
Double Precision Optimized Arithmetic Hardware
Design for Binary & Floating Point Operands

Pramod Kumar Jain1, Hemant Ghayvat 2, D.S Ajnar 3

*1, 2, 3 Micro Electronics and VLSI design
**Electronics & Instrumentation Engineering department, SGSITS, Indore, MP, India

ABSTRACT
In today’s modern scientific world, technological changes
happening with a very fast rate. The rapid growth in financial,
commercial, Internet-based applications, there is a huge demand
for finding out the devices with low latency, power and area
along with there is an increasing desire to allow computers to
operate on both binary and decimal floating-point numbers.
Accordingly, stipulation for decimal floating-point support is
being added to the IEEE-754 Standard for Floating-Point
Arithmetic. In this research work, we present the design and
implementation of a decimal floating-point adder that is
acquiescent with the current draft revision of this standard. The
adder supports operations on 64-bit (16-digit) decimal floating-
point operands [1] .We provide synthesis results indicating the
estimated area and delay for our design when it is pipelined to
various depths.
High performance computing is strongly required in most
applications which deal with floating point Numbers. Most
workstations used in these fields are adopting a floating point
processing unit to accelerate Performance.

INTRODUCTION

Various high level encoding languages have a capability for
specifying floating -point numbers. The most frequent
technique is to stipulate them by a real declaration statement
as conflicting to fixed -point numbers, which are specified by
an integer declaration statement. Any computer that has a
compiler for handling floating point arithmetic operations. The
operations are quite often included in the internal hardware. If
no hardware available for operation, the compiler must be
designed with a package of floating point software subroutines
(program or line of logic written once, uses more than once).
Although the hardware method is more expensive, it is so
much more efficient than the software method that floating
point hardware is included in most computers and omitted
only in very small ones[4]. Example of floating point
hardware devices are Intel 8231, arithmetic processor and
AMD’s AM9512 floating point processor. The AM9512
provides add, subtract, multiply, and divide operation for 32-
bit and 64-bit operands. It can easily interface to enhance the
computational capabilities of the host CPU.

Problem Overview
The user of computer prepares data with decimal numbers and
receives results in decimal form. A CPU with an arithmetic
logic unit can perform micro operations with binary data. To
perform arithmetic operations with decimal data, it is
necessary to convert the input numbers to binary, to perform

all calculations with binary numbers, and to convert the results
into decimal. This may be an efficient method in applications
requiring a large number of calculations and relatively smaller
amount of input and output data [14]. But user friendly format
in which it allows input output operations in decimal but
machine operation in binary, so the input decimal data have to
convert in binary and in later part after operation converted
back to decimal. But it is quite time consuming.
 When the application calls for a large amount of input-
output and a relatively smaller number of arithmetic
calculations, it becomes convenient to do the internal
arithmetic directly with the decimal numbers. Computers
capable of performing decimal arithmetic must store the
decimal data in binary coded form. The decimal numbers are
then applied to a decimal arithmetic unit capable of executing
decimal arithmetic micro operations.

Problem Formulation
We implement divide and conquer approach, in which
complex logic operations segmented or implementation into
various multiple numbers of arithmetic logic blocks .These
blocks works independently or dependently means, output of
one is input of others. Then, we optimize whole unit, explore
boundaries and tradeoff between speed, power, area.
Electronic calculators invariably use an internal decimal
arithmetic unit since inputs and outputs are frequent, not seem
to be a reason for converting the displayed results to decimal.
Since this process requires special circuits and also takes a
longer time to execute. Many computers have hardware for
arithmetic calculations with both binary and decimal data.
Users can specify by programmed instructions whether they
want the computer to perform calculations with binary or
decimal data. The unit accepts coded decimal numbers and
generates results in the same adopted binary code [14].

RESULT

Synthesis Reports The corresponding circuit hardware
realization is carried out by a synthesis tool.
Simulation Reports The design descriptions are tested for
their functionality at every level – behavioral, data flow, and
gate. One has to verify here whether all the functions are
carried out as expected and resolve them. All such
performance is carried out by the simulation tool. The tool
also has an editor to carry out any corrections to the source
code. Simulation involves testing the design for all its
functions, functional sequences, timing constraints, and
specifications.

Pramod Kumar Jain et al IJCSET |August 2011 | Vol 1, Issue 7, 370-372

370

Table 1: Arithmetic Unit for Double Precision Optimized
Arithmetic Hardware Design for Binary & Floating Point
Operands: Hardware Resource Utilization Summary
targeting on xc4vlx40-12ff1148 device

SI.
No

Device Parameter Usage
Number

Utilization
%

1 Number of slices 320 1%
2 Number of slices Flip-Flop 450 1%
3 Number of 4-input LUTs 502 1%
4 Number of IOs 196 -
5 Number of bounded IOBs 196 30%
6 Area Constraint Ratio 5 -
7 Total memory usage 281640kb -

Table 2 Arithmetic Unit for Double Precision Optimized
Arithmetic Hardware Design for Binary & Floating Point
Operand: Comparison in terms of Area & Delay.

Name of Design
proposals

Number
of bits

Delays
(ns)

Area
Slices LUTs

Sreehari[28] 32 8.9 - 523
Humberto[30] 32 12.1 256 495
Haller[29] 32 10.0 305 584
Hwang[27] 32 10.5 82 158
Fischer[31] 32 10.3 123 233

Subhash[14] 64 -

2325
(Addition)/

2119
(Subtraction)

-

Taher[32] 64 11.24 - -
P.Karlstrom[18] 64 - 561 675
Our Proposal 64 11.2 320 502

CONCLUSION

This research purposed a mixture of hardware compilation,
module generators, Floating point arithmetic and automatic
interface generation to improve the efficiency, productivity
and flexibility when implementing the floating point design on
the FPGA. This dual representation is very valuable as allows
for easy navigation over all the components of the units, which
allows for a faster understanding of their interrelationships and
the different aspects of a Floating Point operation. There are
several possibilities for improvements to the system. It would
be desirable if the coding strategy let the data path share
hardware resources for some operation. This coding strategy
thus can save area if it is critical for certain application. The
parallelism must now be implemented by the user. It would be
better if the compiler itself can detect the dependency to
reorganize the data path in which the parallelism can be
achieved automatically. Our result is high-quality in terms of
area, power, speed and trade-off between parameter this is
better explained in comparative view

REFERENCES

[1] Thompson, Nandini Karra, and Michael J. Schulte “A 64-bit Decimal

Floating-Point Adder” , IEEE Computer Society Annual Symposium on

VLSI Emerging Trends in VLSI Systems Design (ISVLSI’04)2004
IEEE.

[2] Hajime Kubosawa, Akira Katsuno, Hiromasa Takahashi, Tomio Sato,
Atsuhiro Suga and Gensuke Goto, “A 64-bit Floating Point Processing
Unit for a RISC Microprocessor” ,Fujitsu Laboratories Ltd.10-1,
Morinosato-Wakamiya, Atsugi 243-01, Japan 1992 IEEE

[3] Akil Kaveti Dr. William r. Dieter Director of thesis Dr. Yuming
zhangDirector of graduate studies “HDL implementation and analysis of
a residual register for A floating-point arithmetic unit” March 25, 2008 .

[4] Mano, Morris M., “COMPUTER SYSTEM ARCHITECTURE”.
[5] “Draft IEEE Standard for Floating-Point Arithmetic”, IEEE, inc., New

York, 2003. Available from: Http://794r.ucbtest.org/drafts/794r.pdf.
[6] M.S .Schmookler and A.W. Weinderger, “High Speed Decimal Addition”,

IEEE Transactions on. Computers, Vol. C-20, pp. 862-867, August
1971.

[7] F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M. Schwarz, and Steven R.
Carlough, “The IBM 900 Decimal Arithmetic Unit”, Conference Record
of the 35th Asilomar Conference on Signals, Systems and Computers,
Vol. 2, pp. 1335-1339, IEEE, November 2001.

[8] G. Bohlender and T. Teufel, “A Decimal Floating-Point Processor for
Optimal Arithmetic”, Computer arithmetic: Scientific Computation and
Programming Languages, pp. 31-58, 1987.

[9] M. S. Cohen, T. E. Hull, and V. Carl Hamacher, “CADAC: A Controlled-
Precision Decimal Arithmetic Unit”, IEEETransactions on Computers,
Vol. 32, No. 4, pp. 370-377, IEEE, April 1983.

[10] RA. Kaivani A. Zaker aihosseini S. Gorgin M. Fazlali “Reversible
Implementation of Densely-Packed-Decimal Converter to and from
Binary-Coded-Decimal Format Using in IEEE-754” , Department of
Electrical and Computer Engineering Shahid Beheshti University,
Tehran, lran.

[l1] M. F. Cowlisha, “Decimal Floating-Point: Algorism for Computers”,
Proceedings of the 16th IEEE Symposium on Computer Anathematic,
pp. 104-1 1 1, June 2003.

[12] Fadi Y. Busaba et al., “The D3M 2900 Decimal Anthmetic Unit”, IEEE
Trans. on Computers, Vol. 2, pp. 1335-1339, Nov.2001.

[13] Andre Guntoro and Manfred Glesner “High-Performance FPGA-Based
Floating-Point Adder with Three Inputs” 2008 IEEE, pp 37-40.

[14] Subhash Kumar Shrama, Himanshu Pandey, Shailendra Sahni and
Vishal Kumar Srivastava “Implementation of IEEE-754 Addition and
Subtraction for Floating Point Arithmetic Logic Unit” ,International
transactions in Mathematical Sciences and
ComputerVolume3,No.1,2010,pp 131-140.

[15] Javier and Thomas “LOP for latency improvement in single data path
floating point adder”.

[16] Gerald R. Morris and Viktor K. Prasanna “Pipelined Data path for an
IEEE-754 64-Bit Floating-Point Jacobi Solver”, Supported by the United
States National Science Foundation under award No. CCR-0311823 and
in part by award No. ACI-0305763.

[17] GOVINDU G., ZHUOL. , CHOI S. , PRASANNA V. “Analysis of high
performance floating-point arithmetic on FPGAS”. Pro c. 18th Int. Symp
. Parallel and Distributed Processing, 2004, p. 1494.

[18]P. KA RLS T R OM P. , E H LIAR A. , LIU D. “High performance, low
latency FPGA based floating point adder and multiplier units in a virtex
4 ”.IET Comput.Digit.Tech.,2008,Vol.2,No.4,pp.305-313/305.

 [19] CATANZARO B., NELSON B. “Higher radix floating-point
representations for fpga-based arithmetic”. Proc. 13th Annual IEEE
Symp. Field-programmable Custom Computing Machines (FCCM’05),
Washington, DC, USA, 2005, IEEE Computer Society, pp. 161 – 170.

[20] SCHWARZ E .M., SCHMOOKL ERM. , TRONG.D. “Hardware
implementations of demoralized numbers”. Proc. 16th IEEE Symp.
Computer Arithmetic, 2003, pp. 70 – 7 8.

[21] BRUNELLI C ., GARZ IA F. , NURM I J . , M UCCI C. , CAMPI F.,
RO SSI D. “A FPGA implementation of an open-source floating-point
computation system”. Proc. 2005 I nt. Symp. System-on-Chip, 2005, pp.
29 – 32.

 [22] SA NTORO M.R. , BEWICK G., HOROWI TZ M. A. “Rounding
algorithms for IEEE multipliers”. Proc. 9t h Symp. Computer
Arithmetic, 1989, pp. 176 – 183.

[23] NALLATECH ,“ Nallatech floating point cores” Nallate ch, 2002,
available at: www.nallatech.com.

[24] DE T R EY J. , DE DI NEC HI N F. , “A parameterized floating - point
exponential function for FPGAS”. IEEE In t. Conf. Field Programmable
Technology, 2005, pp. 27 – 3 4

Pramod Kumar Jain et al IJCSET |August 2011 | Vol 1, Issue 7, 370-372

371

[25] XILINX: “Floating -point operator v3.0’ (Xilinx, 2006, 3rd edn.)”,
available at: www.xilinx.com.

[26] ANDRAKA R .: ‘Supercharge your DSP with ultra-fa st floating point
ffts’, DSP M a gaz in e , 2007, (3), pp. 42 – 4 4.

[27] S. Hwang. “High-Speed Binary and Decimal Arithmetic Logic Unit”,
American Telephone and Telegraph Company, AT&T Bell Laboratories,
US patent 4866656, pp. 1-11, Sep 1989.

 [28] Sreehari Veeramachaneni, M, Kirthi Krishna; V, Prateek G, S. Subroto,
S, Bharat, M.B.Srinivas, “A Novel Carry-Look Ahead Approach to a
Unified BCD and Binary Adder/Subtractor”, 21st International
Conference on VLSI Design 2008, pp. 547-552, Jan 2008.

 [29] W. Haller, U. Krauch, and H. Wetter, “Combined Binary/Decimal Adder
Unit,” International Business Machines Corporation, US patent
5928319, pp. 1 – 9, Jul 1999.

[30] D.R.Humberto Calderón, G. N. Gaydadjiev, S. Vassiliadis,
“Reconfigurable Universal Adder”, Proc. of the IEEE International

Conference on Application-Specific Systems, Architectures, and
Processors (ASAP 07), pp. 186-191, July 2007.

[31] H. Fischer andW. Rohsaint. “Circuit Arrangement for Adding or
Subtracting Operands Coded in BCD-Code or Binary-Code”, Siemens
Aktiengesellschaft, US patent 5146423, pp. 1– 9, Sep 1992.

[32] M.Taher, M.Aboulwafa, A.Abelwahab, E.M.Saad “High –Speed,Area-
Efficientfpga-Based Floating-Point Arithmetic Modules”.

[33] IP for floating point adder “http://hdlcores.com/dcdpdf/xil/dfpau-
dp_ds.pdf” .

[34]Peter-Michael Seidel and Guy Even, “Delay-Optimized Implementation
of IEEE Floating-Point Addition” Transactions on Computer”, Ieee Vol.
53, No. 2, February 2004.

[35]Nikhil Kikkeri and Peter-Michael Seidel, “Optimized Arithmetic
Hardware Design based on Hierarchical Formal Verification” ,1-4244-
0395-2/06/$20.00 ©2006 IEEE.

Pramod Kumar Jain et al IJCSET |August 2011 | Vol 1, Issue 7, 370-372

372

