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Abstract- Heapsort, Quicksort and Mergesort are three ingenious sorting 
algorithms, which deserve special attention. In the past these algorithms 
were studied in detail, but the study was carried out on old machines 
and involved cache simulations. Over the years computer architecture 
has gone through radical changes. Therefore, a study valid on old 
architectures may not be valid on new architectures. The comparative 
study of Heapsort, Quicksort and Mergesort on modern machines with 
the help of latest performance analyzers is the central idea of the paper. 
To choose among Heapsort , Quicksort and Mergesort on modern 
machines, a comparative study of prior will be useful. Quicksort has 
been a usual choice for sorting, but some researchers suggest that 
accelerated Heapsort, a variant of Heapsort, is competitive enough to 
become a method of choice to solve sorting problem [6]. This paper 
examines the claim of accelerated Heapsort as a method of choice.  
 

1. INTRODUCTION 
 

In Computer science one of the classic problems is sorting. 
Though several algorithms solve the problem, nevertheless 
only a few solve it  efficiently.  Quicksort, Heapsort and 
Mergesort belong to the set of those few. Heapsort, Quicksort 
and Mergesort are  intensely competitive sorting algorithms. 
So in the past Scientists studied and compared these sorting 
algorithms, the comparisons however were theoretical and 
were done on old architectures. An algorithm effective on old 
architectures may not be effective on modern machines. A 
comparative study valid on old architectures may not be so 
on modern architectures.  Moreover in past researchers did 
not have  advanced performance analyzers to study cache 
miss and page faults. Consequently researchers relied on 
cache simulations. Therefore their results may be inaccurate. 
Hence It is beneficial to compare the algorithms on 
contemporary architectures using state of the art performance 
analyzers. 
It has not escaped our notice that state of the art machines are 
multicore and if an algorithm   has to be effective it should be 
multicore ready [13]. Future lies in parallel /multithreaded 
algorithms, but even then one should not forget that parallel 
algorithms or multithreaded algorithms will need sequential 
algorithms  at lower level. The basic question is which 
sequential sorting algorithm to call at lower level. Having a 
slow sequential algorithm at lower level will neutralize the 
advantage of parallel sorting gained by multiple cores. So the 
question which sequential sorting is the best alternate at 
lower level is of paramount importance. This study tries to 
answer the same question. 
To compare the performance of Quicksort, Heapsort and 
Mergesort on contemporary machines is the central idea of 
the paper. A good test of the algorithm's performance is its 
execution time. The drawback of this approach, however is 
that no intuition is provided as to why the execution time 
performance was good or bad. The reason(s) may be high 
instruction count, high cache miss count and High branch 
misprediction count. Even high pagefault count affects the 
performance. Earlier researchers studied the impact of these 
factors using cache simulation and similar techniques. 
Fortunately today researchers have  performance analyzing 
softwares which are not merely effective in capturing 
execution time but also acquire accurate data about cache 

miss, branch mispredictions and page faults.  
Performance analyzer AQTime obtained us reliable data 
about factors discussed in earlier paragraph. A researcher 
needs to interprete data correctly with an eye towards overall 
performance improvement, or researcher arrives at false 
conclusions. She cannot be biased in favour of a single factor. 
Having  a focus on overall performance gain rather than 
being biased in the favour of a single factor is one of the key 
ideas of research method. Next Section focuses on the 
Research method. The research method is followed by a 
summary of past results, which is covered in Section 3. 
Section 4 presents the data obtained by performance analyzer 
on the modern computers. Finally Section 5 analyzes the data 
carefully and concludes the study.  
 

2. RESEARCH METHOD 
 

One of the key ideas of this method is to try a practical 
approach. Fortunately we have  state of the art softwares to 
adopt the pragmatic approach. AQtime software was used to 
profile the sorting algorithms. AQtime is a profiler that 
obtains reliable data about elapsed time, CPU cache misses, 
branch mispredictions and pagefaults. Profiler helps us in 
understanding as to why one algorithm is slower, and why 
other is fast? While we prefered a practical approach, 
whereas previous researchers, did not enjoy the luxury of 
sophisticated profilers which we enjoy, relied heavily on 
theoretical models and cache simulations. 
There are sound reasons to prefer the pragmatic approach. To 
appreciate the reasons we will contrast our approach with the 
other approaches. Majority of algorithm researchers compare 
the algorithmic performance on the basis of unit cost model. 
The RAM model is a most commonly used unit cost model in 
which all basic operations involve unit cost. The advantage of 
unit cost model is that it is simple and easy to use. Moreover 
it produces results which are easily comparable. However, 
this model does not reflect the memory hierarchy present in 
modern machine. It has been observed that  main memory has 
grown slower relative to processor cycle times, consequently 
Cache miss penalty has grown significantly [12]. Thus good 
overall performance cannot be achieved without keeping 
cache miss count as low as possible. Since RAM model does 
not count cache miss, it is no longer a useful model. 
Usually algorithm researchers in sorting area only count 
particular expensive operations. Analyses of sorting and 
searching algorithms, for instance, only count the number of 
compares and swaps. There was logic behind only counting 
comparison operation which was expensive in the past. That 
simplified the analysis and still retained accuracy since the 
bulk of the costs was captured, but this is no longer true 
because the shift in the technology renders the “expensive 
operations” inexpensive and vice versa. Same happened with 
comparison operation which is no longer expensive. Indeed it 
is no more expensive than adding or copy. Section 4 and 5 
show how this bias towards comparison leads to incorrect 
conclusions. So the study favours a pragmatic approach and 
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is not biased towards a single performance indicator. The idea 
is to have a fairly objective  view and goal of good overall 
performance rather than concentrating on a single point. 
 

3.A BRIEF REVIEW OF PAST RESULTS   

Quicksort, deteriorates and takes Quadratic time in the worst 
case, spends a lot of time even on the sorted or almost sorted 
data, takes up only O(log n) amount of extra space if 
implemented cleverly, takes linear amount of space in the 
worst case otherwise. It performs a lot of comparisons even 
on sorted data, but swap count is low for sorted or almost 
sorted input [10]. Quicksort is on average blindingly fast. On 
average it needs only 1.3 n log n comparisons to complete the 
task. Even overall instruction count is comparatively low 
[1,2,3,4,5,7,8,9]. Quicksort, upto  some extentent can be 
parallelized. 
Heapsort, runs slower than Quicksort on average, spends a lot 
of time even on the sorted or almost sorted, takes up only 
constant amount of extra space. It, does not maintain original 
order of records on equal keys, does not need extra array or 
extra stack space.  Heapsort even in the worst case offers an 
asymptotically optimal performance. An Heapsort variant, 
known as Accelerated Heapsort was developed by Karlson 
[11]. Literature suggests that Accelerated Heapsort is 
competitive enough to replace Quicksort as an algorithm of 
choice. It has very little inherent parallelism [6,11]. 
Mergesort takes extra array, and if implemented in a topdown 
way takes extra stack space because of recursion. Though 
time spent by Merge sort is asymptotically optimal, but other 
factors ought to be studied cautiously. Mergesort a stable 
algorithm maintains the original order of records on equal 

keys. Mergesort has an extremely low comparison count and 
only a few algorithms have smaller count. Easier it is devise  
a parallel version of Mergesort [9]. 
 

4. COMPARATIVE STUDY ON MODERN ARCHITECTURES 
 

This study, compares Quicksort, Heapsort and Mergesort on 
modern computers, crosschecks whether Accelerated 
Heapsort(a variant of Heapsort) can compete with Quicksort 
on average as  literature suggests.  Thus to compare, 
algorithms were tested on Psuedorandom numbers. 
Following tables and figure present the average case statistics 
generated by the tests on 4 important performance indicators: 
elapsed time, CPU Cache Miss, Branch mispredictions and 
page faults. AQtime software was instrumental in gathering 
the reliable profiling data.  
 
 
 

Table 1  Quicksort Statistics 

N 
Elapsed time 

(in ms) 
Cache Miss 

Mispredicted 
Branches 

Page Faults 

10000 2.17 73 97402 0 

20000 4.48 50 204154 0 

30000 7.10 105 315749 0 

40000 9.42 173 426113 0 

50000 11.84 1567 543232 0 

60000 14.69 495 661780 0 

70000 17.47 337 768937 0 

80000 20.35 364 893583 0 

90000 23.76 1167 1012280 0 

100000 26.24 788 1150368 0 

 
 
Table 2  Heapsort and Accelerated Heapsort Statistics 

N 
Heapsort Accelerated Heapsort 

Elapsed Time 
(in ms) 

Cache Miss 
Mispredicted 

Branches 
Page Faults 

Elapsed Time 
(in ms) 

Cache Miss 
Mispredicted 

Branches 
Page faults 

10000 2.93 182 104676 0 7.42 498 261907 0 

20000 6.11 661 211068 0 13.66 616 505649 0 

30000 9.60 821 324514 0 23.50 1637 668386 0 

40000 12.97 1141 442950 0 30.83 2204 1021126 0 

50000 16.58 1158 566733 0 37.62 2962 1313025 0 

60000 20.01 1712 690736 0 46.37 3003 1614741 0 

70000 23.68 1474 805584 0 51.67 2685 1869227 0 

80000 27.75 1964 919547 0 62.13 8466 2187585 0 

90000 31.79 2862 1052313 0 69.49 4457 2508983 0 

100000 36.05 3077 1194742 0 78.49 8430 2885227 0 

 
Table 3  Topdown Mergesort Statistics 

N 
Elapsed Time 

(in ms) 
Cache Miss 

Count 
Mispredicted 

Branches 
Total Page 

Faults 
Soft Memory 
Page Faults 

Hard Memory Page Faults 

10000 7.25 2253 195353 250 250 0 

20000 14.70 4442 393851 521 521 0 

30000 22.23 6472 594805 795 795 0 

40000 30.36 8326 817774 1084 1084 0 

50000 29.54 11648 1001526 1369 1369 0 

60000 38.31 10898 1004099 1369 1369 0 

70000 53.75 14601 1371954 1939 1939 0 

80000 62.46 16487 1677569 2248 2248 0 

90000 70.08 18718 1917031 2547 2547 0 

100000 77.22 21626 2115426 2838 2838 0 
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Table 4 Bottomup Mergesort Statistics 

N 
Elapsed Time 

(in ms) 
Cache Miss 

Count 
Mispredicted Branches 

Total Page 
Faults 

Soft Memory Page 
Faults 

Hard Memory 
Page Faults 

10000 5.48 1570 114612 248 248 0 

20000 11.28 3700 231595 520 520 0 

30000 17.09 6462 357841 788 788 0 

40000 23.18 7460 488235 1078 1078 0 

50000 30.93 7864 615057 1362 1362 0 

60000 35.28 10794 737387 1636 1636 0 

70000 41.22 15715 880837 1967 1967 0 

80000 47.71 20177 1002236 2236 2236 0 

90000 58.36 22870 1133682 2516 2516 0 

100000 63.53 22199 1259579 2824 2824 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    
                                                               Figure 1: Comparative Statistics 
 

5.  ANALYSIS, RESULTS AND CONCLUSION 
 

Tables and Figure 1, show the results based on random input, 
depict the performance on 4 crucial performance indicators. 
Hard Page fault count is 0 for each one of the algorithms. 
Zero pagefault count is due to large main memory size which 
was not feasible earlier. Even soft page fault count is zero for 
each one of the algorithms except Mergesort. Soft page faults 
of Mergesort, indicate TLB miss, explain as to why the merge 
sort is slow. Quicksort beats the other algorithms in almost all 
entries in the table. To put it differently Quicksort suffers 
lesser number of cache miss and branch mispredictions. So 
Quicksort sorts the data in record time. Surprizingly 
Accelerated Heapsort is the last one to finish. Accelerated 
insertion sort is slow because of its higher instruction count, 
poor cache locality and fairly high branch mispredictions. 
Though comparison count of Accelerated Heapsort and 
Merge sort is low, overall instruction count however is high. 
Mergesort has two variations: Topdown mergesort and 
Bottomup  Mergesort. Tables 3 and 4 show that bottom up 
mergesort runs faster than top down Mergesort. Bottom up 
Mergesort sorts the data efficiently because it avoids the 
recursive calls, whereas Top down Mergesort is on slower 
side because it has double recursion. 
On the whole we can say that Quicksort, though a bit of 
gamble is still the best choice on average. Heapsort is behind 
Quicksort, but is able to compete with Quicksort on smaller 
arrays. Accelerated Heapsort is an overrated algorithm and 
does not accelerate at all, its acceleration is a myth created 
entirely by the past literature and a biase towards comparison 
count. This paper does not intend to unduly critisize the  

 
accelerated Heapsort, but still this paper reveals that 
accelerated heapsort with its sole virtue of low comparison 
count does not add much to the performance. Same is the 
case with Mergesort, which takes lot of time and space. But it 
is easy to create a parallel version of Mergesort.  
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