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Abstract— In this paper, we propose a new approach of fault 
detection and diagnosis combining a Neural Nonlinear Principal 
Component Analysis (NNLPCA) and Partial Least Square (PLS). 
We have made a comparative study between the Linear Principal 
Component Analysis (LPCA) and Nonlinear Principal 
Component Analysis (NLPCA) to monitor a manufacturing 
process. This study has shown the capability of NLPCA in 
explaining nonlinear correlations in the process data. The 
traditional LPCA is limited to complex nonlinear systems; 
therefore, an adaptive NLPCA based on an improved training 
auto-associative neural network is presented. The proposed 
approach is applied to fault detection of a manufacturing 
process. The performance of the proposed approach is then 
illustrated and compared to those of classic LPCA. 
 

Keywords— Neural Nonlinear Principal Component Analysis, 
Partial Least Square, Clustering, Pre-analysis, Fault 
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I. INTRODUCTION 

In manufacturing industries, reliability is a costly event. It 
remains a product quality indicator of the greatest importance 
in competitive manufacturing operations [1]. Certainly, a 
number of different approaches to the failure detection and 
diagnosis have been evolved in many researches [2]. 
An important measure of quality for some products is the 
number of defects per manufactured item. The number of 
defects per unit area, volume or weight or on a single 
manufactured item is an important measure of quality for 
many products. A typical example is the system of 
transforming and producing cigarettes. The aim of a cigarette 
manufacturing process is to control and respect the interval 
constraint on the weight of the manufactured unit. In fact, 
from a quality point of view, a very heavy cigarette has a 
difficult pulling and a light cigarette gives consumers the 
impression to be harmed presenting less garnished ends which 
empty easily. From a cost point of view, tobacco excess in a 
cigarette is considered as a loss and can cause stops resulted 
from stuffing, as in making pudding. 
It is known that each stop of the machine systematically 
generates a certain quantity of rejection (cigarettes during 
formation are discarded). Usually, a manufacturing system 
may have several kinds of sensors, but information processing 
and decision making using the data acquired by all the sensors 
are very difficult problems for a cigarette manufacturing 
process. Sensor defaults (biases or drifts) can affect the 
cigarette manufacturing process comportment until damaging 
the production. A cigarette manufacturing process is a non 
linear, non stationary and multi variable complex system. For 
this kind of industrial process, the precise mathematical model 

may be difficult to obtain due to the complexity and the high 
dimensionality of the process. To get this objective, it is 
possible to consider the modeling approaches based on the 
data driving technique such as the Principal Component 
Analysis (PCA), linear or non linear [3]. The PCA is a 
statistical method which uses linear correlations while 
reducing the variable dimension. The PCA, also known as 
empirical orthogonal function analysis, is used to reduce the 
dimensionality of the measured data. Linear PCA is a classic 
approach of reducing the dimension of multi-variable data 
with a minimum loss of information. Using the linear PCA, 
the approximation of a space with a large dimension to an 
under-space with a small dimension is realized by the 
dominant proper vectors of the covariance matrix. Applying 
the PCA for detecting and locating defects has particularly 
been important and widely used to monitor industrial 
processes [4], [5]. Most industrial processes have non linear 
behaviors. 

During the use of the linear PCA, significant non linear 
information is lost. The non linear PCA is an expansion of the 
linear PCA. D. Dong and T.J. Mcavoy have shown that using 
the classic linear PCA in non linear systems is inadequate. If 
secondary or low-variance components are removed from the 
PCA model, an important piece of information will be 
rejected. And if its secondary components are kept, we can 
use an excess of components to solve this problem. The 
classical PCA has some limits; for example, it does not pick 
up the non linear relations between the variables. Also, if the 
dimension of the input variables is higher than 2, the 
projection into a linear plan gives a limited decrease in the 
dimension and visualization of data. The Non Linear Principal 
Component Analysis (NLPCA) aims at extracting both linear 
and non linear relations by projecting data on curves and 
surfaces. The NLPCA method based on artificial neural 
network has generated an important non linear part during the 
training procedure [6]. The monitoring approach described in 
this paper use non- linear Principal Component Analysis 
based on Neural Network. This method associates NNLPCA 
and PLS-DA, and it is based on the following assumptions. 

 We consider NLPCA, based on a multi-layer perceptron 
(MLP) with an auto-associative topology. The auto-
associative neural network performs the identity mapping the 
output x̂  which has to be equal to the input x  by minimizing 
the mean square error (MSE). 

 After determining the control limit or threshold, a 
statistical index is used for fault detection. 

 We employ PLS-2 to visualize the number of classes 
in the data with and without faults and classify them 
into different classes using a silhouette cluster. 
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 To find fault direction in PLS that optimally 
separates each fault region of data from normal data. 
The weights in fault direction are used to generate 
contribution plots for fault diagnosis. 

Our approach consists of three mean steps: 
- Pre-analysis: The auto-associative neural network model has 
been adapted to perform nonlinear PCA and minimize the cost 

function 
2

ˆJ x x  . 

- Fault detection and class visualization: They allow isolating 
normal and abnormal data with a silhouette cluster which is 
carried out by performing PLS-2 for an isolated class of faults. 
- Fault diagnosis: Locating faults, therefore, is realized by 
calculating a contribution plot in a PLS direction. 

In this paper, we will begin first by a presentation of some 
related works. Section 2 gives a process description. Section 3 
is dedicated for a brief review of the non linear PCA based 
neural networks. The monitoring approach is presented in 
section 4 followed by the exploitation of this approach for 
diagnosis. In section 5, we discuss the applicability of our 
approach through a real data simulation of producing a 
cigarette manufacturing process. Finally, a conclusion is 
presented with some perspectives. 

II. RELATED WORKS 

The principal component analysis, if initially designed for 
compressing the number of characteristics in order to reduce 
the space dimension of data representation, is likewise an 
interesting tool to detect and locate measurement errors and 
process dysfunctions [7], [8]. However, the direct application 
of the PCA to data resulting from a dynamic system does not 
reveal the exact relations existing between the variables. Ku et 
al [9], proposed a development, called dynamic principal 
component analysis, which consists in applying the PCA to a 
matrix of extended data containing different variables of the 
staggered system. Recently, Li and Qin (2001) and then Wang 
and Qin (2002) proposed some extensions to the dynamic 
PCA close to the identification methods of sub-spaces to 
eliminate an eventual bias on the model parameters. Whereas 
the PCA is a linear method, most of physical systems have 
non linear behaviors. This has motivated a certain number of 
works to broaden the analysis range in a non linear frame [10]: 
principal curves, an auto-associative neural network, non 
linear principal analysis (NLPCA), and a radial-based function 
network (RBF). 

The adaptive PCA proposed by Dayal and McGregor [11] 
updates the model parameters by applying an exponential 
sliding window to adjust the model to new conditions. Other 
extensions have been developed. Each one is based on 
different process aspects. Nomikos and Mac Gregor [12] have 
extended the use of multi-variable projection methods into 
packet processes (Batch processes) using the multiple PCA 
(multiway PCA). The hierarchical or multi-bloc PCA allows 
an easier modeling and interpretation of a big matrix by 
decomposing it into a small matrix or bloc [13]. 
The association of the conventional PCA with the wavelet 
transformation aroused a considerable interest these last years 
[14]–[17]. Recent studies relying on the RNAs have been 
proposed by R. Shao et al [18]. They use an online-
optimization algorithm of neural network data (Input Training 

Networks), where non parametric thresholds are applied on 
the control graphs to detect faults. To determine the number of 
principal components, many rules have been proposed in 
literature [19]–[22]. Many neural network-based techniques 
have been developed in the case of non linear PCA such as the 
sequential and parallel extraction and the input training [23]. 
After the fault has been detected, it is important to identify the 
abnormal data. 

Therefore, the variable reconstruction approach by Duna et 
al is in a linear case. Haraket in [24] proposed the 
reconstruction approach in the nonlinear case by examining 
the residuals given by the NLPCA model before and after 
reconstruction. So, in our proposed approach, we have used 
the PLS-2 Partial Last Square discriminant analysis and the 
classical algorithm (NIPLAS) to predict the number of classes 
to be taken in advance by the k-mean clustering algorithm. As 
soon as the k-mean clustering algorithm is applied, the 
silhouette technique calculates the mean width of the 
silhouette of each group as well as the width of the silhouette 
cluster for the data totality. The mean width of the silhouette 
can be applied to evaluate the validity of clusters and also be 
used to decide how the predictive number of determined 
clusters is suitable for PLS-2. 

III. PROCESS DESCRIPTION 

One of the manufacturing systems where the respect of a 
produced item's weight arises is a cigarette making workshop. 
The process, as shown in Fig. 1, makes a regular and 
homogenous tobacco pudding (endless cigarette): 
A beam of tobacco is enveloped by cigarette paper by means 
of an adhesive. The resulting pudding is cut up into segments 
corresponding to one cigarette in order to obtain a rough 
consumed unit (cigarette without filter). Within this process, a 
weight interval constraint must be respected. In fact, from a 
quality point of view, a too heavy cigarette is difficult to draw 
and a too light one does not satisfy requirements. The 
production of cigarettes consists of three steps: 
- Preparation of a tobacco cut beam that will be setting to 
obtain a trimmer or modulus  . 
- Forming of a pudding with density   by enveloping the 
beam with cigarette paper. 
- Cutting up the pudding into   long rough consumed units. 
Henceforth, such a unit is called simply cigarettes. 
The system of transforming and producing cigarettes is 
described in a textual and functional manner [25]. The 
problem of respecting the interval constraint on the weight of 
the manufactured unit is then posed. 
- Factor 1: The timer (modulus)  . 
- Factor 2: The density  . 
- Factor 3: The compactness  . 
- Factor 4: The pulling resistance  . 

- Factor 5: The dampness rate  . 

- Factor 6: The weight  . 
The density depends on the modulus value which is 

adjustable while acting on the modulus pieces of the process. 
The fluctuation of the modulus depends on the state of the 
piece shapes in the process. The compactness   depends on 
several parameters as cultural practices and certain treatments 
after harvest. The value of   depends on   , the weather and 

Ouni Khaled et al IJCSET | May 2011 | Vol 1, Issue 4,150-157

151



the storage conditions. Note that these parameters  ,  ,   
are inter-related. Obviously, the variation of one of these 
parameters provides a weight variation. When it is outside the 
validity range, the production has to be rejected or the 
machine will be blocked. For a normal functioning of the 
process, the value of each parameter should lie in a given 
validity interval : 
- : The weight of the cigarette with  min max,    

expressed in g. 
- :The modulus of the cigarette with  min max,   expressed 

in g/m3 
-  : The dampness rate of the cigarette with  min max,   . 

-   : The compactness of tobacco with  min max,   . 

-  : The pulling resistance  min max,   . 

-  : Density of tobacco  min max,   . 

Thus, we look for identifying and locating failing sources of 
parameter drifts to prevent the negative consequences which 
will affect all these factors. 

IV. NON LINEAR PCA BASED NEURAL NETWORK 

Let us consider  1 2( ) ( ), ( ), , ( )
T

mx k x k x k x k   the vector 

containing m  observed variables in instant k . Then, we can 

define the data matrix  1 1(1), (1), , ( )
T N mX X X X N    

with N samples. So, the PCA concludes the linear 
combination of the data matrix X  in terms of capturing the 
variation in the data set.  
 TT XP and X TP   (1) 

with  1 2, , , N m
mT t t t   , where the vector it   are called 

the first principal components (PC); and with the matrix 

 1 2, , , N m
mP p p p   , where the orthogonal vectors ip  

are called eigenvectors of the data covariance matrix  .  
 

Whereas much has been found by the use of the PCA and 
other linked methods, being linear methods involves an 
excessive simplification of the potential of the analysed data 
sets. The appearance of neural networks (NN) models, a class 
of powerful non linear empirical methods stemming from the 
artificial intelligence field, increases the hope that the linear 
restriction in our analysis of the data sets can finally be 
solved. Various NN methods have been developed to carry out 
the PCA. The non linear principal component analysis 
(NLPCA) using the NN was first presented by Kramer (1991) 
and is now being used by researchers in many fields. Many 
NLPCA methods have been proposed. We distinguish here 
two methods. The first one is based on principal curves 
proposed by Hastie [26]. However, we cannot use this 
approach directly for diagnosis. The second NNLPCA method 
is based on five-layer neural networks proposed by Kramer 
[27] and which has recently been used for detecting faults. We 
have chosen to use the last method. The NNLPCA is applied 
by using a five-layer neural network composed of parallel 
series layers. 

The output of a layer q  is the input of the layer 1q  . The 

network is composed of five layers [28]: an input layer and an 

output one with neurons. The first layer hidden for coding and 
the third one for decoding are based on a non linear transfer 
function (sigmoid). The second layer hidden inside a network 
is called a bottleneck layer. In the first hidden layer, the 
transfer function is the sigmoid function defined as follows:  

                                         
1

( )
1 x

x
e

 


                               (2)  

 

 
Fig. 1  Optimal sigmoid five-layer neural network for extracting the non linear 
component jt . 

The sigmoid neural network contains three hidden layers 
between the input and output variables. The first hidden layer 
is based on a non linear transfer function where you use the 
sigmoid function ( )x  [29]. The function realizes a 

projection of input variables towards the first hidden layer 
(mapping layer), and is expressed by: 
 ( ) ( ) ( )

1(( ) )x x x
k kh f w x b   (3) 

A transfer function 1f  maps from x , the input column 

vector of length m , to the mapping layer, presented by ( )xh , 

where ( )xw  and ( )xb represent respectively the weights and 
biases, which are optimized using a conjugate gradient 
algorithm. The weights and biases are adjustable parameters. 
A transfer function 2f  maps from the mapping layer to the 

bottleneck layer containing a reduced number of neurons, 
which represents the nonlinear principal component t . 

 ( ) ( )
2 ( )x x xt f w h b   (4) 

The transfer function 1f  is a non linear function and 2f  is 

an identity function.  
The transfer function 3f  maps from t  to the final hidden 

layer ( )u
kh (demapping layer). 

 ( ) ( ) ( )
3 (( ) )u u u

k kh f w u b   (5) 

The transfer function 4f  maps from ( )uh  to the output 

column vector x̂ . 

 ( ) ( ) ( )
4ˆ (( ) )u u u

ix f w h b   (6) 

The weights and biases are optimized using the gradient 
propagation algorithm to minimize the cost function between 
the network input x  and the output  x̂  : 

 
2ˆJ x x   (7) 
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A desired minimum square error between the neural 
network output and the original data is thus minimized. The 
choice of the number of hidden neurons in a mapping and 
demapping layer follows a general principle of parsimony. 

In this paper, we propose our new fault detection method 
which is based on three steps in Fig. 2: pre-analysis, fault 
detection and class visualization, and fault diagnosis. 

The first step of the approach is to calculate X̂  with the 
NNLPCA. The second step is to start with the comparison 
between the SPE and a detection threshold, which makes it 
possible to detect a default and to visualize the number of 
classes in the data using the NIPALS algorithm of PLS-2. The 
NIPALS or PLS-class algorithm has been performed by using 
the PLS algorithm implemented in the PLS-Toolbox [30] to 
predict a class of fault. The data are then classified into 
different classes using k-means clustering.  

In this work, k-means clustering is used to isolate different 
classes of data to separate the data containing normal and 
abnormal classes of data. In the third step, fault direction in 
the PLS is applied to find a fault direction that optimally 
separates each fault of data from normal data. The weights in 
fault directions are used to generate contribution plots for fault 
diagnosis. 

NNLPCA

Weight

Step: 2

Pre‐analysis    Step: 1 

Step: 3 Fault diagnosis

PLS‐AD  for isolated class of  fault

SPE fault detection

X data 

Estimated  X 

Fault direction in PLS

Contribution plot for fault class

Fault detection and class 
visualization

 
Fig. 2  Fualt visualization, and fault diagnosis method. 

 

V. FAULT VISUALISATION AND  DIAGNOSIS APPROACH 

A. Pre-analysis 

The NNLPCA is used to estimate the output of the neural 
network and to calculate the non linear principal components. 
The choice of the number of neurons j  in the bottleneck layer 

is determined by estimating an index  given as follows:  

 

2

2

ˆ

ˆ

X X

X X






 (8) 

where X  is a matrix whose vectors are composed of average 
vectors of the matrix X. We have used the NNLPCA to 
estimate the outputs of the neural networks and to calculate 
the non linear principal components jt  . The number j  will 

be increased and   will be surveilled at the same time. The 
monitoring approach presented in the experiments section uses 
these parameters. 

B. Fault detection and class visualisation 

  1) Fault detection  
It can be applied after training a five-layer neural network 

with a sigmoid transfer function. Using the NNLPCA, 
detecting faults can be realized by the quadratic error SPE(k) 
(square prediction error), also known as statistic Q. 

  2

1

ˆ( ) ( ) ( ) ( ) ( )
N

T
i i

i

SPE k e k e k x k x k


    (9) 

The process is considered wrong at the instant k  if:  

 ( )SPE k 
  (10) 

where    is the trust threshold of the SPE. When 

1

, 1, 2, ,
m

i
i j

j

i m 
 

 


 and j  are the proper value of the 

covariance matrix  . 
To improve the detection quality and to reduce the rate of 

false alarms, the Exponentially Weighted Moving Average 
(EWMA) filter is applied to the residues. The general 
expression of this filter applied to the residues is given by: 
 ( ) ( ) ( 1) ( )e k I e k e k      (11) 

where    is a diagonal matrix whose elements are the fault 

factors for the residues, I  is an identity matrix and (0) 0e  . 

 
2

( ) ( )SPE k e k  (12) 

  2) Class visualisation 
PLS-DA classification: PLS discriminant analysis (PLS-

DA) is a linear regression method. PLS-DA is a classification 
technique that encompasses the properties of partial least 
square and the discriminant analysis. The PLS-DA applies 
partial least square (PLS) regression to designate the class of 
the sample. 

When PLS is used in discrimination, the matrix of responses 
Y  contains the information about class. PLS-DA is used to 
build a predictive model between the input data matrix X  and 
the matrix Y of response variables [31]. In the case of two 
groups (with fault and without fault), a matrix Y  can be 
created containing the value (0) which indicates the class 
without fault and the value (1) which designates the class with 
fault. In the literature we distinguish two proprieties of partial 
least square regression PLS1 and PLS2 with a single variable 
response and with several variable responses respectively. 
When the matrix Y is selected for the PLS-DA, p  is the 

number of classes at fault.   
For each class at fault there are 1 2, , pn n n  observations 

respectively for each variable in the classes. The p  classes are 

stocked in the data matrix m NX  where there are the two 
methods, PLS1 and PLS2, to predict the Y  model. The PLS-
DA is defined as the PLS-2 regression of X . The prediction 
of the block PLS-2 is defined as [32]: 
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
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 

    



 

  
where each column of Y corresponds to a class. We can then 
consider the PLS-DA an approach modeling a set of binary 
variables from explanatory variables. Each Y  element can 
take 1 or 0. The first element 1n  of column 1 of  Y  is 

attributed to 1, which indicates that the line 1 of the matrix is 
at fault. 

k-means clustering: Industrial data usually contain both 
normal and abnormal data in high-dimensional space, making 
it difficult to separate manually. For instance, the k-means 
clustering method is detailed in [33] : K-means clustering is a 
partitioning method whose objective is to partition data into 
mutually exclusive k clusters and to return the index of the 
cluster to each designated observation. Among the most well 
known clustering methods is k-means, as introduced by Mac 
Queen [34], which is known for its efficacy in clustering data 
sets. Unlike hierarchical clustering, k-means clustering 
controls actual observations and creates a single level of 
clusters. The distinctions mean that k-means clustering is 
often more desirable than hierarchical clustering for total data. 
Each cluster in the partition is defined by its member objects 
and by its centroid. The centroid for each cluster is the point to 
which the sum of distances from all objects in that cluster is 
minimized. K-means computes cluster centroids differently 
for each distance measure to minimize the sum with respect to 
the measure that you specify. K-means uses an iterative 
algorithm that minimizes the sum of distances from each 
object to its cluster centroid, over all clusters. The k-means 
algorithm tries to minimize iteratively the following criteria, 
by finding an appropriate set of centroids [35], [36].  

The result is a set of clusters that are as compact and well-
separated as possible. The main steps in k-means algorithm 
are as follows [37]:  
- Select an initial partition and define the centers. 
- Assign each entity (station) to the cluster that has the closest 
centre. 
- When all points have been assigned to one cluster, reorder 
the positions of the centers. 
- Repeat steps 2 and 3 until cluster membership does not 
change. 

Finally, this algorithm minimizes the objective function; in 
this case, a squared error function can be expressed as: 
Euclidean distance: 

 

1

2

1

( )
N

N
ij ij ik

k

d X X


 
  
 
  (13) 

To get an idea of how well-separated the resulting clusters 
are, you can make a silhouette plot using the cluster index 
output from k-means. The silhouette plot displays a measure 
of how close each point in one cluster is to points in the 

neighboring clusters. This measure ranges from +1, indicating 
points that are very distant from neighboring clusters, through 
0,  indicating points that are not distinctly in one cluster or 
another,  to -1,  indicating points that are probably assigned to 
the wrong cluster [38]. 

C. Fault diagnosis using fault direction in PLS 

Fault direction in the PLS is applied to normal data and to 
each class of fault data to find a fault direction that optimally 
separates each fault of data from normal data. The weights in 
fault directions are used to generate contribution plots for fault 
diagnosis. The PLS-DA is a PLS-based model, where the 
general model form can be written as in equation (14): 
 Xb y  (14) 

where y  is a column vector of observations of a dependent 

variable and N mX   is a matrix that results from N 
observations of the m  variables. The column vector b  
contains the m  regression coefficients. For solving this 
equation, we have proposed [39]: 
 
 T TX Xb X y  (15) 

 
y  is an n-dimensional vector whose components take on 

the two considered classes 1c  and 2c , which are respectively 

the class of normal data and each class of fault data. Then to 
satisfy the normalization of the first step of the PLS algorithm, 
one must rescale y to have a zero mean 1 1 2 2 0n c n c  , where 

in  is the number of occurrence of ic . Arbitrarily, we choose 

1 1c  , which implies 1
2

2

n
c

n
  .  

In this case, the right hand side of the equation (15) is 
reduced to: 

 
1 2

1

1

1 12

n n
T kj kj

n j n

n
X y X X

n  

    (16) 

where kjX is an element of  X  and 1 k m  . This can 
also be written as;   
  1 1 2

TX y n     (17) 

where i  is the m-dimensional mean whose corresponding 

variables have a ic  class. Thus,  TX y is in the same direction 

as the line connecting the means of the two classes of y . The 

final solution vector b  obtained by the PLS is then given by: 
 
 1 1 2( )TX Xb n     (18) 

 1
1 2( )tb   �  (19) 

where the covariance matrix is 
1 TX X
N

  . 

So, we have a PLS direction, where 1 1 2( )    , and this 

is the first PLS direction. Therefore, we define this i  

direction as the fault direction for class ic . The weight in i  is 

used to generate the contribution plot for the class in fault. 

 1 2, ,......, ,....,
T

i j m         (20) 
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For a fault direction, the thj  element j  is the contribution 

from the thj variable. The monitoring algorithm is described 

in Fig. 3. In the proposed algorithm, the NNLPCA is used to 
minimize the MSE, and the evolution of SPE has been 
employed for fault detection. If the first test is true, we must 
execute the second filtered test to distinguish between a fault 
and a false alarm. 

 
Fig. 1  Algorithm of monitoring method. 

VI. EXPERIMENTS 

The diagnosis method, exposed previously, has been 
validated in simulation on a real system: a cigarette 
manufacturing process. Results presented below are organized 
in three parts. In the first section, we determine the number of 
non linear principal components. In the following section, 
these latter components are to be used in the bottleneck layer 
for neural network training. In the third section, we present the 
results obtained for the fault detection, visualization and 
diagnosis. 

D. Determining the number of non linear principal 
components 

For the cigarette manufacturing process, we have at our 
disposal a data-base corresponding to measurements carried 
out during three months. The measurements of the process 
variables are collected in a matrix N mX  . If m  is the 
number of variables, , , , ,      and   are respectively the 

dampness rate of tobacco, density, the pulling resistance, the 
modulus of the cigarette, the weight and the compactness. If N 
is the number of observations for each variable, all data is 
centred and reduced and the new data matrix is standardized. 

TABLE I 
INDEX   IN FUNCTION OF NEURON NUMBER OF THE BOTTLENECK LAYER 

(1)  (2)  (3)  (4)  (5)  (6)  

1.116 1.084 1.136 1.931 2.954 2.593 
 

The number of non linear components is 2j   and there 

are two neurons in the bottleneck layer. 

E. Neural network training 

The training set (400 6) has been performed and used to 
determine how many nonlinear component have been kept in 
the final model. For the network training, we have used the 

gradient descent backpropagation algorithm. After optimizing 
the number of neurons as 10 neurons in the first and third 
hidden layers, we have had good results of the training of the 
five-layer neural network. 

The performance has been the mean square error (MSE), 
that is the average squared error between the input and output 
data. The performance goal has been 1.23 at epoch 5,587. We 
do the training of a five-layer neural network until capturing a 

variance of the input X, which is the estimated output X̂  . 
After that, the training has been achieved after 5,587 training 
epochs as shown in Fig. 4. 
 

 
Fig. 4  Mean squared error as a function of the number of epochs for the 

training set when applying ANN. 

Fig. 5 and Fig. 6 present measurement and estimation of 
compactness and modulus, respectively. The estimation is 
given by an NNLPCA model. 

 
Fig. 5  Measurements and estimation of compactness . 

 
Fig. 6  Measurements and estimation of compactness  . 
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VII. SIMULATION EXAMPLE 

In this application, a fault bias is simulated in the 
parameters of the modulus   during a fixed time interval 
(fault bias 5%). The SPE chart is applied to detect faults. The 
contribution plot based on both PLS fault direction and scores 
in LPCA is used to diagnose the faults and compare their 
performances. The evolution of the SPE allows showing the 
existence of three operation regions presented in Fig.7. We see 
clearly that there are three operation regions where A and C 
are the normal regions, and B is the fault region. 

 
Fig. 7  The evolution of filtered square prediction error. 

As for the evolution of the SPE chart, we make out five 
regions;  and to predict the number of classes, we are going to 
use the partial least square discriminant analysis by applying 
the PLS-2 algorithm. Fig. 8 presents the contribution of 
classes A, B and C which correspond to the regions A, B and 
C. 

 
Fig. 8  Class prediction by PLS-DA. 

After removing ambiguous points from the transitional 
regions, we perform the PLS direction to get an overall view 
of the three classes A, B and C. Fig. 9 shows clusters in PLS 
directions, where the classes A, B and C correspond to the 
operation regions A, B and C. Based on our assessment, we 
have noticed that group B is the region at fault.  

 
 Fig. 9  2-D PLS score plot. 

  

After the process, data are classified into disjoint classes, 
the contribution plots based on the PLS fault direction for 
fault B is given in Fig. 10. To make a comparison, the 
contribution plot based on the LPCA model is also given in 
Fig. 11. The contribution plot based on the PLS in class B 
indicates that variable   which has a higher contribution is a 
variable at fault. Whereas, in the contribution plot based on 
the LPCA there are two variables having higher contributions, 
but variable   is not a cause of faults.  

 
Fig. 10  Contribution plot based on PLS direction. 

 
Fig. 11  Contribution plot based on LPCA. 

VIII. CONCLUSIONS 


The linear PCA is not adapted to the study of the non linear 

system. So, we have proposed an approach based on the 
NNLPCA. The NLPCA is associated to the neural network. 
Our contribution is to extend this method to data processing 
which presents non linear behavior. 
The SPE chart is used to isolate data in different regions that 
correspond to fault and normal regions. A clear classes 
visualisation is obtained by applying the discriminant analysis 
PLS-2. A contribution plot based on the fault directions in 
PLS is applied to real production data of an existing 
workshop. The proposed methodology is therefore validated 
by a large set of data, and it provides an interesting industrial 
efficiency for the considered case study. However, we are 
going to improve the quality of the detection by improving the 
modeling quality. The results obtained make it possible to 
validate the method which is applied for detecting and 
localizing the considered sensor faults. The industrial 
application of our approach has shown the limit of the LPCA 
in exploiting nonlinear correlations of data measurements. 
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