
Extreme Programming versus CMMI – Conflicts
and Compatibilities

Therese Clara V, Alagarsamy Dr. K.,
Madurai Kamaraj University College, India.

Abstract-Agile methods like extreme programming have
assumed tremendous significance in the last few years. At the
same time, since it has been getting clear that most project
failures can be attributed to inconsistent and undisciplined
processes, more organizations have started to rely on process
maturity models. CMMI compliance is being demanded for
projects where agile methods are employed. In this situation it
is necessary to analyze the interrelations and mutual
restrictions between agile methods and approaches for
software process analysis and improvement. This paper
analyzes to what extent the CMMI process areas can be
covered by XP and where adjustments of XP have to be made.
Based on this, the limitations of CMMI in an agile environment
are described and further it is shown that level 4 or 5 are not
feasible under the current specifications of CMMI and XP.

Keywords— process models. CMMI, Agile methods, extreme
programming

I INTRODUCTION

Organizational maturity indicators like CMMI levels,
SPICE ratings or specific ISO standards have become
increasingly important for software development.
Customers or organizations that set up a distributed project
often rely on them when selecting suppliers, since the
results of these assessments and audits can serve as a
‘signal’ for their process maturity [8, 19]. In large
organizations there are policies which enforce that all parts
of the organization have to achieve certain maturity levels.
At the same time, agile methods continue to gain currency.
This has also been true for larger projects, e.g. Cockburn
and Highsmith cite successful agile projects with up to 250
people [6] and even for outsourcing and offshoring projects
[10, 24, 26]. This leads to the challenge that, on the one
hand, organizations often rely on CMMI as an indicator for
process maturity (which is supposed to translate into
product quality), on the other hand agile methodologies like
XP [3], Scrum [25], Lean Development [23] or the Crystal
methods [3] get more prominent. It has been shown that
projects that use agile methods with certain adjustments can
achieve CMMI level 2 or even 3 [2, 17]. But from the
various reports of successful agile projects it doesn’t
become clear how agile methods contribute to the
fulfillment of process areas, where they have to be adjusted
and where they are in conflict with CMMI goals.
Research should be conducted on how agile methods can be
adapted to reach certain CMMI levels. This paper is meant
as a starting point which reveals where adjustments have to
be made. Therefore, this paper takes a qualitative approach
to analyze in how far agile methods support or conflict with
CMMI process areas, where adjustments have to be made

and if organizations employing agile methods can reach
conformity with certain CMMI levels. After analyzing XP,
general statements and theses about the comparability and
compatibility of CMMI and agile methods are derived.
A. Related Work
Several authors have discussed the compatibility of CMMI
and agile methods. Paulk [21] analyzes how XP can help
organizations to reach the SW-CMM goals. While his work
gives good insights into the interrelations between XP and
CMM, the use of the now outdated SW-CMM limits the
results. The suggested approach extends his work and
explicitly shows which process areas are in conflict with
agile methods.
Kane and Ornburn [18] analyze which CMMI process areas
are covered by XP and Scrum. Especially those areas related
with process management are not considered by these two
methods. Therefore, the authors propose tailoring of XP and
Scrum to satisfy these goals. Unfortunately, most of the
findings are not clearly derived. In addition, it is not
discussed whether certain process areas are not addressed by
agile methods or whether they are in conflict.
Finally, Turner and Jain [27, 28] show how CMMI can help
to successfully implement agile methods. The difference to
the suggested approach is that the researcher wants to
analyze how agile methods support CMMI and not vice
versa.

II AGILE METHODS
As an answer to the challenges of modern software
development which in many cases cannot be tackled by
‘traditional’ processes, different ‘lightweight’ approaches
have been established since the mid 1990’s that can be
subsumed under the brand ‘Agile Methods’ [3, 6]. They
“allow for creativity and responsiveness to changing
conditions” [8]by emphasizing customer participation, quick
reaction to requirements’ changes and continuous releases
[7, 14]. Some of them are rather a collection of techniques
and activities than complete process models with precise
definitions of roles, products, activities etc. But there are
some methods, e.g. extreme Programming (XP) [3] or
SCRUM [25], which are widely employed in projects of
various sizes. Some concepts and ideas from the agile space
have even been introduced into ‘heavyweight’ process
models [1]. The characteristics of agile methods are
elaborately defined in the twelve principles behind the agile
manifesto [4, 5, 9]:
• The highest priority is to satisfy the customer through

early and continuous delivery of valuable software.
• Welcome changing requirements, even late in

development. Agile processes harness change for the
customer’s competitive advantage.

Therese Clara V et al IJCSET | June 2011 | Vol 1, Issue 5,203-209

203

• Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale.

• Business people and developers must work together daily
throughout the project.

• Build projects around motivated individuals. Give them
the environment and support they need, and trust them
to get the job done.

• The most efficient and effective method of conveying
information to and within a development team is face-
to-face conversation.

• Working software is the primary measure of progress.
• Agile processes promote sustainable development. The

sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

• Continuous attention to technical excellence and good
design enhances agility.

• Simplicity - the art of maximizing the amount of work not
done – is essential.

• The best architectures, requirements, and designs emerge
from self-organizing teams.

• At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behavior
accordingly.

These principles specify the four agile values [9] and
provide a good summary of the intentions and ideas of agile
methods.

III COMPATIBILITY OF AGILE METHODS WITH
CMMI REQUIREMENTS

A. CMMI – an Overview
The Capability Maturity Model for Software (CMM) [22,
15] developed by the Software Engineering Institute (SEI)
has had a major influence on software process and quality
improvement around the world [20]. Based on the first
version released 1991, the Capability Maturity Model –
Integrated (CMMI) has been presented in 2000, integrating
CMM for Software (SW-CMM), the Capability Model for
Systems Development (EIA/IS 731) and the CMM for
Integrated Product Development (IPD-CMM).
Software Process Improvement (SPI) assumes that a well-
managed organization with a defined engineering process is
more likely to produce software that consistently meets the
users’ requirements within schedule and budget than a
poorly managed organization with no such engineering
process. “In other words, the project failure is usually a
process failure” [8]. CMMI – as SPI’s “de facto method”
[29] – describes managerial processes to attack software
development difficulties at five maturity levels:
1. initial
2. managed
3. defined
4. quantitatively managed
5. optimizing
It is important to note that the CMMI process models do not
contain prescriptive processes that can be used right out of
the box. Instead, CMMI provides a way to assess the state

of an organization’s ability to build software in a repeatable,
predictable way [8]. Applying CMMI as a means to increase
process capabilities is an organization-wide challenge.
Herbsleb et.al. show that the average time for an
organization to move up one level is between 21 and 37
months [13]. Over three quarters of the organizations
reported that implementing any key SPI activity took longer
than expected. But the effort pays off since “software
process management maturity is positively associated with
project performance” [16].
In order to reach a certain level, an organization has to
fulfill all process areas of that level as well as those of lower
levels. A process area is a summary of all requirements for a
certain topic, e.g. project management, organizational
training or causal analysis and resolution. To satisfy a
process area all of its associated goals – specific ones and
generic ones – have to be met. Specific goals apply to a
process area and address the unique characteristics that
describe what has to be implemented to satisfy the process
area. To meet a specific goal CMMI suggests a set of
specific practices. A specific practice is an activity that is
considered important in achieving the associated specific
goal. Generic goals are called “generic” because the same
goal statement appears in multiple process areas. In the
staged representation, each process area has only one
generic goal. To meet a generic goal, CMMI suggests a set
of generic practices. Generic practices provide
institutionalization to ensure that the processes associated
with the process area will be effective, repeatable, and
lasting [15].

B. An Approach to Analyze the Coverage of Process by
Agile Methodologies
The goal is to determine which of the CMMI process areas
are supported by agile methods, where adjustments need to
be made and which process areas are in conflict. In order to
do so we analyzed every process area and all of its specific
goals in detail [11]. The specific practices are only expected
model components, meaning that their use is recommended
but not necessary. CMMI states that they can be replaced by
alternative practices. In fact, agile methods often employ
different approaches than those suggested by CMMI.
Therefore we concentrate on the analysis of the goals, using
the practices only as guidelines and always looking for
possible alternative ways of implementing the goals. We
also analyze the two generic goals (“institutionalize a
managed process” and “institutionalize a defined process”)
and the generic practices, but only in general terms and not
in conjunction with particular process areas. The reason for
this omission is that agile methods do not directly address
institutionalization practices. Institutionalization is a topic
which has to be considered on the organizational level while
agile methods only regard project level. Results in a detailed
analysis of generic practices would be very limited.
For the coverage of specific goals, process areas and generic
practices, a rating system is applied:
• Conflicting (–)
• Not addressed (0)
• Partially supported (+)

Therese Clara V et al IJCSET | June 2011 | Vol 1, Issue 5,203-209

204

• Supported (++)
• Largely supported (+++)
“Largely supported” means that the agile method’s
practices, if employed correctly, satisfy the major part of the
respective model component. “Supported” and “partially
supported” describe a restricted coverage and “not
addressed” reflects that there is no coverage at all. These
ratings do not imply that the respective CMMI goals cannot
be attained. They merely point out that additional practices
have to be introduced to fully satisfy the CMMI
requirements. “Conflicting” on the other hand indicates that
the respective CMMI goal cannot be reached with the agile
method being used. This rating is given if there are no
possible extensions that do not interfere with the method’s
basic practices or the agile principles. To differentiate
between “not addressed” and “conflicting”, it was
imperative to check whether the agile method could be
extended to reach the CMMI goal without interfering with
the method’s basic practices or contradicting to the
principles stated in the agile manifesto.

C. Applying the Approach to extreme Programming
The suggested approach is applied to XP and further shows
the interrelations and conflicts between XP and the CMMI
process areas and all of their associated specific goals. To
not go beyond the scope of this paper the analysis is
condensed. M. Fritzsche [11] provides a more detailed
presentation and a discussion of Scrum.

1) Analysis of Process Areas and Their Specific Goals
Requirements management– Manage requirements
(+++)
Understanding of the requirements is obtained through the
integration of the customer into the team and the resulting
intensive communication with the customer. The project
participants’ commitment to the requirements is obtained in
the planning phase. Changes of requirements are quickly
exchanged and discussed. Even if traceability of
requirements is not an explicit goal of XP, it is supported by
stories, tasks, functional tests that detect inconsistencies
between project work and requirements, and by unit tests.
XP’s practice of throwing away story cards that already
have been realized can prove to be problematic. To better
implement this process area story cards should be kept.
Thus, traceability can be extended by keeping record of
previous story cards and old versions of the documentation.
Project planning (+++)
Establish estimates (+++)
Estimates for stories and tasks are established and can be
corrected during the project.
The estimates’ precision is increased through a short
planning horizon due to short iterations.
Develop a project plan (+++)
The project plan is established through XP’s release and
iteration plans that evolve throughout the project. Therefore
long term plans remain vague and only short term plans are
detailed. Risks are identified, training needs are planned and
the involvement of all relevant stakeholders is assured if XP
is applied correctly.

Obtain commitment to the plan (+++)
Commitment to the release and iteration plans is obtained
through the high involvement and responsibility of all team
members.

Project monitoring and control (+++)
Monitor project against plan (+++)
Schedule and estimates are monitored by the tracker.
Information on the project’s progress is gathered by the use
of measures. The intensive communication among the team
members and with the customer helps to convey that
information. Milestones are checked against the schedule by
functional tests. The strict system of short iterations and the
regular commitments to the plan make it easier to monitor
the project against the baseline.
Manage corrective action to closure (+++)
Issues that demand corrective actions are informally
collected and analyzed. Corrective actions can be
adjustments of the method and also of the functionality that
will be realized. In addition new iterations always offer
good opportunities to make adjustments.
Supplier agreement management (0)
This process area is not addressed by XP. This method can
be extended to fulfill the goals of this process area.
However, involving suppliers could be problematic for
agility if it hinders iterative development. There are cases
where supplied components are needed to obtain
functioning software at the end of an iteration. It can pose a
critical problem if they are not available at that point.

Measurement and analysis (+)
Align measurement and analysis activities (+)
The only measurement objective is progress control.
Measurements and analysis procedures are defined by the
tracker. XP provides no specific guidelines for these tasks.
Provide measurement results (++)
The measurement data is obtained through intensive
communication within the team. The tracker analyzes the
data and conveys the results to the team using wall charts.
The data is usually not permanently stored. However, there
are many tools available for effort estimation and tracking
for agile teams. By using these tools the measurement data
and results can be stored permanently without too much
effort.
Process and product quality assurance (+)
Objectively evaluate processes and work products (+)
XP doesn’t demand an explicit evaluation of processes,
work products and services against the applicable process
descriptions. The only instrument of controlling that the
method is applied in the right way is the coach who guides
the team in the use of XP.
Provide objective insight (+)
Quality issues can be easily communicated in an XP team.
The work of the coach supports this specific goal. However,
there are no strict guidelines for the resolution of
noncompliance issues and the establishing of records of
quality assurance activities.

Therese Clara V et al IJCSET | June 2011 | Vol 1, Issue 5,203-209

205

Configuration management (+++)
Establish baselines (+++)
Configuration items are code, design, tests and
requirements. The use of a configuration management
system is recommended since continuous integration relies
heavily on it. Baselines are established regularly through
functional tests. In addition, baselines are created at the end
of each iteration.
Track and control changes (+++)
Changes are controlled and tracked through various
practices like pair programming, tests, customer
collaboration, etc.
Establish integrity (+++)
XP enforces continuous integration. Code is easy to read
because of coding standards and therefore its own
description. Audits are informally performed through pair
programming, customer involvement and testing.
Requirements development (++)
Develop customer requirements (++)
The customer elicits requirements and specifies them in
story cards and functional tests. The developers often
support him in these tasks. The requirements specification
however remains quite vague. Details have to be discussed
directly with the customer during development.
Develop product requirements (++)
Customer requirements are refined into product
requirements. These are specified using task cards. They
remain relatively vague too.
Analyze and validate requirements (++)
An analysis of requirements is carried out in a well-defined
way. The programmers consult the customer during
requirements elicitation. In addition, the acceptance of
changing requirements and the use of iterations allow
constant analysis and validation of requirements.
Operational concepts and scenarios are established using
functional tests. However there is no in depth requirements
analysis up front.
Technical solution (+++)
Select product-component solutions (+++)
Alternative solutions are explored at the beginning of the
project through prototypes and later on through refactoring
and iterative development.
Develop the design (+++)
A design as simple as possible is developed. Code is used as
a design document. Design is carried out iteratively.
Implement the product design (+++)
XP employs a variety of implementation practices, e.g.
refactoring, coding standards, pair programming. A product
support documentation is developed if it is requested by the
customer.
Product integration (+++)
Prepare for product integration (+++)
XP employs continuous integration and since integration
steps are performed very often, a thorough preparation is
critical.
Ensure interface compatibility (+++)
Interface compatibility is ensured by running all tests at
each integration step.

Assemble product components and deliver the
product (+++)
Component assembly and delivery is carried out. The use of
continuous integration and direct customer involvement
further helps to achieve this goal.
Verification (+++)
Prepare for verification (+++)
Verification is carried out through intensive testing. The
preparation is therefore concentrated on this topic. A test
framework should be used and hence according preparation
activities executed. Furthermore XP employs a test-first
approach. All tests have to be written before the code.
Perform peer reviews (+++)
Peer reviews are implicitly always part of XP. Pair
programming, refactoring and the principle of collective
code ownership imply constant peer reviews.
Verify selected work products (+++)
Methods for verification are mainly peer reviews and
testing, which both are performed constantly.
Validation (+++)
Prepare for validation (+++)
Validation is performed in XP projects through customer
participation and frequent releases. The main criterion for
validation is acceptance by the customer.
Validate product or product components (+++)
The customer constantly validates the work done by the
team. This is possible because he is integrated into the team.
In addition he validates the deliveries at the end of each
iteration. This may result in additional or changed
requirements specified by the customer. The enormous
influence of the customer improves the chances that the
product is suitable for use in its intended operating
environment.
Organizational process focus (–)
This process area is not addressed because it applies to the
organization while XP only applies to a project. It even is in
conflict with XP: like in other agile methods, adjustments
are often done during a project. These improvements,
however, are limited to the current project since they shall
not be documented. Knowledge about improvements is
linked to people. Other projects can benefit if people are
moved between projects. But the problem is that in big
organizations there are too many projects. In that case such
a practice cannot let all of them benefit from a particular
project’s experience. In addition the information is not
permanent since people can retire or change organization.
The conflict can be eased by establishing organization-wide
repositories storing best practices of previous projects or by
institutionalizing the exchange of lessons learnt between
projects.
Organizational process definition (0)
Organizational training (++)
Establish an organizational training capability (++)
Training is carried out by XP during the exploration phase.
Therefore an XP project requires organizational training
capabilities. Pair programming and coaching can also be
regarded as training, so XP further enhances the
organization’s training capabilities.

Therese Clara V et al IJCSET | June 2011 | Vol 1, Issue 5,203-209

206

Provide necessary training (++)
As stated above, training is carried out explicitly during the
exploration phase and implicitly during the whole project
through coaching and pair programming. Through the latter,
there are however deficiencies regarding the establishment
of records and the assessment of training effectiveness.
Integrated project management (++)
Use the project’s defined process (0)
Coordinate and collaborate with relevant stakeholders (+++)
XP integrates and coordinates developers, customer, testers,
and management.
Use the project’s shared vision for IPPD (+++)
XP contributes a lot to the project members’ integration and
their close collaboration. This and the intensive
communication within the team help to establish a shared
vision.
Organize integrated teams for IPPD (0)
Risk management (+++)
Prepare for risk management (+)
XP doesn’t explicitly state how risk management is to be
conducted. But XP projects surely make some sort of
preparation.
Identify and analyze risks (+++)
XP enforces the identification and analysis of risks during
the planning phase.
Mitigate Risks (+++)
The flexibility gained by the use of short iterations is a
potent instrument to mitigate risks.
Integrated teaming (+++)
Establish team composition (+++)
XP establishes a self-organizing cross-functional team in
which all relevant stakeholders are integrated.
Govern team operation (+++)
Team operation is governed through a clear definition of the
different roles, pair programming, collective ownership of
the code and the focus on cooperation and communication.
Integrated supplier management (0)
Decision analysis and resolution (–)
Turner [27] points out that the ability to adapt quickly to
new situations is preferred by agile methods to a formal
evaluation process. XP identifies and evaluates alternatives
informally and not in the way CMMI suggests.
Organizational environment for integration (+)
The issues of this process area are addressed at project level
but not at the organizational level.
Provide IPPD infrastructure (++)
XP establishes the basis for this specific goal through the
introduction of tools, intensive communication and
cooperation. By promoting the abilities to communicate and
cooperate as well as leadership skills the method further
supports this goal.
Manage people for integration (+)
Leadership mechanisms are democratic within the
development team. However the customer and the big boss
have authority to decide on high level issues.
Organizational process performance (–)
XP focuses rather on individuals than on issues that are as
process oriented as this process area. Turner [28] points out

that the idea of measuring a process and maintaining
baselines and models is in conflict with the agile manifesto.
Quantitative project management (–)
Statistical methods have their focus on defined processes
and not on individuals since quantitative analyses need a
static baseline. Therefore, statistical methods are in conflict
with agile principles. Furthermore, they rely on the law of
big numbers and on averaging out effects in large teams.
Since most agile software projects are small the use of
statistics is questionable.
Organizational innovation and deployment (–)
Process improvements and adaptations are made only within
projects and not documented, so that they cannot be
propagated to the whole organization. This topic relies
heavy on “organizational process focus”, a process area that
is in conflict with XP.
Causal analysis and resolution (0)

 2) Generic Practices

Establish an organizational policy (0)
Plan the process (0)
Provide resources (+)
This practice is conducted only regarding a few process
areas.
Assign responsibility (+++)
The role model assigns responsibilities to certain team
members. In addition the developers take responsibility for
particular tasks during the project.
Train people (+++)
Training is conducted during the exploration phase.
Furthermore pair programming and coaching is employed to
train people.
Manage configurations (++)
A configuration management system is employed. The
configurations of code, tests, design and requirements are
managed. For protocols of test cases, measurement data,
release and iteration plans configuration management is not
planned.
Identify and involve relevant stakeholders (+++)
All relevant stakeholders are part of the team.
Monitor and control the process (++)
This generic practice is implemented for all project-related
process areas due to XP’s fulfillment of the process area
“project monitoring and control”. To realize it for all
processes and not only for project-related processes,
measures for monitoring actual performance of the process
have to be established.
Objectively evaluate adherence (+)
The coach is XP’s only instrument to support this generic
practice. However by implementing
the process area “process and product quality assurance”
which is not in conflict with XP it would be possible to
fulfill this practice for all process areas.
Review status with higher level management (++)
Frequent releases enable reviews by the management.

Therese Clara V et al IJCSET | June 2011 | Vol 1, Issue 5,203-209

207

Establish a defined process (0)
Collect improvement information (–)
Improvements are deliberately not documented by XP and
therefore this generic practice cannot be implemented. This
conflict could be solved by properly documenting process
changes in a project and making them available to other
projects in the organization. In addition, process
improvement information might be easily captured during
iteration planning and via postmortem analyses.

D. Coverage of Process Areas by Agile Methodologies
In 3.3., it was shown in detail which CMMI process areas
are supported by XP and which are in conflict. In this
section, a summary is given on the coverage of CMMI
process areas by XP and Scrum.
All of the seven process areas of CMMI level 2 are
attainable by both methods. From the fourteen process areas
of level 3 only two are in conflict. Three out of the four
process areas of level 4 and 5 are also in conflict. Of the
twelve generic practices only one was rated as in conflict.
The results indicate that level 2 can be attained without
major adaptations. The same is true for level 3 with the
exception of two process areas. It is however practically
impossible to reach level 4 and 5 with XP and Scrum
without making changes to the methods that contradict
agility.
Mainly those process areas that deal explicitly with process
improvement (“organizational process focus”,
“organizational process performance”, “quantitative project
management” and “organizational innovation and
deployment”) are in conflict with agile methods. Also the
generic practice “collect improvement information” deals
explicitly with process improvement and is in conflict. In
addition “decision analysis and resolution” interferes with
Scrum and XP due to the demand of a formal evaluation
process. The major part of the process areas can be attained
by agile methods. But often, the methods have to be
extended by additional practices to fully satisfy the process
areas.
There are only minor differences between the ratings of
Scrum and XP. Scrum, not addressing development
activities, gets lower ratings than XP in accordant process
areas (“configuration management”, “technical solution”,
“product integration” and “verification”). On the other hand,
Scrum performs slightly better in process areas dealing with
project management “measurement and analysis” and
“integrated project management for IPPD”) and according
generic practices (“provide resources” and “review status
with higher level management”).
This analysis shows that XP and Scrum cover only project
related, but not process related process areas.

E. Interrelations between Agile Methods and Process
Maturity Models
CMMI evaluates an organization as a whole and its
development processes. In contrast, an agile method is (a
framework or sometimes only a fragment of) one individual
development process. Thus, the concepts are not comparable

per se. Their focus is different, but still they have
interrelations. Paulk summarized that CMM is a method for
software management whereas agile approaches are
methods for software development [21]. They not only can
coexist, but they even support each other [12].
It is quite convincing to say that CMMI is an appropriate
way to improve processes also in an agile environment.
Checking an agile method’s coverage of the process areas
reveals shortcomings in the approach and thereby
improvement potentials. However, process improvement
with CMMI can only be carried out up to a certain degree
since there are several process areas which are in conflict
with agile principles. Some process areas of level 3 and
most of level 4 and 5 are unattainable without sacrificing
some agile bedrocks. This would weaken the agile method
and eliminate several of its benefits. Also, such actions
would be contradictory to the aim of CMMI, i.e. improving
the process by making the agile method as good as possible
and not turning it into a different kind of method which isn’t
agile anymore. So it is concluded that the best improvement
approach in an agile environment is to stop at CMMI level
3.
Implicitly, it can be concluded that CMMI levels have to be
judged considering the process model employed in an
organization. But also, like for every traditional process,
refining the agile processes needs to be regarded as an
ongoing, success-critical task.

IV CONCLUSION AND FUTURE WORK

Which CMMI process areas can be covered by Scrum and
XP were analyzed in detail. Process areas where the
methods have to be adjusted to fulfill CMMI goals were
identified. Some process areas were in conflict with the two
methods and agile principles in general. Most of the process
areas can be fulfilled using agile methods. However some
are clearly in conflict. Through the use of CMMI,
shortcomings of agile methods can be identified. Therefore
it can be concluded that process improvement with CMMI
can also be carried out when using agile methods. However,
since some process areas, mainly those of the maturity
levels 4 and 5, are in conflict with agile principles, agile
methods can be applied without any major adaptations up to
level 2 and up to 3 with some minor changes described in
this paper. Extending the project focus of agile methods to
an organization-wide perspective would help to make use of
the existing concepts of ongoing process-improvement.
If these concepts are employed in agile environments, agile
methods will further gain acceptance. But today, an obstacle
for process improvement with CMMI is the difficulty to
carry out assessments of projects which use agile methods.
The specific practices suggested by CMMI often differ from
agile approaches. Assessors therefore encounter serious
problems when trying to analyze a project. To remedy this
situation a catalogue of practices and sub-practices that are
typically used by agile methods to implement CMMI goals
should be developed.

Therese Clara V et al IJCSET | June 2011 | Vol 1, Issue 5,203-209

208

Here, only XP and Scrum were discussed. To make the
results more general, further agile methods should be
analyzed as well. In addition, concrete guidelines should be
established which show how agile methods can be enhanced
to fully cover all the process areas that are not in conflict.
For this the present work can be seen as a starting point.

REFERENCES

[1] V-Modell XT Portal. http://www.v-modell-xt.de.
[2] D. J. Anderson. Stretching Agile to fit CMMI Level 3 - the story of
creating MSF for CMMI Process Improvement at Microsoft Corporation.
In AGILE, pages 193–201, 2005.
[3] K. Beck and C. Andres. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 2nd edition, 2004.
[4] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B.
Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and D.
Thomas. Manifesto for Agile Software Development, accessed in 2006.
http://AgileManifesto.org/.
[5] A. Cockburn. Agile Software Development. Addison-Wesley, 2002.
[6] A. Cockburn and J. Highsmith. Agile Software Development: The
People Factor. IEEE Computer, 34(11):131–133, 2001.
[7] D. Cohen, M. Lindvall, and P. Costa. Agile Software Development: A
DACS State-of-the-Art Report. Technical report, 2003.
http://www.thedacs.com/techs/agile/agile.pdf.
[8] M. Doernhoefer. Surfing the net for software engineering notes.
SIGSOFT Softw. Eng. Notes, 31(1):5–13, 2006.
[9] C. Dogs and T. Klimmer. Agile Software-Entwicklung kompakt. mitp-
Verlag, 2005.
[10] M. Fowler. Using an Agile Software Process with Offshore
Development, accessed in 2005.
http://www.martinfowler.com/articles/agileOffshore.html.
[11] M. Fritzsche. Agile Methoden im industriellen Umfeld. Master’s
thesis, Technische Universit¨at M¨unchen, 2005.
[12] H. Glazer. Dispelling the Process Myth: Having a Process Does Not
Mean Sacrificing Agility or Creativity. CrossTalk: The Journal on Defense
Software Engineering, (14):27–30, 2001.
[13] J. D. Herbsleb, D. Zubrow, D. Goldenson, W. Hayes, and M. C. Paulk.
Software Quality and
the Capability Maturity Model. Commun. ACM, 40(6):30–40, 1997.

[14] J. Highsmith. Extreme Programming: Agile Project Management
Advisory Service White Paper, accessed in 2005.
http://www.cutter.com/freestuff/ead0002.pdf.
 [15] S. E. Institute. Capability Maturity Model Integration (CMMI),
Version 1.1 (CMMISE/ SW/IPPD/SS, V1.1). Technical report, Software
Engineering Institute, Carnegie Mellon University, 2002.
[16] J. J. Jiang, G. Klein, H.-G. Hwang, J. Huang, and S.-Y. Hung. An
exploration of the relationship
between software development process maturity and project performance.
Inf. Manage., 41(3):279–288, 2004.
[17] T. K¨ahk¨onen and P. Abrahamsson. Achieving CMMI Level 2 with
Enhanced Extreme Programming
Approach. In PROFES, pages 378–392, 2004.
[18] D. Kane and S. Ornburn. Agile Development: Weed or Wildflower?
CrossTalk: The Journal on Defense Software Engineering, 2002.
[19] P. Keil. Principal agent theory and its application to analyze
outsourcing of software development.
In EDSER ’05: Proceedings of the seventh international workshop on
Economics-driven software engineering research, pages 1–5, New York,
NY, USA, 2005. ACM Press.
[20] M. C. Paulk. Using the Software CMM With Good Judgment. ASQ
Software Quality Professional,
1(3), 1999.
[21] M. C. Paulk. Extreme Programming from a CMM Perspective. IEEE
Software, 18(6):19–26, 2001.
[22] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber. Capability
Maturity Model, Version 1.1. IEEE Softw., 10(4):18–27, 1993.
[23] M. Poppendieck and T. Poppendieck. Lean Software Development:
An Agile Toolkit. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.
[24] R. S. Sangwan and S. P. Masticola. Model-Driven Rapid Application
Development: A Framework for Agile Development in Outsourced
Environments. Technical report, Siemens Corporate Research, 2004.
[25] K. Schwaber and M. Beedle. Agile Software Development with
Scrum. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.
[26] M. Simons. Internationally Agile, accessed in
2005.http://www.informit.com/articles/article .asp? p=25929.
[27] R. Turner. Agile Development: Good Process or Bad Attitude? In
PROFES, pages 134–144, 2002.
[28] R. Turner and A. Jain. Agile Meets CMMI: Culture Clash or Common
Cause? In XP/Agile Universe, pages 153–165, 2002.
[29] R. van Solingen. Measuring the ROI of Software Process
Improvement. IEEE Software,21(3):32–38, 2004.

Therese Clara V et al IJCSET | June 2011 | Vol 1, Issue 5,203-209

209

