable 
state (i.e. where no more maintenance operations are 
applicable) the set of paths of all peers is prefix-free and 
complete, i.e., no two peers p and q exist such that π(p) ⊂ 
π(q), i.e., π(p) is a proper prefix of π(q) and if there exists a 
peer p with path π(p), then there also exists a peer q with 
π(p) = π(q). This guarantees full coverage of the search 
space and complete partitioning of the search space among 
the peers. All data stored at a peer then matches its path. 
For search, P-Grid uses a prefix routing strategy. When 
receiving a search message for key κ from peer p, a peer q 
checks whether its path is a prefix of κ. If yes, it checks 
whether it can return a query result from its data store. If 
not, it randomly selects a peer r having a common prefix of 
maximal length with κ from its routing table and forwards 
the request to peer r. 
 
The algorithm always terminates successfully in the stable 
state: Due to the definition of ρ(p, l), this prefix routing 
strategy will always find the location of a peer at which the 
search can continue (use of completeness) and each time 
the query if forwarded, the length of the common prefix of 
π(p) and κ increases. It is obvious that this search algorithm 
is efficient (O(log(|Π|))) for a balanced tree, i.e., all paths 
associated with peers are of equal length. Skewed data 
distributions may imbalance the tree, so that it may seem 
that search cost may become nonlogarithmic in the number 
of messages. However, in [16] we show that due to the 
probabilistic nature of the P-Grid approach this does not 
pose a problem. The expected search cost measured by the 

number of messages required to perform the the search 
remains logarithmic, independently how the P-Grid is 
structured.  
 
Theorem 1. The expected search cost for the search of a 
specific key κ(d) using a P-Grid network N that is randomly 
selected among all possible P-Grids, starting at a randomly 
selected peer p with π(p) ∈ Π is less than log(|Π|).  
Although this applies to the special case of prefix-free P-
Grids, we have shown by simulation that the result also 
applies to more general cases. A formal proof of this 
theorem is given in [16]. Due to space limitations we can 
only provide the intuition which is underlying the proof. 
Basically we show that the path resolution in the 
forwarding process normally is not done bit by bit but for 
longer bit sequences at the processing peers thus keeping 
the number of messages required in the forwarding process 
logarithmic. Additionally, [16] shows that the probability 
that a search does not succeed after k steps (1 ≤ k ≤ max(|π|, 
π ∈ Π)) is smaller than log(n|Π|)k−1 (k−1)!  
 

 
III. P GRID CONSTRUCTION ALGORITHM 

 
The construction and maintenance of P-Grid is based 
exclusively on local interactions among peers in order to 
observe the principle of locality. In this section we give an 
overview of the possible interactions that determine the 
behavioral options of peers. As peers are autonomous they 
may use different strategies for entering into such local 
interactions. The choice of concrete strategies will be 
essential with respect to the global efficiency of the system 
and discussed later. Interactions among peers are either 
performed actively by the peers (similar to the peer 
discovery in Gnutella using the ping-pong messages) or are 
performed reactively triggered by earlier interactions or 
search messages. For maintenance purposes, the following 
interactions occur among two peers p and q: – 
balancedSplit(p, q): The peers check whether their paths 
are identical. If yes, they extend their paths by 
complementary bits, i.e., partition (split) the key space they 
are responsible for. To maintain consistency they exchange 
their data corresponding to their updated paths and add 
each other to their routing table. This enables the 
refinement of the indexing structure into subspaces which 
are sufficiently populated with data. 
– unbalancedSplit(p, q): The peers check whether π(p) is a 

proper prefix of π(q). In the case π(p) is a proper prefix 
of π(q), p extends its path by one bit complementary to 
the bit of π(q) at the same level. The peers exchange 
their data corresponding to the updated paths and 
update their routing table. This enables the refinement 
of the indexing structure into subspaces as in the 
previous case, but covers the frequently occurring 
situation that peers have already specialized to 
different degrees. The case where π(q) is a proper 
prefix of π(p) is treated analogously.  

– adoptP ath(p, q): Peer p becomes a copy (replica) of peer 
q. In order to avoid data loss peer p attempts to locate 
peers covering the same subspace and to delegate any 
non-replicated data items there. If this is not possible it 
keeps data items not matching the new path to delegate 
it at a later time.  
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– balancedDataExchange(p, q): The peers check whether 
their paths are identical. If yes, they replicate mutually 
all data pertaining to their common path which 
increases resilience (availability of the data items). 

– unbalancedDataExchange(p, q): The peers check 
whether π(p) is a proper prefix of π(q) (or vice versa). 
If yes, data of p pertaining to π(q) is moved to q. 

– refExchange(p, q): The peers exchange entries from their 
routing tables up to the level corresponding to the 
length of their common prefix randomly. This 
interaction randomizes the contents of the routing 
tables which is essential to maintain routing efficiency, 
in particular in the unbalanced case [16]. 

– forwarding(p, q): If the peers’ paths are not in a prefix 
relationship the peer q provides the peer p with an 
address of a peer r selected from its routing table 
which shares a prefix of maximal length with π(p) (or 
vice versa). Then peer p enters into an interaction with 
peer r. The conditions under which these rules are 
applied determine the strategies peers pursue in 
interactions. From these local interaction strategies a 
global system behavior emerges. The following 
sequence of actions performed by peers p and q 
entering into an interaction describes a possible 
strategy to construct a P-Grid structure from an initial 
state where all peers store some initial data and have 
empty paths and routing tables. 

 
Algorithm 1 
 
refExchange(p, q); 
if |δ(p, π(p)) ∪ δ(q, π(q))| ≤ 2δmaxthen 
balancedDataExchange(p, q) 
if |δ(p, π(p)) ∪ δ(q, π(q))| > 2δmax;then balancedSplit(p, q) 
unbalancedSplit(p, q); 
forwarding(p, q); 
 
In this strategy, peers first exchange routing information if 
possible. Then depending on the relationship among their 
paths and the current storage load they select one of the 
four subsequent actions. (Note that we do not explicitly 
repeat the necessary conditions on the path relationship for 
executing these actions). We observe that due to the 
forwarding action any initial interaction will eventually 
lead to the enabling of one of the balanced or unbalanced 
split or data exchange operations. For a uniform data 
distribution and provided that the total number of data 
items is less than δmaxn, where is the total number of 
peers, this algorithm will end up in a state where each peer 
carries at most 2δmax data items, the P-Grid structure is 
(approximately) balanced and all replica peers store the 
same data. 
 
Theorem 2. If the total number of data items is less than 
δmaxn and data keys are uniformly distributed Algorithm 1 
results in a steady state in which the PGrid is prefix-free 
and complete and each peer p with replicas has a data load 
smaller than 2δmax, all replicas store the same data and in 
expectation all data items are equally replicated. 
 
Proof Sketch: First we have to show that the steady state is 
reached. Prefix freeness follows from the fact that 
whenever a peer has a path that is a prefix of another peer’s 

path, it eventually will encounter this peer and perform an 
unbalanced split. Completeness follows from the fact that 
new paths can only occur as the result of a balanced split. If 
a peer has a replica and the data load is larger than 2δmax, 
it will eventually perform a split with its replica. If peers 
with the same path have different data items then they will 
eventually perform a balanced data exchange. Second, it is 
easy to see that once the steady state is reached none of the 
rules can induce further changes to the paths or data 
associated with the peers.  
 
The problem is that with this strategy peers preferably 
adapt shorter paths and therefore even though peers try to 
balance their storage load, the distribution of replicas over 
the different paths becomes unbalanced in the case of non-
uniform distribution of data keys: In a balanced split the 
same number of peers decide for each side of the data space 
independent of the actual distribution of data among the 
two subspaces, and in an unbalanced split peers decide for 
one side with a probability proportional to the number of 
peers already specialized for each side of the data space, 
but independent of the number of data items present in the 
two subspaces. This has the further effect that fewer peers 
specialize on paths with higher data load, and sooner end 
up without replicas. They thus lack the capacity to further 
refine the path and thus reduce their data load. To address 
this problem we consider a different strategy to improve 
replica balancing already during construction of the P-Grid 
structure. 
 
Algorithm 2 
 
refExchange(p, q); 
if |δ(p, π(p))∪δ(q, π(q))|≤2δmax∧γ([0, 1])<αthen 
balancedDataExchange(p, q) 
if |δ(p, π(p)) ∪ δ(q, π(q))| > 2δmax;then balancedSplit(p, q) 
if γ([0, 1]) < βthen unbalancedSplit(p, q)else adoptP ath(p, q); 
forwarding(p, q); 
 
In this strategy two mechanisms work together to improve 
replica balancing. First, balanced splits are not always 
performed eagerly, but with reduced probability α, where α 
may depend on the locally observed load distribution. Thus 
more unbalanced split situations occur. In those situations 
peers only either extend their path opposite to the path of 
the encountered peer or adopt the path. The decision is 
based on a control parameter β which again may depend on 
the locally observed load distribution. As a result, if α and β 
are properly chosen, those subspaces will be populated by 
more peers that contain more data. Even though, this 
heuristic approach does not necessarily induce a perfectly 
uniform replica distribution, it substantially improves the 
state reached after the P-Grid construction. The remaining 
balancing is then achieved by the sampling-based 
replication maintenance algorithm, that we will introduce 
subsequently. Having a more uniform initial replica 
distribution substantially reduces the effort required from 
the maintenance algorithms in order to rectify the 
distribution. The construction algorithm can be extended to 
a maintenance algorithm (path retraction). The path 
retraction is dual to the path extension, such that if two 
partitions do not have enough data (< δmax/2), then such 
partitions would be merged. 
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IV. REPLICATION MAINTENANCE ALGORITHM 
 

To address the balancing problems discussed in the 
previous sections, we use a reactive randomized distributed 
algorithm which tries to achieve globally uniform 
replication adaptive to globally available resources based 
on locally available (gathered) information. Before 
introducing the algorithm we introduce the principles 
underlying its design. Consider a P-Grid of leaves as shown 
in Figure 1(a). Let N1 > N2 be the actual number of replica 
peers with paths 0 and 1. To achieve perfect replication 
balancing (N1−N2)/ 2 of the peers with path 0 would need 
to change their path to 1. Since each of the peers has to 
make an autonomous decision whether to change its path, 
we propose a  randomized decision: Peers decide to change 
their paths with probability p0→1 = max(N1−N2/2N1, 0) 
(no 0 → 1 transition occurs if N2 > N1). 
 

 
A) P-Grid with two leaves 

 
B) P-Grid with three leaves 

 
Figure 1.   

 
Collecting Statistical Information at Peer p: In a 
decentralized setting, a peer p has to rely on sampling to 
obtain an estimate of the global load imbalance:Upon 
meeting any random peer q, peer p will gather statistical 
information for all possible levels l ≤ |π(p)| of its path, and 
update the number of peers belonging to the same subspace 
Σp(l) = |{q s.t. |π(p) ∩ π(q)| ≥ l}| and the complimentary 
subspace Σp(l) = |{q s.t. π(p, l) = π(q, l)}| at any level l. 
When peers p and q interact, statistics gathering is 
performed as follows  
l := |π(p) ∩ π(q)|; 
Σp_q(l) := Σp_q(l) + 21+l−|π(q_p)|; ∀0 ≤ i < l Σp_q(i) := Σp_q(i) + 21+i−|π(q_p)|; 
where the meta-notation p q denotes that the operations are 
performed symmetrically both for p and q. 

Choosing Migration Path for Peer p: A path change of a 
peer only makes sense if it reduces the number of replicas 
in an underpopulated subspace (data). Therefore, as soon as 
a minimum number of samples have been obtained, the 
peer tries to identify possibilities for migration. It 
determines the largest lmax such that Σp(lmax) 
Σp(lmax) > ζ where ζ ≥ 1 is a dampening factor which 
avoids migration if load-imbalance is within a ζ factor. We 
set lmax := ∞ if no level satisfies the condition.If all peers 
try to migrate to the least replicated subspace, we would 
induce an oscillatory behavior such that the subspaces with 
low replication would turn into highly replicated subspaces 
and vice versa. Consequently, instead of greedily balancing 
load, peers essentially have to make a probabilistic choice 
proportional to the relative imbalance between subspaces. 
Thus lmigration is chosen between lmax and |π(p)| with a 
probability distribution proportional to the replication load-
imbalance Σp(i) Σp(i) , |π(p)| ≥ i ≥ lmax. Thus the 
migrations are prioritized to the least populated subspace 
from the peer’s current view, yet ensuring that the effect of 
the migrations is fair, and not all take place to the same 
subspace. There are subtle differences in our approach to 
replication balancing in comparison to the classical balls 
into bins load balancing approach, because in our case there 
are no physical bins, which would share load among 
themselves, and it is rather the balls themselves, which 
need to make an autonomous decision to migrate. 
Moreover, the load sharing is not among bins chosen 
uniformly, but is prioritized based on locally gathered 
approximate global imbalance knowledge.  
 
To further reduce oscillatory behavior, the probability of 
migration is reduced by a factor ξ ≤ 1. As migration is an 
expensive operation—it leads to increased network 
maintenance cost due to routing table repairs, apart from 
the data transfer for replicating a new key space—it should 
only occur if long-term changes in data and replication 
distribution are observed and not result from short term 
variations or inaccurate statistics. The parameters ζ and ξ 
are design parameters and the impact of their choice on the 
system behavior will be further explored in Section 5. 
 

1) Migrating Peer p: The last aspect of replication 
load balancing is the action of changing the path. For that, 
peer p needs to find a peer from the complimentary 
subspace and thus inspects its routing table ρ(p, 
lmigration) (s.t. π(p) ∩ π(q) = lmigration). After identifying 
a peer q, p clones the contents of q, including data and 
routing table, i.e., δ(p) := δ(q) and ρ(p, ∗) = ρ(q, ∗), and 
the statistical information is reset in order to account for 
the changes in distribution  

 
 

V. SIMULATION RESULTS 
 

This section highlights some of the many experiments we 
performed using a simulator implemented in Mathematica 
to evaluate the construction and maintenance algorithms. 
The simulations aim at verifying the load balancing 
characteristics of the algorithms, and do not model aspects 
related to the physical runtime environment with different 
network topologies, communication latencies, or 
heterogeneity of resources of nodes. Unless mentioned 
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otherwise, simulations were performed with 256 peers. 
This relatively low number was chosen to keep simulation 
time manageable. From the design of the algorithms it is 
clear that the results will scale up to larger populations. To 
support this, we will give one result for the complete 
maintenance algorithm with changing peer population at 
the end. The data was chosen from a Zipf distribution with 
parameter θ = 0.8614 such that the frequencies of keys 
were monotonically increasing with decreasing size of the 
key. We set δmax = 50.  
 
Replication Load Balancing Throughout Construction: 
In Section 3 we discussed a possibility to maintain better 
replica load balancing while establishing storage load 
balance during P-Grid construction, by reducing the  
probability α of balanced splits of the key space (while 
choosing β = 1). In Table 1 we show the results of an 
experiment in which each peer initially holds 15 data 
items.We see how a reduction of α reduces both the 
variance Rσ2 in the replication factors for the key space 
partitions and the maximum replication factor Rmax, where 
Rμ is the average replication factor with an expected value 
of 3.33.2 With lower probabilities more interactions occur 
to reach a steady state. 
 

TABLE I.  INFLUENCE OF SPLITTING PROBABILITY Α ON 

DISTRIBUTION OF REPLICATION FACTOR 

 
 
Replication Load Balancing Throughout Maintenance: 
Given a P-Grid that partitions the data space such that the 
storage load is (approximately) uniform for all partitions, 
migrations are used to establish simultaneous balancing of 
replication factors for the different partitions without 
changing the data space partitioning. 
 
Figure 2 shows the reduction of the variance of the 
distribution of replication factors compared with the initial 
variance as a function of the number of key space 
partitions. The simulation was starting from an initially 
constructed, unbalanced P-Grid network with replication 
factors chosen uniformly between 10 and 30 for each of the 
key space partitions. We compared the effect of an 
increasing number of key space partitions (p = {10, 20, 40, 
80}) on the performance of the replication maintenance 
algorithm. One observed that the reduction of variance 
increases logarithmically with the number of partitions. For 
example, for p = 80 the initial variance is reduced by 
approximately 80%. We conducted 5 simulations for each 
of the settings. The error bars give the standard deviation of 
the experimental series. The right part of Figure 2 shows 
the rate of the reduction of variance of replication factors as 
a function of different numbers of peers associated with 
each key partition. We used a P-Grid with p = 20 partitions 
and assigned to each partition uniformly randomly between 
k and 3k peers, such that the average replication factor was 
2k. The other settings were as in the previous experiment. 
Actually variance reduction appears to slightly improve for 

higher replication factors. This results from the possibility 
of a more fine-grained adaptation with higher replication 
factors. 
 

 
Figure 2.  Maintenance of replication load-balance 

 
Simultaneous Balancing of Storage and Replication 
Load in a Dynamic Setting: In this experiment we studied 
the behavior of the system under dynamic changes of the 
data distribution. Both storage load balancing by 
restructuring the key partitioning (i.e., extending and 
retracting paths) and replication balancing by migration 
were performed simultaneously.We wanted to answer the 
following two questions: (1) Is the maintenance mechanism 
adaptive to changing data distributions? (2) Does the 
combination of restructuring and migration scale for large 
peer populations? 
 
Table 2 shows the results of our experiments. We executed 
an average of 382 rounds in which each peer initiated 
interleaved restructuring and maintenance operations, 
which was sufficient for the system to reach an almost 
steady state. Rσ2 is the variance of the replication factors 
for the different paths and Dσ2 is the variance of the 
number of data items stored per peer. 
 

TABLE II.  REPLICATION FACTOR RESULTS OF 

SIMULTANEOUS BALANCING 

 

 
The experiments show that the restructuring of the network 
as well as replication balancing was effective and scalable: 
(1) In all cases the data variance dropped significantly, i.e., 
the key space partitioning properly reflects the (changed) 
data distribution. Because of the randomized choices of the 
initial P-Grid structure and the data set, the initial data 
variance is high and varies highly. It actually depends on 
the degree to which the randomly chosen P-Grid and the 
data distribution already matched. From the case p = 40 
(number of initial paths), we conclude that this has also a 
substantial impact on the convergence speed since more 
restructuring has to take place. Actually, after doubling the 
number of interactions, the replication variance dropped to 
20.93, which is an expected value. (2) With increasing 
number of replicas per key partition the replication variance 
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increases. This is natural as fewer partitions mean higher 
replication on average and thus higher variance. (3) With 
increasing peer population the final data variance increases. 
This is expected as we used a constant number of 
interactions per peer and the effort of restructuring grows 
logarithmically with the number of key partitions. 
 
The algorithms do not require much computation per peer 
hence have a low overhead. Simulating them, however 
takes considerable effort: A single experiment with 3 * 105 
interactions for the results in this section took up to 1 full 
day. Thus we had to limit the number and size of the 
experiments. Nevertheless they indicate the feasibility, 
effectiveness and scalability of the algorithms. 
 

VI. RELATED WORK 
 

For data replication in P2P systems we can distinguish six 
different methods (partially according to the classification 
from [17]): Owner replication replicates a data object to the 
peer that has successfully located it through a query 
(Napster, Gnutella, Kazaa). Path replication replicates a 
data object along the search path that is traversed as part of 
a search (Freenet, some unstructured P2P networks). 
Random replication replicates data objects as part of a 
randomized process. [17] shows that for unstructured 
networks this is superior to owner and path replication. 
Controlled replication replicates a data object a pre-defined 
number of times upon insertion (Chord [2], CAN [3], and 
Pastry [9]). This approach does not adapt replication to the 
changing environment with variable resource availability. 
The replication balancing mechanism proposed in this 
paper (and as used in P-Grid) is adaptive to the available 
resources in the system. This mechanism tries to uniformly 
exploit the storage resources available at peers, and thus 
achieve uniform distribution of the replicas of data objects. 
In addition, query adaptive replication [11] can be used in 
various structured overlays, complementing controlled or 
available resource adaptive replication.Replication of index 
information is applied in structured and hierarchical P2P 
networks. For the super-peer approach it has been shown 
that having multiple replicated super-peers maintaining the 
same index information increases system performance [18]. 
Structured P2P networks maintain multiple routing entries 
to support alternative routing paths if a referenced node 
fails. With respect to load balancing in DHT based systems 
only a few recent works have been reported. The 
application of uniform hashing and its limited applicability 
have already been discussed in the introduction.  
 
The load balancing strategy for Chord proposed in [7] uses 
multiple hash functions instead of only one to select a 
number of candidate peers. Among those the one with the 
least load stores the data item and the others store pointers 
to it. This scheme does not scale in the number of data 
items due to the effort incurred by redirection pointer 
maintenance. Moreover, using a predetermined number of 
hash functions do not give any adaptivity according to the 
systems requirement. Also Chord’s original search no 
longer works and essentially multiple Chord overlays have 
to be maintained which are interconnected among 
themselves in a possibly unpredictable manner.Another 
scheme for load balancing for Chord is suggested in [19] 

based on virtual servers. Nodes are responsible to split the 
data space to keep the load of each virtual server bounded. 
The splitting strategy is similar to the splitting used in our 
storage load balancing strategy, however, this work does 
not consider the effects on replication nor on search 
efficiency. Online load-balancing has been a widely 
researched area in the distributed systems domain. It has 
often been modeled as balls into bins [5]. Traditionally 
randomized mechanisms for load assignment, including 
load-stealing and loadshedding and power of two choices 
[8] have been used, some of which can partly be reused in 
the context of P2P systems as well [7, 6]. In fact, from 
storage load balancing perspective, [6] compares closest to 
our approach because it provides storage load-balancing as 
well as key order preservation to support range queries, but 
in doing so, they no more provide any guarantee for 
efficient searches of isolated keys. As mentioned earlier, 
load-balancing in DHTs poses several new challenges, 
which call for new solutions. We need to deal with the 
dynamic membership (off-online behavior of peers) and 
dynamic content, and there is neither global coordination 
nor global information to rely on, and the load-balancing 
mechanism should ideally not compromise the structural 
properties and the search efficiency of the DHT, while 
preserving the semantic information of the data. In [20], 
storage load-balancing is achieved by reassignment of peer 
identifiers in order to deal with network churn, but this 
scheme is designed specifically for uniform load 
distribution only.  
 
The dynamic nature of P2P systems is also different from 
the online load-balancing of temporary tasks [21] because 
of the lack of global knowledge and coordination. 
Moreover, for replication balancing, there are no real bins, 
and actually the number of bins varies over time because of 
storage load balancing, but the balls (peers) themselves 
have to autonomously migrate to replicate overloaded key 
spaces. Also for storage load balancing, the balls are 
essentially already present determined by the data 
distribution, and it is essentially the bins that have to fit the 
balls by dynamically partitioning the key space, rather than 
the other way round. Substantial work on distributed data 
access structures has also been performed in the area of 
distributed databases on scalable data access structures, 
such as [22, 23]. This work is apparently relevant, but the 
existing approaches apply to a different physical and 
application environment. Databases are distributed over a 
moderate number of fairly stable database servers and 
workstation clusters. Thus reliability is assumed to be high 
and replication is used only very selectively [24] for 
dealing with exceptional errors. Central servers for 
realizing certain coordination functions in the network are 
considered as acceptable and execution guarantees are 
mostly deterministic rather than probabilistic. Distributed 
search trees [25] are constructed by a full partitioning, not 
using the principle of scalable replication of routing 
information at the higher tree levels,as originally published 
in [1] (with exceptions [26]). Nevertheless, we believe that 
at the current stage the potential of applying principles 
developed in this area to P2P systems is not yet fully 
exploited.  
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VII. CONCLUSIONS 
 

Existing uncoordinated online load-balancing mechanisms 
do not address the requirements of DHT-based P2P 
networks. In this paper we compared the new load-
balancing problems of such systems with the standard 
model so that wherever possible we can apply existing 
solutions. But more importantly, we identified the new and 
specific requirements of this family of Chord and P Grid 
systems, and proposed new algorithms to efficiently 
achieve simultaneous storage and replication load-
balancing relying only on local information. Some of the 
important novelties of our solution in comparison to other 
proposed Chord load balancing mechanisms are: Our 
mechanism allows the access structure to adapt and 
restructure dynamically, but preserves its structural 
properties, unlike other mechanisms which require extrinsic 
mechanisms like redirection pointers, that make queries 
inefficient. The effort incurred by our load-balancing 
approach is low because it requires no extra communication 
but we gather statistic data from normal interactions and 
“piggy-back” the load-balancing into the standard 
information exchanges required by the DHT. We also 
preserve key ordering, which is vital for semantically rich 
queries like range queries. Using randomized routing 
choices, search efficiency is guaranteed with high 
probability, irrespective of key distribution. Additionally, 
unlike some other proposals, our solution does not require 
the peers to change identity which allows us to retain 
existing knowledge and semantics, that may be exploited 
by higher level applications 
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