
Framework for Injecting the Attacks and Analyzing
the Behaviour of Vulnerability on Server’s

Panchamukesh Ch#1, Kumar.J*2, Neelima.S*3, Sailaja.D*4
#1 Department of CSE, HITAM, Gowdavally, Hyderabad, India

*2, Department of CSE, NIMRA Institute of Engineering & Technology, Ongole, India
*3 Department of CSE, Pydah College of Engineering , Kakinada, India

*4 Department of CSE, Sankethika Vidya Parishad Engineering college, Vizag, India

Abstract -- Due to our increasing reliance on computer systems,
security incidents and their causes are important problems
that need to be addressed. The main scope of this paper is to
discover the security vulnerabilities on the servers which are
connected through networks, for which a new tool is proposed,
called AJECT. For some Predefined test classes AJECT tool will
automatically generates large number of attacks using the
specification of server’s communication protocol. While
performing these kinds of attacks it monitors the behaviour of
the server both from a client perspective and inside the target
machine through the network. The potential existence of
vulnerability can be conformed by observation of an incorrect
behaviour. To demonstrate the usefulness of this approach, a
considerable number of experiments were carried out with
several attacks like Special char attack, Assignment attacks, and
Query attack. The obtained results show that AJECT can
discover several kinds of vulnerabilities, including a previously
unknown vulnerability.

Keywords- fault injection, attack injection, vulnerability,
AJECT, server’s, communication protocol.

I. INTRODUCTION
Our reliance on computer systems for everyday life

activities has increased over the years, as more and more tasks
are accomplished with their help. Software evolution has
provided us with applications with ever improving
functionality. These enhancements however are achieved
in most cases with larger and more complex projects,
which require the coordination of several teams of people.
Third party software is frequently utilized to speedup
programming tasks, even tough in many cases it is
poorly documented and supported. In the background, the
ever present tradeoff between time to market and thorough
testing puts pressure on the quality of the software.
Experience has shown that some of the bugs result in security
vulnerabilities that can be exploited by malicious adversaries.
The existence of a vulnerability presence does not cause
a security hazard, and in fact many times they can
remain dormant for many years. An intrusion is only
materialized when the right attack is discovered and applied to
exploit that vulnerability. After an intrusion, the system might
or might not fail, depending on the kind of capabilities it
possesses to deal with errors introduced by the adversary.
Sometimes the intrusion can be tolerated , but in the
majority of the current systems, it leads almost immediately to
the violation of one or more security properties .

Several tactics can be employed to improve the
dependability of a system with respect to malicious faults. Of
course, intrusions would never arise if all vulnerabilities
could be eliminated. Vulnerability removal can be
performed both during the development and operational
phases. In the last case, besides helping to identify

programming flaws which can later be corrected, it also assists
the discovery of configuration errors and/or other similar
problems. Intrusion prevention (e.g., vulnerability removal)
has been advocated because it reduces the power of the
attacker. In fact, even if the ultimate goal of zero
vulnerabilities is never attained, vulnerability removal reduces
the number of entry points into the system, making the
life of the adversary increasingly harder (and ideally
discouraging further attacks). Fig .1 shows a composite fault
model which is used to demonstrate the vulnerability
discovery methodology.

Fig .1 Composite fault model

II. RELATED WORK

The paper describes a methodology and a tool for the

discovery of vulnerabilities on services provided by network
or local daemons, through the injection of attacks (i.e.,
malicious faults). This work has been influenced by several
research areas, namely:

A) Fault Injection

It is an experimental approach for the verification

of fault handling mechanisms (fault removal) and for the
estimation of various parameters that characterize an
operational system (fault forecasting), such as fault
coverage and error latency . Traditionally, fault injection
has been utilized to emulate several kinds of hardware
faults, ranging from transient memory corruptions to
permanent stuck-at faults. Three main techniques have
been developed to inject these faults: hardware-based tools
resort to additional hardware to actually introduce the
faults in the system, in most cases through pin-level
injection, but also through radiation and electromagnetic

Panchamukesh Ch et al IJCSET |August 2011 | Vol 1, Issue 7, 376-380

376

interference simulation models with different levels of
abstraction, e.g., device and network, have been employed
by simulation-based tools to study the behaviour of
systems, starting from the early stages of design
software-based tools insert errors in the various parts of a
running system by executing specific fault injection code .
The emulation of other types of faults has also been
accomplished with fault injection techniques, for example,
software and operator faults. Robustness testing mechanisms
study the behaviour of a system in the presence of erroneous
input conditions. Their origin comes both from the software
testing and fault-injection communities, and they have been
applied to various areas, for instance, POSIX APIs and
device driver interfaces .

B) Vulnerability Scanners

These are tools whose purpose is the discovery
of vulnerabilities in computer systems (in most cases
network-connected machines). Several examples of these
tools have been described in the literature, and currently
there are some commercial products: COPS, Found Stone
Enterprise, Internet Scanner, Nessus, and QualysGuard.
They have a database of well known vulnerabilities,
which should be updated periodically, and a set of
attacks that allows their detection. The analysis of a
system is usually performed in three steps:

Step 1: The scanner interacts with the target to obtain
information about its execution environment (e.g., type of
operating system, available services, etc).

Step 2: Then, this information is correlated with the data
stored in the database, to determine which vulnerabilities have
previously been observed in this type of system.

Step 3: later, the scanner performs the corresponding attacks
and presents statistics about which ones were successful.

Even though these tools are extremely useful to
improve the security of systems in production, they have the
limitation that they are unable to uncover unknown
vulnerabilities.

C) Static vulnerability analyzers

These look for potential vulnerabilities in the source
code of the applications. Typically, these tools examine the
source code for dangerous patterns that are usually associated
with buffer overflows, and then they provide a listing of their
locations. Next, the programmer only needs to go through
the parts of the code for which there are warnings, to
determine if an actual problem exists. More recently, this idea
has been extended to the analysis of binary code. Static
analysis has also been applied to other kinds of vulnerabilities,
such as race conditions during the access of (temporary) files.
In the past, a few experiments with these tools have been
reported in the literature showing them as quite effective for
locating programming problems. These tools however have
the limitation of producing many false warnings, and skip
some of the existing vulnerabilities.

D) Run-time prevention mechanisms
 Change the run-time environment of programs with

the objective of thwarting the exploitation of vulnerabilities.
The idea here is that removing all bugs from a program is
considered infeasible, which means that it is preferable to
contain the damages caused by their exploitation. Most of
these techniques were developed to protect systems from
buffer overflows. A few examples are: Stack Guard, Stack
Shield, and Point-Guard are compiler-based tools that
determine at runtime if a buffer overflow is about to occur,
and stop the program execution before it can happen. A
recent study compares the effectiveness of some of these
techniques, showing that they are useful only to prevent
a subset of the attacks .

III. SYSTEM OVERVIEW

To detect and remove the vulnerabilities in this
paper we describes a tool called AJECT - Attack in-
JECtion Tool . AJECT calculates the behavior of an
antagonist by injecting attacks against a target system
then it observes the execution of the system to determine if
the attacks have caused a failure. In the positive case this
indicates that the attack was successful, which reveals the
existence of a vulnerability. After the identification of a,
vulnerability we can use any traditional debugging techniques
to inspect the application code and running environment and
to find out the source of the vulnerability and allow its
successive removal.

The existing version of AJECT mainly targets
network server applications, although it can also be
utilized with most local daemons. Considering the
perspective of security to check for vulnerability we chose
servers and off course they are most relevant components that
need protection. Generally a hacker can intrude into a
network only through server and then he uses all the facilities
of a server like she or he immediately gains access to a local
account, which can then be used as a launch pad for further
attacks. The tool treats the server as a black box it does not
need the source code of the server to perform the attacks.
AJECT has to obtain a specification of the protocol
implemented by the target server in order to generate smart
attacks.

To demonstrate the usefulness of our approach, we
have conducted a number of experimental attacks like Special
char attack, Assignment attacks, and Query attack. The main
intention was to show that AJECT could automatically
discover a number of different vulnerabilities, which were
described in bug tracking sites by various people. This
experiment managed to prove that AJECT could detect many
vulnerabilities and even able to discover a new vulnerability
that was previously unknown to the security community.

As in Fig .2 in the architecture of AJECT there are
four basic entities namely the Target System, the Target
Protocol Specification, the Attack Injector and the Monitor.
The Target System entity corresponds to the system which we
want to test and the remaining three entities are the main
components of AJECT. The target application and its
execution environment are present in Target System which
indeed have middleware libraries ,operating system and
hardware configuration. Using client program the target
application service can be invoked remotely. In addition to

Panchamukesh Ch et al IJCSET |August 2011 | Vol 1, Issue 7, 376-380

377

that it can also be a local daemon supporting a given
task of the operating system. In both the cases, well-
known protocol is used by the target application to
communicate with the clients, and by transmitting malicious
packets, these clients can carry out attacks to the server. If the
packets are not correctly processed, the target can suffer
various Kinds of errors with distinct consequences, ranging,
for instance, from a slow down to a crash. The A graphical
interface is provided to target Protocol Specification
component for the specification of the communication
protocol used by the target application. The Attack
Injector is responsible for the generation and
implementation of the attacks, and for receiving the
responses returned by the target. It also performs some
analysis on the information acquired during the attack, to
determine if vulnerability was exposed.

Fig .2 Architecture of AJECT

The main purpose of the Monitor is to examine and

collect data about the target system execution, which
requires a careful synchronization with the Injector.

IV. DESIGN & IMPLEMENTATION

The implementation of this architecture is to achieve

two main purposes, one the automatic injection of attacks
and other data collection for analysis after injecting the
attack . And a relation between target and AJECT is necessary
in order to obtain widespread information about the execution.

Therefore, the Monitor needs to run in the same machine as
the target, where it can use the low level operating
system functions to get, for example, statistics about the
CPU and memory usage. On the other hand, the injection of
attacks can usually be performed from a different machine. In
fact this is a desirable situation, since it is convenient to
maintain the target as independent as possible from the
Injector, so that interference is kept to a minimal level. So ,
here we specify the three types of attacks which we used in
our paper , Fig .3 shows the pseudo code implementation of
special character attack ,Fig .4 shows the pseudo code
implementation of assignment attack , and Fig .5 shows the
pseudo code implementation of syntax (or) query attack .

Fig .3: Pseudo code to find special character attack

Fig .4: Pseudo code to find taint (or) assignment attack

Fig .5: Pseudo code to find syntax (or) query attack

As the AJECT tool can be used for two purposes one

for injecting attacks and other to discover and analyze the
vulnerability, the following pseudo code in Fig .6 shows how
it implements second purpose.

Panchamukesh Ch et al IJCSET |August 2011 | Vol 1, Issue 7, 376-380

378

Fig .6: How those attacks are discovered by AJECT

V. RESULT

Fig .7: Admin Login page for new user

Fig .8: New Registration Page for the user

Fig .9: Injection of special character attack

Fig .10: Analysis of vulnerability in the server

CONCLUSION

In this paper we present a tool which is used to
discovery and remove the vulnerabilities in server applications.
AJECT simulates the behaviour of a malevolent challenger by
injecting different kinds of attacks against the target server.
In the process of simulating it collects various information of
the server by observing the application. And that information
which is collected is analyzed later to determine incorrect
execution of the server, which is a strong indication that
vulnerability exists. To demonstrate the usefulness of this
approach, a considerable number of experiments were carried
out with several attacks like Special char attack, Assignment
attacks, and Query attack. These experiments indicate that
AJECT could be utilized to locate and remove a significant
number of distinct types of vulnerabilities.

Panchamukesh Ch et al IJCSET |August 2011 | Vol 1, Issue 7, 376-380

379

REFERENCES
[1] B.P. Miller, L. Fredriksen, and B. So, “An Empirical Study of the

Reliability of UNIX Utilities,” Comm. ACM, vol. 33, no. 12, pp. 32-44,
1990.

[2] P. Oehlert, “Violating Assumptions with Fuzzing,” IEEE Security and
Privacy, vol. 3, no. 2, pp. 58-62,
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1423963, Mar./Apr.
2005.

[3] Univ. of Oulu, “PROTOS—Security Testing of Protocol
Implementations,” http://www.ee.oulu.fi/research/ouspg/protos/, 1999-
2003.

[4] M. Sutton, “FileFuzz,” http://labs.idefense.com/labs-software.php?show=3,
Sept. 2005.

[5] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley, 2007.

[6] Tenable Network Security, “Nessus Vulnerability Scanner,”
http://www.nessus.org, 2008.

[7] Saint Corp., “SAINT Network Vulnerability Scanner,”
http://www.saintcorporation.com, 2008.

[8] Qualys, Inc., “QualysGuard Enterprise,” http://www.qualys.com, 2008.
[9] D. Wagner, J.S. Foster, E.A. Brewer, and A. Aiken, “A First StepTowards

Automated Detection of Buffer Overrun Vulnerabilities,”Proc. Network
and Distributed System Security Symp., Feb. 2000.

[10] E. Haugh and M. Bishop, “Testing C Programs for BufferOverflow
Vulnerabilities,” Proc. Symp. Networked and Distributed System
Security, pp. 123-130, Feb. 2003.

[11] J. Dura˜es and H. Madeira, “A Methodology for the Automated
Identification of Buffer Overflow Vulnerabilities in Executable
Software without Source-Code,” Proc. Second Latin-Am.
Symp.Dependable Computing, Oct. 2005.

[12] M. Bishop and M. Dilger, “Checking for Race Conditions in File
Accesses,” Computing Systems, vol. 9, no. 2, pp. 131-152, Spring 1996.

[13] Wilander and M. Kamkar, “A Comparison of Publicly Available Tools
for Dynamic Buffer Overflow Prevention,” Proc. Network and
Distributed System Security Symp., pp. 149-162, Feb. 2003.

[14] Microsoft, Corp., “A Detailed Description of the Data Execution
Prevention (DEP) Feature in Windows XP Service Pack 2, Windows XP
Tablet PC Edition 2005, and Windows Server 2003,”
http://support.microsoft.com/kb/875352, Sept. 2006.

AUTHORS

#1 Panchamukesh Chandaka received Bachelors degree
in Computer science and Information Technology from
JNTUH, M.Tech in Information Technology from
JNTUK. He is a research scholar in field of
Information Security and Software Engineering. He is
having experience of 5 Years in the field of Computer
Science and Engineering, presently working as
Assistant Professor in the department of CSE,
Hyderabad Institute of Technology and Management
(HITAM), Gowdavally, R.R.Dist., A.P, INDIA. He can be reached at
mukesh_1229@yahoo.com.

*2 Kumar Jetti received Bachelors degree in Computer
science engineering from JNTUK, M.Tech in Computer
science engineering from JNTUK. He is a research
scholar in field of Data Mining & Information Security.
He is having experience of 4 Years in the field of
Computer Science and Engineering, presently working
as Assistant Professor in the department of CSE, CMR
Group of Institutions, Hyderabad, R.R.Dist., A.P,
INDIA. He can be reached at kumarkanna.j@gmail.com.

*3 Neelima Sadineni received Bachelors degree in
Computer science and Information Technology from
JNTUH, Pursuing M.Tech in Software Engineering from
JNTUK. She is a research scholar in field of Data
Mining and Software Engineering. She is having
experience of 5 Years in the field of Computer Science
and Engineering, presently working as Assistant
Professor in the department of CSE, Pydah College of
engineering Kakinada, A.P,INDIA. She can be reached
at neelima.sadineni@gmail.com.

*4 Sailaja D received Bachelors degree in Information
Technology from JNTUK, Pursuing M.Tech in
Software Engineering from JNTUK. She is a research
scholar in field of Data Mining and Software
Engineering. She is having experience of 5 Years in the
field of Computer Science and Engineering, presently
working as Assistant Professor in the department of
CSE, Ssnkethika Vidya Parishad Engineering College,
Visakhapatnam, A.P, INDIA. She can be reached at
sailubahnu25@gmail.com

Panchamukesh Ch et al IJCSET |August 2011 | Vol 1, Issue 7, 376-380

380

