
A Comparative Study of Some Ingenious Sorting
Algorithms on Modern Architectures

D.Abhyankar, M.Ingle
School of Computer Science, D.A. University, Indore M.P. India

Abstract- Heapsort, Quicksort and Mergesort are three ingenious sorting
algorithms, which deserve special attention. In the past these algorithms
were studied in detail, but the study was carried out on old machines
and involved cache simulations. Over the years computer architecture
has gone through radical changes. Therefore, a study valid on old
architectures may not be valid on new architectures. The comparative
study of Heapsort, Quicksort and Mergesort on modern machines with
the help of latest performance analyzers is the central idea of the paper.
To choose among Heapsort , Quicksort and Mergesort on modern
machines, a comparative study of prior will be useful. Quicksort has
been a usual choice for sorting, but some researchers suggest that
accelerated Heapsort, a variant of Heapsort, is competitive enough to
become a method of choice to solve sorting problem [6]. This paper
examines the claim of accelerated Heapsort as a method of choice.

1. INTRODUCTION

In Computer science one of the classic problems is sorting.
Though several algorithms solve the problem, nevertheless
only a few solve it efficiently. Quicksort, Heapsort and
Mergesort belong to the set of those few. Heapsort, Quicksort
and Mergesort are intensely competitive sorting algorithms.
So in the past Scientists studied and compared these sorting
algorithms, the comparisons however were theoretical and
were done on old architectures. An algorithm effective on old
architectures may not be effective on modern machines. A
comparative study valid on old architectures may not be so
on modern architectures. Moreover in past researchers did
not have advanced performance analyzers to study cache
miss and page faults. Consequently researchers relied on
cache simulations. Therefore their results may be inaccurate.
Hence It is beneficial to compare the algorithms on
contemporary architectures using state of the art performance
analyzers.
It has not escaped our notice that state of the art machines are
multicore and if an algorithm has to be effective it should be
multicore ready [13]. Future lies in parallel /multithreaded
algorithms, but even then one should not forget that parallel
algorithms or multithreaded algorithms will need sequential
algorithms at lower level. The basic question is which
sequential sorting algorithm to call at lower level. Having a
slow sequential algorithm at lower level will neutralize the
advantage of parallel sorting gained by multiple cores. So the
question which sequential sorting is the best alternate at
lower level is of paramount importance. This study tries to
answer the same question.
To compare the performance of Quicksort, Heapsort and
Mergesort on contemporary machines is the central idea of
the paper. A good test of the algorithm's performance is its
execution time. The drawback of this approach, however is
that no intuition is provided as to why the execution time
performance was good or bad. The reason(s) may be high
instruction count, high cache miss count and High branch
misprediction count. Even high pagefault count affects the
performance. Earlier researchers studied the impact of these
factors using cache simulation and similar techniques.
Fortunately today researchers have performance analyzing
softwares which are not merely effective in capturing
execution time but also acquire accurate data about cache

miss, branch mispredictions and page faults.
Performance analyzer AQTime obtained us reliable data
about factors discussed in earlier paragraph. A researcher
needs to interprete data correctly with an eye towards overall
performance improvement, or researcher arrives at false
conclusions. She cannot be biased in favour of a single factor.
Having a focus on overall performance gain rather than
being biased in the favour of a single factor is one of the key
ideas of research method. Next Section focuses on the
Research method. The research method is followed by a
summary of past results, which is covered in Section 3.
Section 4 presents the data obtained by performance analyzer
on the modern computers. Finally Section 5 analyzes the data
carefully and concludes the study.

2. RESEARCH METHOD

One of the key ideas of this method is to try a practical
approach. Fortunately we have state of the art softwares to
adopt the pragmatic approach. AQtime software was used to
profile the sorting algorithms. AQtime is a profiler that
obtains reliable data about elapsed time, CPU cache misses,
branch mispredictions and pagefaults. Profiler helps us in
understanding as to why one algorithm is slower, and why
other is fast? While we prefered a practical approach,
whereas previous researchers, did not enjoy the luxury of
sophisticated profilers which we enjoy, relied heavily on
theoretical models and cache simulations.
There are sound reasons to prefer the pragmatic approach. To
appreciate the reasons we will contrast our approach with the
other approaches. Majority of algorithm researchers compare
the algorithmic performance on the basis of unit cost model.
The RAM model is a most commonly used unit cost model in
which all basic operations involve unit cost. The advantage of
unit cost model is that it is simple and easy to use. Moreover
it produces results which are easily comparable. However,
this model does not reflect the memory hierarchy present in
modern machine. It has been observed that main memory has
grown slower relative to processor cycle times, consequently
Cache miss penalty has grown significantly [12]. Thus good
overall performance cannot be achieved without keeping
cache miss count as low as possible. Since RAM model does
not count cache miss, it is no longer a useful model.
Usually algorithm researchers in sorting area only count
particular expensive operations. Analyses of sorting and
searching algorithms, for instance, only count the number of
compares and swaps. There was logic behind only counting
comparison operation which was expensive in the past. That
simplified the analysis and still retained accuracy since the
bulk of the costs was captured, but this is no longer true
because the shift in the technology renders the “expensive
operations” inexpensive and vice versa. Same happened with
comparison operation which is no longer expensive. Indeed it
is no more expensive than adding or copy. Section 4 and 5
show how this bias towards comparison leads to incorrect
conclusions. So the study favours a pragmatic approach and

D.Abhyankar et al IJCSET | April 2011 | Vol 1, Issue 3,134-136

134

is not biased towards a single performance indicator. The idea
is to have a fairly objective view and goal of good overall
performance rather than concentrating on a single point.

3.A BRIEF REVIEW OF PAST RESULTS

Quicksort, deteriorates and takes Quadratic time in the worst
case, spends a lot of time even on the sorted or almost sorted
data, takes up only O(log n) amount of extra space if
implemented cleverly, takes linear amount of space in the
worst case otherwise. It performs a lot of comparisons even
on sorted data, but swap count is low for sorted or almost
sorted input [10]. Quicksort is on average blindingly fast. On
average it needs only 1.3 n log n comparisons to complete the
task. Even overall instruction count is comparatively low
[1,2,3,4,5,7,8,9]. Quicksort, upto some extentent can be
parallelized.
Heapsort, runs slower than Quicksort on average, spends a lot
of time even on the sorted or almost sorted, takes up only
constant amount of extra space. It, does not maintain original
order of records on equal keys, does not need extra array or
extra stack space. Heapsort even in the worst case offers an
asymptotically optimal performance. An Heapsort variant,
known as Accelerated Heapsort was developed by Karlson
[11]. Literature suggests that Accelerated Heapsort is
competitive enough to replace Quicksort as an algorithm of
choice. It has very little inherent parallelism [6,11].
Mergesort takes extra array, and if implemented in a topdown
way takes extra stack space because of recursion. Though
time spent by Merge sort is asymptotically optimal, but other
factors ought to be studied cautiously. Mergesort a stable
algorithm maintains the original order of records on equal

keys. Mergesort has an extremely low comparison count and
only a few algorithms have smaller count. Easier it is devise
a parallel version of Mergesort [9].

4. COMPARATIVE STUDY ON MODERN ARCHITECTURES

This study, compares Quicksort, Heapsort and Mergesort on
modern computers, crosschecks whether Accelerated
Heapsort(a variant of Heapsort) can compete with Quicksort
on average as literature suggests. Thus to compare,
algorithms were tested on Psuedorandom numbers.
Following tables and figure present the average case statistics
generated by the tests on 4 important performance indicators:
elapsed time, CPU Cache Miss, Branch mispredictions and
page faults. AQtime software was instrumental in gathering
the reliable profiling data.

Table 1 Quicksort Statistics

N
Elapsed time

(in ms)
Cache Miss

Mispredicted
Branches

Page Faults

10000 2.17 73 97402 0

20000 4.48 50 204154 0

30000 7.10 105 315749 0

40000 9.42 173 426113 0

50000 11.84 1567 543232 0

60000 14.69 495 661780 0

70000 17.47 337 768937 0

80000 20.35 364 893583 0

90000 23.76 1167 1012280 0

100000 26.24 788 1150368 0

Table 2 Heapsort and Accelerated Heapsort Statistics

N
Heapsort Accelerated Heapsort

Elapsed Time
(in ms)

Cache Miss
Mispredicted

Branches
Page Faults

Elapsed Time
(in ms)

Cache Miss
Mispredicted

Branches
Page faults

10000 2.93 182 104676 0 7.42 498 261907 0

20000 6.11 661 211068 0 13.66 616 505649 0

30000 9.60 821 324514 0 23.50 1637 668386 0

40000 12.97 1141 442950 0 30.83 2204 1021126 0

50000 16.58 1158 566733 0 37.62 2962 1313025 0

60000 20.01 1712 690736 0 46.37 3003 1614741 0

70000 23.68 1474 805584 0 51.67 2685 1869227 0

80000 27.75 1964 919547 0 62.13 8466 2187585 0

90000 31.79 2862 1052313 0 69.49 4457 2508983 0

100000 36.05 3077 1194742 0 78.49 8430 2885227 0

Table 3 Topdown Mergesort Statistics

N
Elapsed Time

(in ms)
Cache Miss

Count
Mispredicted

Branches
Total Page

Faults
Soft Memory
Page Faults

Hard Memory Page Faults

10000 7.25 2253 195353 250 250 0

20000 14.70 4442 393851 521 521 0

30000 22.23 6472 594805 795 795 0

40000 30.36 8326 817774 1084 1084 0

50000 29.54 11648 1001526 1369 1369 0

60000 38.31 10898 1004099 1369 1369 0

70000 53.75 14601 1371954 1939 1939 0

80000 62.46 16487 1677569 2248 2248 0

90000 70.08 18718 1917031 2547 2547 0

100000 77.22 21626 2115426 2838 2838 0

D.Abhyankar et al IJCSET | April 2011 | Vol 1, Issue 3,134-136

135

Table 4 Bottomup Mergesort Statistics

N
Elapsed Time

(in ms)
Cache Miss

Count
Mispredicted Branches

Total Page
Faults

Soft Memory Page
Faults

Hard Memory
Page Faults

10000 5.48 1570 114612 248 248 0

20000 11.28 3700 231595 520 520 0

30000 17.09 6462 357841 788 788 0

40000 23.18 7460 488235 1078 1078 0

50000 30.93 7864 615057 1362 1362 0

60000 35.28 10794 737387 1636 1636 0

70000 41.22 15715 880837 1967 1967 0

80000 47.71 20177 1002236 2236 2236 0

90000 58.36 22870 1133682 2516 2516 0

100000 63.53 22199 1259579 2824 2824 0

 Figure 1: Comparative Statistics

5. ANALYSIS, RESULTS AND CONCLUSION

Tables and Figure 1, show the results based on random input,
depict the performance on 4 crucial performance indicators.
Hard Page fault count is 0 for each one of the algorithms.
Zero pagefault count is due to large main memory size which
was not feasible earlier. Even soft page fault count is zero for
each one of the algorithms except Mergesort. Soft page faults
of Mergesort, indicate TLB miss, explain as to why the merge
sort is slow. Quicksort beats the other algorithms in almost all
entries in the table. To put it differently Quicksort suffers
lesser number of cache miss and branch mispredictions. So
Quicksort sorts the data in record time. Surprizingly
Accelerated Heapsort is the last one to finish. Accelerated
insertion sort is slow because of its higher instruction count,
poor cache locality and fairly high branch mispredictions.
Though comparison count of Accelerated Heapsort and
Merge sort is low, overall instruction count however is high.
Mergesort has two variations: Topdown mergesort and
Bottomup Mergesort. Tables 3 and 4 show that bottom up
mergesort runs faster than top down Mergesort. Bottom up
Mergesort sorts the data efficiently because it avoids the
recursive calls, whereas Top down Mergesort is on slower
side because it has double recursion.
On the whole we can say that Quicksort, though a bit of
gamble is still the best choice on average. Heapsort is behind
Quicksort, but is able to compete with Quicksort on smaller
arrays. Accelerated Heapsort is an overrated algorithm and
does not accelerate at all, its acceleration is a myth created
entirely by the past literature and a biase towards comparison
count. This paper does not intend to unduly critisize the

accelerated Heapsort, but still this paper reveals that
accelerated heapsort with its sole virtue of low comparison
count does not add much to the performance. Same is the
case with Mergesort, which takes lot of time and space. But it
is easy to create a parallel version of Mergesort.

REFERENCES

[1] J. L. Bentley and M. D. Mcilroy "Engineering a sort function,"
Software—practice and experience, VOL. 23(11), 1249–1265 (NOVEMBER
1993).
[2] R. Sedgewick, ‘Quicksort’, PhD Thesis, Stanford University (1975).
[3] C. A. R. Hoare, "Partition: Algorithm 63, " "Quicksort: Algorithm 64,"
Comm. ACM 4(7), 321-322, 1961.
[4] D. E. Knuth, The Art of Computer Programming, Vol. 3, Pearson
Education, 1998.
[5] C. A. R. Hoare, "Quicksort," Computer Journal5 (1), 1962, pp. 10-15.
[6] S. Baase and A. Gelder, Computer Algorithms:Introduction to Design and
Analysis, Addison-Wesley, 2000.
[7] J. L. Bentley, "Programming Pearls: how to sort," Communications of the
ACM, Vol. Issue 4, 1986, pp. 287-ff.
[8] R. Sedgewick, "Implementing quicksort Programs," Communications of
the ACM, Vol. 21, Issue10, 1978, pp. 847-857.
[9]T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to
Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001.
[10] G. S. Brodal, R. Fagerberg and G. Moruz, "On the adaptiveness of
Quicksort," Journal of Experimental AlgorithmsACM, Vol. 12, Article 3.2,
2008.
[11] S.Carlsson, “A variant of HEAPSORT with almost optimal number of
comparisons, ” Information Processing Letters Modified 24:247-250,1987.
[12] A. G. LaMarca, “Caches and Algorithms, ” PhD theses University of
Washington, 1996.
[13] M. Edahiro, “Parallelizing fundamental algorithms such as sorting on
multi-core processors for EDA acceleration, “ ASP-DAC '09 Proceedings of
the 2009 Asia and South Pacific Design Automation Conference, 2009.

D.Abhyankar et al IJCSET | April 2011 | Vol 1, Issue 3,134-136

136

