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Abstract: Compressing and creating index to large database
may result into time consuming. In Peer-to-peer framework,
network may have millions of nodes, so creating index to
large database requires number of index keys. To overcome
this disadvantage and to simplify searching process we
introduce QueSea algorithm. This algorithm first selects
some part of network and then starts searching. In existing
system, we have flooding and random Walk approaches to
search multidimensional data, these approaches can be used
in Peer-to-peer networks.
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1 INTRODUCTION:
In unstructured peer-to-peer (P2P) networks, each node
does not have global information about the whole
topology and the location of queried resources. Because
of the dynamic property of unstructured P2P networks,
correctly capturing global behavior is also difficult [1],
[2]. Search algorithms provide the capabilities to locate
the queried resources and to route the message to the
target node. Thus, the efficiency of search algorithms is
critical to the performance of unstructured P2P networks
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Figure 1:simple scenario of p2p network to demonstrate the operation of flooding and
random walk

Previous works about search algorithms in unstructured
P2P networks can be classified into two categories:
Breadth first search (BFS)-based methods, and Depth first
search (DFS)-based methods. These two types of search
algorithms tend to be inefficient, either generating too
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much load on the system [4], [5], or not meeting user
requirements [6].

Flooding, which belongs to BFS-based methods, is the
default search algorithm for Gnutella network [7], [8]. By
this method, the query source sends its query messages to
all of its neighbors. When a node receives a query
message, it first checks if it has the queried resource. If
yes, it sends a response back to the query source to
indicate a query hit. Otherwise, it sends the query
messages to all of its neighbors, except for the one the
query message comes from. The drawback of flooding is
the search cost. It produces considerable query messages
even when the resource distribution is scarce. The search
is especially inefficient when the target is far from the
query source because the number of query messages
would grow exponentially with the hop counts. Fig. 1
illustrates the operation of flooding. The link degree of
each vertex in this graph is 4. If the network grows
unlimited from the query source, the number of query
messages generated by flooding at each hop would be 4,
12, 36, . . ., respectively. If the queried resource locates at
one of the third neighbors, it takes 4 +12+ 36 = 52 query
messages to get just one query hit.

2 RELATED WORKS
2.1 About Searching
Flooding and Random Walk are two typical examples of
blind search algorithms by which query messages are sent
to neighbors without any knowledge about the possible
locations -ef the queried resources or any preference for
the directions to send. Some other blind search algorithms
include modified BFS (MBFS) [23], directed BFS [6],
expanding ring [17], and random periodical flooding
(RPF) [24]. These algorithms try to modify the operation
of flooding to improve the efficiency. However, they still
generate a large amount of query messages. Jiang et al.
propose a LightFlood algorithm, which is a combination
of the initial pure flooding and subsequent tree-based
flooding [25], [26].Two topics are strictly related to our
work: the compression of multidimensional data and the
management of multidimensional data in P2P networks.
2.2Compression of Multidimensional Data
The problem of effectively summarizing
multidimensional data into lossy synopses has been
investigated mainly in the contexts of query optimization



D.Raghava Lavanya et al

[38] and exploratory OLAP analysis [6]. Some techniques
are said to be parametric, as they rely on the assumption
that data are distributed according to a mathematical
(either statistical or polynomial) model. In particular,
wavelet-based techniques (which are the most
investigated in this group) work in two steps. First, a
wavelet transform is applied to the data, yielding a set of
coefficients. Then, these coefficients are suitably filtered
and the “most relevant” ones are kept. Applying the
inverse wavelet transform to these coefficients results in
an approximate reconstruction of the data.

3 OPERATION OF QUISEA ALGORITHM

There are main 4 steps in algorithm

Step-1: Data is to be compressed and indexed.

Step-2 : Data should be distributed.

Step-3:  Searching process will be started based on
number of hops.

Step-4:After method is selected required
multidimensional data will be returned from
node.

3.1 Partitioning the Data Domain

The aim of the partitioning step is to divide the data
domain into nonoverlapping blocks. These blocks will be
compressed separately, yielding distinct subsynopses. For
each of them, a portion of the amount of storage space B
chosen to represent the whole synopsis will be invested.
The distribution of B among blocks will take into account
the following requirements:

B must be fairly distributed among blocks: The
assignment of different amounts of storage space to the
blocks for representing their subsynopses should depend
on the differences in homogeneity among the blocks.
Intuitively enough, the more homogeneous the data inside
a block, the smaller the amount of information needed to
effectively accomplish its summarization. Each block
must be assigned a “small” portion of B: The subsynopses
over the blocks are the data that will be hosted by peers
and exchanged across the P2P network. As explained
above, building subsynopses with “large” size would
impose a significant constraint on the amount of storage
space which should be made available by each peer. On
the contrary, defining small-size subsynopses results in
limiting the storage and computational resources required
at each peer for storing and querying data, as well as
reducing both the download and upload traffic needed for
supporting data exchange.

We denote the maximum amount of storage space which
can be invested for summarizing a single block as Bmax.
In our prototype, we set Bmax Y4 256 KB: this is the
threshold value which proved effectiveness in several file
sharing applications (such as Gnutella itself) for limiting
the download segment size, i.e., the size of the atomic file
portions exchanged among peers.
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In order to satisfy the afore mentioned requirements, the
partitioning of the data domain and the distribution of the
storage space are accomplished according to the
following iterative scheme. We start from a partition
consisting of a single block (corresponding to the whole
data domain) which is assigned the overall amount of
storage space B. At each step, a block b_ of the partition
is chosen and its range is split into two subranges: two
new blocks b0 and b00 are created (corresponding to the
MBRs1 of these subranges) and the partition is refined by
replacing b_ with b0 and b00. Then, the distribution of B
among blocks is updated accordingly. The partitioning
ends when every block is assigned an amount of storage
space which does not exceed Bmax. In Fig. 2, a
partitioning of a 2D data population is shown (dashed line
boxes represent the MBRs of the blocks). We now explain
the criteria adopted to select and split blocks, and the
strategy for distributing B among the blocks of a partition.
3.1.1 Selecting and Splitting Blocks of the Partition

At each step, the least homogeneous block b in the
current partition is split. The homogeneity of a block b of
a data population D is measured by evaluating the Sum
Squared Error of its data population, that is, SSE3bP Y4
Pi2bdb'si _ bP2, where i 2 b means that i is a point (i.e.,
a set of multidimensional coordinates) inside the range of
b, D'i_is the value associated with point I of D, and b is
the average value in b. After b_ is selected, the split is
performed which results in the pair of blocks b0, b00
having the most similar SSE with respect to all the
possible splits of b_ performed along every dimension.
Observe that splitting a block always results in a pair of
blocks more homogeneous than the original one (in fact, it
is well known that SSE is superaddictive, as SSEdb b
SSEobOP b SSEdb00P). Hence, employing this splitting
strategy aims at creating blocks with similar degrees of
homogeneity, while refining the partition toward more
and more homogeneous blocks. Specifically, having
blocks with similar homogeneity is likely to yield
subsynopses with similar accuracy, while having blocks
as much homogeneous as possible is likely to enhance the
accuracy of each subsynopsis.

3.1.2 Distributing B among the Blocks of the Current
Partition

First, a fixed portion Bmin of B is assigned to every block
(the meaning of Bmin will be clearer in the following),
and then, the remainder of B is distributed on the basis of
the homogeneity of the blocks. That is, if the current
partition consists of k blocks bl; . . . ; bk, then each bi is
assigned the following amount of storage space:

Bobib % Bmin b

SSEdbib

Pk

j¥1 SSEdbjb

0B _k_Bminb:

The value of Bmin is the amount of space needed to store
the most compact representation of a block according to
the compression technique adopted. For instance, if a
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histogram is employed, Bmin is the space consumption of
representing both the range of the block and a set of
aggregate values (such as the sum) summarizing the data
inside a block. Basically, assigning at least Bmin to each
block means that every block of the partition is
guaranteed to be represented in the overall data synopsis.

1. The minimum bounding rectangle (MBR) of a range r
is the minimum subrange of r containing all non-null data
inr.
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Fig. 2. Partitioning a 2D data population.

The iterative algorithm accomplishing the partitioning is
shown in Fig. 3. It uses a priority queue which, at each
step, contains the blocks of the current partition, ordered
by their SSE. Variable SSEtot stores the sum of the SSEs
of the blocks in the current partition, whereas variables
SSEmax and spacemax represent the SSE of the least
homogeneous block of the partition (i.e., the block at the
head of the queue) and the storage space assigned to it,
respectively. Iteratively, the least homogeneous block is
extracted from the queue and split into two new blocks,
which are, in turn, inserted into the queue. After splitting
a block, SSEtot is updated to take into account the overall
SSE reduction due to the split, SSEmax is assigned the
SSE of the new head of the queue, and spacemax is
recomputed on the basis of the new values of SSEtot and
SSEmax. The partitioning ends when spacemax reaches a
value less than Bmax (obviously, since spacemax refers to
the least homogeneous block of the partition, the fact that
spacemax < Bmax implies that every block of the
partition is assigned less than Bmax). The algorithm
returns the partition of the input data population
represented as a set of pairs hr; si, where r is the range of
a block and s is the amount of storage space to be
invested for its summarization.

3.2 Compressing Data Blocks

At this step, a suitable compression algorithm is run on
each of the k pairs hbl; sli; . . . ; hbk; ski resulting from
the partitioning step, and subsynopses hl; . . . ; hk are
obtained, where each hi is a compressed representation of
bi consuming storage space si. Several compression
techniques (such as histograms or sampling [23]) can be
employed to accomplish data summarization, as both the
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partitioning strategy and the techniques used for
distributing and querying the subsynopses (which will be
described in the following sections) are orthogonal to this
choice. Our prototype embeds CHIST [10], which has
been shown to be very effective in constructing
multidimensional histograms providing accurate estimates
of range queries. Briefly, Clustering-based Histogram
(CHIST) exploits a density-based clustering algorithm to
construct a set of (possibly overlapping) blocks covering
the nonempty portions of the data domain. For each block
(called bucket, according to standard histogram
terminology), its boundaries as well as some aggregate
value summarizing its data are stored. In our current
implementation, each bucket is associated with the result
of evaluating the sum aggregate operator: this way, the
summary data suffice to estimate range sum queries.

3.3 Indexing Compressed Data

At this step, an index is built on top of the subsynopses
resulting from the compression step. This index will be
exploited for locating the data involved in the queries
across the network.

Since each subsynopsis can be viewed as a hyper
rectangular object, any indexing technique suitable for
spatial data can be employed at this step. Specifically, in
our prototype, an aggregate R-Tree [22], [26] was used,
which is an R-Tree augmented with some aggregate
information supporting aggregate range queries. The
objects inserted in the aggregate R-Tree are pairs
hID&hiP;MBROhiPi, where IDOhiP is the identifier
assigned to the subsynopsis hi and MBROhiP is the
hyperrectangular range covered by hi. The index is first
populated and then partitioned, in order to make it prone
to be distributed across the network. These two steps are
described in the following.

3.3.1 Creating the Index

In order to limit the traffic needed for the maintenance of
the index after its distribution, a compact index is
desirable. Since data are historical, the storage space
consumption of the R-Tree can be reduced by adopting
packing strategies for its construction, which aim at
obtaining 100 percent space utilization in each node. In
particular, we adopt the R-Tree-packing technique
proposed in [27]. This was shown to perform better than
other packing strategies in supporting region queries on
rectangular data, which is the feature of interest in our
case. Briefly, this technique works in three steps. First,
the data domain is linearized according to a Hilbert space
filling curve. Then, the MBRs of the subsynopses are
sorted on the Hilbert values of their centers. Finally, the
list of MBRs is packed in groups of cardinality f (where f
is the R-Tree fan-out), and for each group, a node is
created containing the MBRs in the group as well as the
identifiers of the corresponding subsynopses. These nodes
are the leafs of the R-Tree. Inner nodes are constructed by
proceeding bottom-up on the tree level: the ith level is
built by first sorting the nodes at the di p 1bth level on
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ascending creation time, and then, packing this sequence
of nodes in the same way as explained for the leaf level.
This way, every MBR m in a node at the ith level covers
the MBRs of a node n at the i p 1th level, and n is
referenced by m. Each MBR m in (both inner and leaf)
nodes of the aggregate R-Tree is stored along with the
sum sumdmbp of the values lying inside it. As it will be
clearer in the following, this enhances the query
evaluation, as it reduces the number of peers to be
accessed for computing query answers.

This strategy yields almost 100 percent space utilization
and due to the good clustering properties of the Hilbert
curves, it tends to create leafs referencing subsynopses
whose MBRs are “close” to one another. The aggregate
R-tree indexing the subsynopses will be denoted as I.
3.3.2 Partitioning the Index

After being populated, I is partitioned in “small”-size
portions which are prone to be distributed across the
network. The reason for partitioning the index is the same
as for limiting the amount of storage space invested for a
single synopsis, that is, distributing small-size index
portions across the network prevents peers from being
overloaded in terms of upload and download traffic
needed for supporting index replication.

Our approach for partitioning I is similar to that proposed
in [30], where a distributed version of the R-Tree (Master
R-Tree) was introduced, and works as follows: First, I is
divided into two portions Isup and Iinf , which consist of
the inner nodes and the leafs of I, respectively. Then, Tinf
is, in turn, subpartitioned into m leaf portions infl, . . .,
infm: each leaf portion infi contains a number of leafs in
Iinf whose overall storage space consumption is Bmax.
Specifically,

infl, . . ., infm are obtained by sorting the leafs in linf on
their creation time and grouping them into sequences of
cardinality bBmax P c, where P is the size of the pages of
I. After the creation of leaf portions, the pointers in Isup
to single leafs of Iinf are replaced with identifiers of entire
leaf portions.

From now on, we will refer to portions of the index and
subsynopses generically as s-blocks.

Observe that due to the packing-based index creation, the
order of leafs is determined by the Hilbert ordering of the
MBRs inside them. Hence, each infi is likely to contain
leafs whose MBRs are close to one another. This aims at
reducing the number of leaf portions to be accessed in
order to evaluate range queries, as the data involved in a
range query belong to subsynopses whose MBRs are
close to one another. As it will be clearer in the following,
since the index will be distributed across the network by
assigning infl, . . . , infm to different peers, this strategy
will result in reducing the number of peers to be accessed
for locating the subsynopses involved in range queries.
Fig. 3 shows the aforementioned index partitioning
scheme. Unlike Iinf , the Isup s-block is not
subpartitioned: in fact, its size is very small (in all
practical cases, smaller than 256 KB).
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The main difference of our approach from the Master
RTree is the grouping strategy adopted at the leaf level.
Briefly, in the Master R-Tree, linf is partitioned into
portions containing chunks of data whose MBRs are far
from one another, and this aims at parallelizing query
evaluation as much as possible. We do not use this
strategy as in our approach, index leafs do not contain
data, but references to data: thus, employing the same
grouping strategy as Master R-Tree would result in
increasing the number of leaf portions to be accessed for
locating the subsynopses involved in the queries, thus
increasing network traffic. Indeed, in our framework,
parallelization of query evaluation is obtained by
distributing the subsynopses among different.

QuiSea is designed as a generalization of flooding,
MBFS, and RW. There are two phases in QuiSea. Each
phase has a different searching strategy. The choice of
search strategy at each phase depends on the relationship
between the hop count h of query messages and the
decision threshold n of QuiSea.

3.3.1Phase 1. Whenh _n

At this phase, QuiSea acts as flooding or MBFS. The
number of neighbors that a query source sends the query
messages to depends on the predefined transmission
probability p. If the link degree of this query source is d, it
would only send the query messages to d _ p neighbors.
When p is equal to 1, QuiSea resembles flooding.
Otherwise, it operates as MBFS with the transmission
probability p.

3.3.2Phase 2. When h>n

At this phase, the search strategy switches to RW. Each
node that receives the query message would send the
query message to one of its neighbors if it does not have
the queried resource. Assume that the number of nodes
visited by QuiSea at hop h % n is the coverage cn, and
then the operation of QuiSea at that time can be regarded
as RW with cn walkers. However, there are some
differences between QuiSea and RW when we consider
the whole operation. Consider the simple scenario shown
in Fig. 1. Assume that the decision threshold n is set as 2.
When h > 2, QuiSea performs the same as RW with c2 V4
12 walkers. Let us consider an RW search with K % 12
walkers. At the first hop, the walkers only visit four
nodes, but the cost is 12 messages.

Pseudo code of QuiSea

Algorithm: The pseudo-code of dynamic search
QuiSea

Input: query source S, queried multidimensional data f,
transmission

probability p

Output: the location information of f

QuiSea(s, f, p)

call domain partitioning()

h«0
if (h<=n)
h—h-+1

s choose p portion of its neighbors



D.Raghava Lavanya et al

mi carring h visits these chosen neighbors
if f matches index key

return node info

elseif (h > n)

h—h+1

mi carring h visits one neighbor of s
foreach (1)

if (r has the location information of f)

r returns the information to s

mi stops

elseif (h>TTL)

mi stops

elseif (h <=n)

h—h+1

r choose p portion of its neighbors

mi carring h visits these chosen neighbors
if f matches index key

return node info

elseif (h > n)

h—h+1

mi carring h visits one neighbor of r
if f matches index key

return node info

Function domainPartitioning
Input: Data population D, overall storage space bound B, upper bound B,
and lower bound B,,,;,, for the storage space assigned to a single block
Qutput: List of pairs { range, storage space )
begin
SSEM = SSE(D]
q < new PriorityQueue() // at each step, q will contain the blocks of the
Ileurrent partition; the prioriy of blocks is their SSE
b « new Block(MBR(D),5SEy1)
q.enqueue(b) // the block corresponding to the whole D is inserted info g
nBlocks « 1
§pacemqs — B
while spacesnqz > Bras
b* + q.dequeue() !/ the least homogeneous block is extracted
{b',b""} « binarySplit(b*) // b* is split into two blocks
nBlocks — nBlocks + 1
q.enqueue(t'); g.enqueue(b”)
SSE;o1 « SSEyo4— SSE(b*) + SSE(b') + SSE(b")
SSE gz — SSE(gfirst()
$pacemqz — Bin + (B —nBlocks - Byin) - SSEnaz/SSEet
| — new List()
foreachb € g
spacey — Byiy, + (B — nBlocks - Byyiy )- SSE(b)/SSE:
.add({ MBR(b), spaces,))
return |
end

Fig. 3. Data domain partitioning algorithm.
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4 CONCLUSION:

We proposed a framework with compressing, indexing,
searching methodologies to simplify searching process.
This is applicable to large networks also. In this paper, we
have proposed the QuiSea algorithm, which is a
generalization of the flooding, MBFS, and RW. QuiSea
overcomes the disadvantages of flooding and RW, and
takes advantage of various contexts under which each
search algorithm performs very well. In our approach,
participants make their resources (and possibly their data
in a suitable compressed format) available for the other
peers in exchange for the possibility of accessing and
posing range queries against the data published by others.
Our solution is based on suitable data summarization and
indexing techniques, and on mechanisms for data
distribution and replication that properly take into account
the need of preserving the autonomy of peers as well as
the interest exhibited by the users in the data to support an
efficient query evaluation. The experimental results
showed the effectiveness of our approach in providing
fast and accurate query answers, and ensuring the
robustness that is mandatory in peer-to-peer settings.
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