
Optimization techniques for Digital / DSP

circuits

N. Nithyakalyani
*1

, Mrs. B. Bala Tripura Sundari
#2

, Mr. S.R. Ramesh
#3

*
M.Tech VLSI Design, Amrita School of Engineering, Amrita Vishwa Vidyapeetham University,

#

 Department of ECE, Amrita School of Engineering, Amrita Vishwa Vidyapeetham

University

Abstract – The fast pace of growth of the semiconductor industry

has been both a blessing and as well as a biggest challenge to its

future. The increase in the number of transistors that can be

packed in a single wafer is expected to come to a standstill by

2020. Therefore large number of researches is going on to exploit

science in such a way so that we bring out newer and efficient

designs with the existing technology. The need for optimization of

designs in terms of speed, power or area is the most looked upon

field. We present in this paper few techniques which when used

in combination has been already proved to give area and speed

optimized designs. The techniques presented are 1) Compressor

tree using Carry save adders and 2) Common Subexpression

Elimination. The large scattering of logic operations over the

arithmetic operations is the main target for applying Compressor

tree after a series of Rewriting and Sorting rules. Common

Subexpression Elimination involves identification of redundant

terms in expressions and careful restructuring of resources. So

far the above Optimization algorithms have been implemented

for FIR filters and few benchmarks. We have presented a

systematic analysis after comparison of the above methods with

conventional methods. FIR filters with different orders were

taken and Common Subexpression Elimination method was

implemented on them. The efficiency of the method is brought

out. Appropriate benchmark circuits were chosen for

implementing Compressor tree technique. The comparison of

these methods with their conventional mechanisms is presented.

Keywords – Carry save adders, compressor trees, Three-greedy

technique, Common Subexpression Elimination, Horizontal

Common Subexpression Elimination, Vertical Common

Subexpression Elimination.

I. INTRODUCTION

There are tremendous innovations in the field of

computers each day owing to the increased demands.

Technology is advancing in such a rapid phase that we always

want better and better devices for our applications. The

computers used in the olden times are replaced now by more

compact and efficient devices. Therefore the need of the hour

is to choose optimized designs which provide number of

applications within the same or even lesser area. We are also

looking out for the speed of the operations in this fast world.

All these demands have paved way for research in the fields

of optimization of datapath circuits. Most of these datapath

processors involve the use of arithmetic circuits for its

operation. The target for area reduction usually is the

multiplier. There are many optimization algorithms in the

recent years which concentrate on the area reduction of

multipliers. This paper discusses few of the many

optimization algorithms targeted for processors, compares

them and arrives at the best possible combination to yield

optimized results.

There is always a scattering of logic operations over

arithmetic nodes making the data flow complex. There are

many sorting techniques available which sort the dataflow

graphs such that the logic operations are separated from the

arithmetic operations. These arithmetic nodes are combined in

a systematic way to obtain compact dataflow graphs without

any loss in its original functionality. The compressor trees are

used to combine the arithmetic nodes which have the potential

to reduce the number of arithmetic / logic nodes needed. The

most commonly used compressor tree is the Wallace-like

compressor tree. The next optimization algorithm is the

Common Subexpression Elimination. It leads to numerical

transformation of constant multiplication leading to efficient

hardware utilization and increased speed.

The optimization algorithms discussed provide the

following merits compared to the conventional methods:

1) Decrease in Critical path delay

2) Reduction in the overall area

3) Increased computation speed

4) Efficient reutilization of resources

The tools used for this purpose are MATLAB for

Common Subexpression Elimination and Turbo C for

Compressor trees. A set of various orders of FIR filter are

used for implementing the Common Subexpression

Elimination method using MATLAB. This is then followed by

application of Compressor trees after taking the data flow

graph through various steps of sorting. This is coded using C

language. The resulting data flow graph is synthesized using

High level synthesis tool – SPARK and area report is obtained

using Quartus II. The benchmark circuits used for Compressor

tree technique are Elliptic Wave Filter (EWF), Wave Digital

Filter (WDF) and MPEG Motion Vector (MPEG-MV). Future

work comprises of applying both the techniques in a

benchmark data flow graph and obtained area optimized

designs.

Section II deals with Common Subexpression Elimination

and then a discussion on the Compressor tree technique in

section III. An implementation of Compressor tree and

Common Subexpression Elimination along with its

comparison with conventional methods is given in section IV.

Results and discussion are also presented here.

N.Nithyakalyani et al IJCSET | July 2011 | Vol 1, Issue 6,296-301

296

mailto:3sr_ramesh@cb.amrita.edu

II. COMMON SUBEXPRESSION ELIMINATION

Strength reduction at the algorithm level reduces the

number of additions and multiplications in arithmetic circuits.

One such numerical technique is called Sub expression

elimination [1]. This technique improves speed, power and

area of the circuit greatly. This strength reduction reduces the

total capacitance and therefore reduces the power

consumption. Sub expression elimination method is used over

expressions which have a set of common multiplicands. It

identifies recursive occurrences of identical bit patterns that

are present in the coefficients using Iterative Matching

Algorithm [2]. It reduces the number of redundant

multiplications and thus maximizes the use of a common

expression multiple times to obtain the desired design. Here

the number of shifts and additions required for multiplication

is effectively minimized.

The Iterative matching algorithm used in implementing

CSE uses the following steps:

 Each constant in the set is expressed in binary format

or Canonic Signed Digit format.

 The number of bitwise matches between each pairs

of the constants in the set is determined. Only non-

zero matches are considered because only they have

the potential to increase the number of

adders/shifters.

 The best match is chosen.

 The redundancy from the best match is eliminated.

The remainders and the redundancy are returned to

the set of coefficients.

 The number of bitwise matches continues to be

determined until no more improvement is achieved.

The applications of Common Subexpression Elimination

are as follows:

A. Common Subexpression Elimination in Linear problems

As already discussed before, the Subexpression

elimination can be applied to constant multiplications.

Therefore we can extend its use to linear transformation also.

The multiplicands are expressed in binary format and then the

iterative matching algorithm is applied to extract the common

subexpressions.

While considering Linear Transformations, the sub

expression elimination problem consists of three basic steps:

 The number of shifts and adds required to compute

the product, tij xj are minimized using Iterative

matching algorithm.

 Unique products are formed using the sub

expressions determined in the previous step.

 The additions are shared among the various yi’s thus

reducing the number of individual hardware and

process time required for computing the additions.

B. Common Subexpression Elimination in polynomial

evaluation:

In a similar way, Sub expression elimination can be

applied to polynomial evaluation also. This technique is best

suited to reduce the computational complexity [3].

 For e.g., considering the polynomial shown below,

a
7
 + a

4
 + a

2
 + a (1)

A conventional realization of the above expression would

require 10 multiplications. However on careful examination

we can notice that the number of multiplications required can

be significantly reduced. For eg. a
7

as a
4
 * a

2
 * a

1
. Therefore

after applying sub expression evaluation, the polynomial

evaluation problem effectively reduces as:

a
2
 * (a

4
 * a) + a

4
 + a

2
 + a (2)

The terms a
2
, a

4
and a

8
 each require only one multiplication:

a
2
 = a * a, a

4
 = a

2
 * a

2
 (3)

Thus we see that on exploiting the redundancy which is not

conceptually very difficult we arrive at a much simpler

polynomial evaluation problem.

C. Common Subexpression Elimination in filters:

The idea of Common Subexpression Elimination is made

use of in FIR filters to reduce the hardware complexity of the

filter implementation [4], [5]. In order to realize the sub

expression elimination transformation for an N-tap filter given

by the following expression,

y (n) = h0x (n) + h1x (n-1) + . . . + hN-1x (n-N+1) (4)

must be realized using its transposed direct form structure.

This type of structure is also referred to as a broadcast filter

structure. With this structure, one variable is multiplied to

multiple constant coefficients. Sub expression elimination can

then be applied. To systematically obtain the sub expression

elimination, a filter operation is represented in a matrix form.

The rows are indexed by delay i and the columns by shift j.

The row and column indexing starts at 0. The entries in the

table are 0 or 1 if two’s complement representation is used

(except the sign bit) or they are from the digit set {0, 1, -1} if

CSD is used.

An improvement over Common Subexpression

Elimination is Binary Common Subexpression Elimination.

This technique uses binary representation [0 1] instead of the

Canonic signed digit representation [-1 0 1] in Common

Subexpression Elimination [6]. The other variants of Common

Subexpression Elimination are Vertical Common

Subexpression Elimination (VCSE) and Horizontal Common

Subexpression Elimination (HCSE). The VCSE technique

identifies subexpressions between different coefficients

N.Nithyakalyani et al IJCSET | July 2011 | Vol 1, Issue 6,296-301

297

whereas the HCSE identifies subexpressions within the same

coefficient. An example of VCSE and HCSE is shown in Fig.

3 and 4 respectively.

D. Illustration of CSE in Digital Filters:

E.g. y(n)= 1.0001`00000*x(n) + 0.1`01`010010*x(n-1) +

0.000100001`*x(n-2)

Fig. 1 Common Subexpression Elimination in Digital Filters

Subexpression: x2 = x1 – x1[-1] >> 1

y = x2 – (x2 > > 4) – (x2[-1] >> 3) + (x2[-1] >> 8)

E.g. y(n) = 1.000ĺ00010 * x(n) + 1.000ĺ00010 * x(n-1) +

0.0001000ĺ0 * x(n-2)

VCSE:

1 -1 1

1 -1 1

 1 -1

Fig. 2 Vertical Common Subexpression Elimination

Subexpression: x2 = x1 + x1[-1]

y(n) = x2 – (x2 >> 4) + (x2 >> 8) + (x1[-2] >> 4) – (x1[-2] >>

8)

HCSE:

1 -1 1

1 -1 1

 1 -1

Fig. 3 Horizontal Common Subexpression Elimination

Subexpression: x2 = x1 – (x1 >> 4)

y(n) = x2 + x2[-1] + (x2[-2] >> 4) + (x1 >> 8) + (x1[-1] >> 8)

The CSE technique is followed by the Compressor tree

method. A large number of data flow transformations are

applied before applying compressor trees. This is because

better efficiency is obtained in terms of area after such

transformations.

III. COMPRESSOR TREES

The idea of parallel addition and multiplication was a

major breakthrough from the conventional approach. It helped

to save a lot of time though there was so save in the resources

utilized. The processor was never idle in such a situation.

Fig. 4(a) shows a conventional approach for adding 18

numbers. It is noted that it takes 16 time steps to obtain the

result. In the modified tree height reduction approach shown

in Fig. 4(b), it takes only 7 time steps to finish the same

operation. This method uses parallel addition using carry save

adders to compute and produce faster results.

It is evident from Fig. 4(b) that the parallel addition

method holds well as long as all the inputs arrive at more or

less equal times. Therefore such an architecture would be best

suited if all its inputs were primary inputs. However if we

intend using such an architecture in the middle or towards the

end of a data flow graph, then the input arrival time poses a

major threat to the usage of such a technique. In the worst

case, it can even produce the same results as conventional

approach (Fig. 4(a)). Therefore knowledge of input arrival

times is very important for working out a solution towards the

same.

Fig. 4(a) Conventional approach to add 18 numbers

Fig. 4(b) Parallel architecture for adding 18 numbers

N.Nithyakalyani et al IJCSET | July 2011 | Vol 1, Issue 6,296-301

298

A. Three-greedy technique:

The Three greedy technique is a heuristic to reduce the

vertical slice [7]. The steps are shown in Fig. 5. A set, T is

defined for each vertical slice of the graph. It contains the

arrival delay of all input bits initially. In each step, three

smallest values are chosen from T and a full adder is used to

calculate the sum and carry from the corresponding inputs.

Then the three values are removed from the set T. The sum of

the bits is now added to the set while the carry is added to the

set T of the next vertical slice. The process is repeated until

the set T contains the final three elements in it. These three

inputs are again fed to a full adder which calculates the final

sum and carry. The assumption under this process is that the

difference between the arrival times of the input signals is not

extremely large and the use of compressor trees is beneficial.

The three greedy techniques essentially checks if any addition

operation can be performed before the next input arrives. This

way we can use the hardware efficiently.

The processor design requires a large scatter of logic

operations over the arithmetic operations. It is important to

sort these nodes in such a manner that they are more

understandable. It then becomes easy to apply optimization

techniques to this sorted dataflow graph. Compressor trees are

then applied to suitable arithmetic nodes after careful analysis.

There are two points to be observed before applying

compressor trees. The first is that the function of the design

before and after optimization should remain the same. The

second is that the application of compressor trees should

provide some advantage compared to the traditional design.

Fig. 5 Three Greedy technique

A compressor tree is shown in Fig. 6. It is basically a

circuit which takes more than 3 inputs and produces 2 outputs,

sum and carry [8].

Fig. 6 General form of a Compressor tree

Though the compressor trees efficiently reduce the area

when compared to the traditional designs, there arises a

problem when there is a drastic difference in the arrival times

between its various inputs. Therefore they make use of Three

greedy technique for overcoming this problem.

The steps involved in the application of compressor trees

are briefed in the flowchart shown in Fig. 7 ([9], [10]).

Fig. 7 Steps involved in the application of compressor trees

B. Steps involved in Compressor tree application:

The steps involved in the Compressor tree technique are

summarized below. The scattered natures of the logic and

arithmetic nodes are the main target.

1) Rewriting rules: The first step under this consists of

rewriting all the arithmetic operations in terms of additions so

that whole of the arithmetic circuit consists of only adders.

The table 1 gives a list of rewriting rules. The first operation

computes the negative by an integer by finding the 2’s

complement of the integer. The second operation generates

the difference of two integers by calculating the sum of one of

the integers and the 2’s complement of the next integer. The

third rule implements a parallel multiplier. PP () generates a

set a partial products and sum () represents addition of the

partial products which will be implemented using the

compressor trees. The fourth operation calculates the relation

between two operands by finding the difference between the

two and then checking the sign bit.

After this step the dataflow graph is rearranged in such a

way that multi-input adders are incorporated as much as

possible. Then we replace a multi-input adder with a

N.Nithyakalyani et al IJCSET | July 2011 | Vol 1, Issue 6,296-301

299

compressor tree followed by a single carry-propagate final

adder.
TABLE I

REWRITING RULES

From To

-X XC + 1

X – Y X + YC + 1

X * Y SUM (PP(X,Y))

X (relation) Y FREL (SIGN (X – Y))

2) Sorting rules: This is an important step before

applying compressor trees. Sorting of a dataflow graph is done

to improve the effectiveness of the carry save representation.

After rewriting the dataflow graph according to Table 1, the

resulting directed acyclic dataflow graph is represented as G

(V, E). Here nodes V’s represent primitive operations and

edges E’s represent data dependences. The function Ord (.)

returns the position of a node in the ordering. The nodes can

be in one of the two classes: Arithmetic (A) where all the

nodes consist of only adders as they have already been

rewritten using Table 1. The function class (.) returns the class

of a node. There is an important fact to note. A sorted graph is

sufficient though not absolutely necessary to be able to

produce an optimal implementation with the use of

compressor trees. Table 2 summarizes transformation rules for

advancing class L operations over class A operations.

The table gives a clear idea that in only some cases

swapping of nodes is possible. The last sorting rule i.e.

advancing a Partial Product (PP) node over addition is based

on the distributive property of multiplication over addition but

is considerably more complex than the other sorting rules. It is

to be noted that unlike the other sorting rules, this rule is

sometimes not quite practical as it imposes a major cost in

terms of hardware. Therefore a careful analysis has to be

performed before applying this rule for it to be beneficial.

After applying the last sorting rule, for any PP node, there

exists an addition node such that from all outputs of the PP

node, there are identical paths of logic nodes to the addition

node.

TABLE II

POSSIBILITIES FOR ADVANCING CLASS L OPERATIONS OVER

CLASS A OPERATIONS

Operations
Can be advanced

over addition

Bitwise NOT Yes

Multiplication Yes

Partial Product

generator
Yes

Selector Yes

3) Application of Compressor tree: After applying

the rewriting rules, all the arithmetic nodes have been

transformed to include only adders. After advancing the

appropriate Logic nodes over the addition nodes, we can get a

cluster of addition nodes. We can then apply multi-input

adders for all independent nodes. This method reduces the

number of adders thereby reducing the hardware utilization of

the design. By applying the three-greedy technique also, we

can obtain efficient time utilization.

4) Functionality and Cost check: There are 2

checks to be satisfied before applying the compressor trees.

They are the functionality check and the cost check. The

Functionality check accounts for the fact that the basic

function of the design should not be compromised due to the

application of any number of optimization techniques. The

next check reveals if there is any advantage either in terms of

area or in terms of speed after applying the compressor trees.

It is necessary to identify Useful Movable nodes for this

purpose. These are nodes which produce an advantage when

moved.

IV. RESULTS AND DISCUSSION

Appropriate benchmark circuits shown in Table 3 were taken

and the rewriting and sorting rules were applied to them to

obtain a sorted Data flow graph with a cluster of addition

nodes towards the end. These nodes can then be replaced by a

multi input adder which improves speed and reduces the

hardware utilization. Some of the benchmark circuits were

implemented using this technique and results were obtained as

shown in Table 3. High level synthesis tool – SPRAK is used

for this purpose. It takes C file as input and generates a VHDL

output. This HDL file can then be simulated using ModelSim

and synthesized using Quartus II. Thus the area report is

obtained which can then be compared with the conventional

method.

TABLE III

COMPARISON BETWEEN ORIGINAL DFG AND SORTED DFG AND
THE SAVE IN AREA OBTAINED USING HIGH LEVEL SYNTHESIS

TOOL – SPARK

Benchmark

circuit

No of nodes

in original

dfg

No. Of

nodes in

sorted dfg

Area saving

(in %)
EWF 35 29 12.2

WDF 35 26 15.7

MPEG-MV 33 23 17.28

A conventional FIR filter whose coefficients have

been specified in Canonic Signed Digit representation was

implemented and the number of adders required was noted.

The same filter was implemented using Vertical Common

Subexpression Elimination and Horizontal Common

Subexpression Elimination techniques using Iterative

Matching Algorithm and the results were tabulated as shown

below. Matlab was used to implement the algorithms.

N.Nithyakalyani et al IJCSET | July 2011 | Vol 1, Issue 6,296-301

300

TABLE IV
COMPARISON CHART ON THE HARDWARE UTILIZATION

BETWEEN VARIOUS TYPES OF FIR FILTERS USING MATLAB

Filter

order
Coefficients No. of Adders utilized

 Conventional VCSE HCSE

3

C0=1.000Ī00010

C1=1.000Ī00010

C2=0.00010000Ī

7 5 5

4

C0=Ī010Ī00010

C1=0.Ī01000000

C2=0.010Ī00010

C3=1.000010Ī00

11 9 8

5

C0=Ī010Ī00010

C1=0.Ī01000000

C2=0.010Ī00010

C3=1.000010Ī00

C4=0.00010000Ī

13 11 10

Common Subexpression Elimination technique was

implemented for various FIR filter orders in a high level

synthesis tool – SPARK using C language. It was synthesized

using Quartus II, implemented using FPGA device – Cyclone

III. The following results were obtained.

TABLE V

LOGIC OPERATOR AND REGISTER UTILIZATION OF FIR FILTERS
USING HIGH LEVEL SYNTHESIS TOOL – SPARK

FIR filter

order

Logic operators

used

Flip flops

/ latches

10 120 45

20 243 91

28 312 103

35 401 165

55 560 217

Fig. 8 Hardware requirement of Conventional, VCSE and HCSE type FIR

filters

V. CONCLUSION

The following conclusions were derived after implementing

Compressor trees and Common Subexpression Elimination

methods:

1) Using the compressor tree method, an average of

about 15% save in area was obtained for 3

benchmark circuits (Elliptic Wave Filter, Wave

Digital Filter, MPEG Motion Vector).

2) The Common Subexpression Elimination method

was implemented for various FIR filter orders and it

was concluded that it required atleast 2 adders less

than that required in the conventional

implementation. It was also derived that the method

would yield better results as the order of the filter is

increased.

The above Optimization algorithms when used together in

a single benchmark circuit will provide the advantages of both

the methods – Decrease in area and reduction in critical path

delay in case of Compressor trees and increase in reutilization

of hardware resources through Common Subexpression

Elimination. The above along with the Distributed Arithmetic

method integrated together on the benchmarks and the FIR

filters is envisaged as the future work.

ACKNOWLEDGEMENT

We would like to thank the management of Amrita Vishwa

Vidyapeetham for providing us the required infrastructure and

lab facilities for our work.

REFERENCES

[1] Mahesh, R.; Vinod, A.P. (2008): A New Common Subexpression
Elimination Algorithm for Realizing Low-complexity Higher order

Digital Filters, IEEE Trans. Comput. Aided Des. Vol 27, No. 2, pp

217-229.
[2] Keshab K.Parhi, : VLSI Digital Signal Processing Systems, Design and

Implementation, ISBN: 978-81-265-1098-6.

[3] Sivaram, G.; Priyank, K. (2009): Algebraic techniques to enhance
Common Sub-expression Elimination for polynomial system synthesis,

Electronic design Automation Association, pp 1452 – 1457.
[4] Pasko, R.; Schaumont, P.; Derudder, V.; Vernalde, S.; Durackova, D.

(1999): A new algorithm for elimination of common subexpressions,

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 18, no.
1, pp. 58–68.

[5] Anup, H.; Farzan, F.: Common Subexpression Elimination involving

multiple variables for Linear DSP synthesis, 15th IEEE International
Conference on Application Specific Architectures and Processors

(ASAP).

[6] Hartley, R.I. (1996): Subexpression sharing in filters using Canonic
signed digit multipliers, IEEE Trans. Circuits Syst. II, Analog Digit.

Signal Process. vol. 43, no. 10, pp. 677–688.

[7] Stelling, P.F.; Martel, C.U.; Oklobdzija, V.G.; Ravi, R. (1998):
Optimal circuits for parallel multipliers, IEEE Trans. Comput., vol. 47,

no. 3, pp. 273–285.

[8] Verma, K.; Ienne, P. (2008): Data flow transformations to maximize
the use of carry save representation in arithmetic circuits, IEEE trans,

Comput.-Aided Des. Vol. 27, No. 10, pp 1761-1774.

[9] Kim, T.; Jao, W.; Tjiang, S. (1998): Circuit optimization using carry-
saveadder cells, IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 17, no. 10, pp. 974–984.

[10] Oklobdzija, V.G.; Villeger, D.; Liu, S.S. (1996): A method for speed
optimized partial product reduction and generation of fast parallel

multipliers using an algorithmic approach, IEEE Trans. Comput., vol.

45, no. 3, pp. 294–306.

0

2

4

6

8

10

12

14

3 4 5

No. of adders
required

Filter order

CONVENTIONAL

VCSE

HCSE

N.Nithyakalyani et al IJCSET | July 2011 | Vol 1, Issue 6,296-301

301

