
S

Abstract:
may resu
network
large data
this disa
introduce
some par
system, w
search m
in Peer-to
Key Term
multidim

In unstru
does no
topology
of the dy
correctly
[2]. Sear
the queri
target no
critical to
[3]

Previous
P2P netw
Breadth f
search (D
algorithm

Search
Using

Compressing
lt into time co
may have mil
abase requires
dvantage and

e QueSea algo
rt of network a
we have floodi
ultidimensiona
o-peer network
ms: Searching
ensional data m

1 I
uctured peer-t
t have glob
 and the loca
ynamic prope
 capturing gl

rch algorithms
ied resources

ode. Thus, the
o the perform

works about
works can b
first search (B
DFS)-based m
ms tend to be

hing M
g QuiS

Depa
Gre

and creating i
nsuming. In P
llions of node
s number of in
d to simplify
orithm. This
and then start
ng and rando
al data, these a
ks.
g Algorithm,
management, i

INTRODUCTIO

to-peer (P2P)
bal informatio
ation of queri
erty of unstru
lobal behavio
s provide the

s and to rout
e efficiency o

mance of unstr

t search algor
be classified
BFS)-based me
methods. Thes
e inefficient,

Multid
Sea Al

D.Raghav

artment of comp
een Fields, vadd

index to large
Peer-to-peer fra
es, so creating
ndex keys. To

searching pr
algorithm fir

ts searching. In
om Walk appr
approaches ca

performance
indexing, comp

ON:
) networks, ea
on about th
ed resources.

uctured P2P n
or is also diff
e capabilities
te the messag
of search algo
ructured P2P

rithms in uns
into two ca

ethods, and D
se two types o

either genera

imens
lgorith

va Lavanya1,

puter science an
deswaram, Gun

1draghavalavanya@

2 sivaprasady@gm

 database
amework,

g index to
overcome

rocess we
rst selects
n existing

roaches to
an be used

analysis,
pression.

ach node
he whole
 Because
networks,
ficult [1],
to locate

ge to the
orithms is
networks

structured
ategories:

Depth first
of search
ating too

m
r
F
d
t
a
m
y
i
m
q
t
e
i
q
w
i
e
u
m
1
o
m

F
b
t
l
t
i
e
(
o
g
p
o
f
w
m
2
T
m
i

sional
hm in

Y.A.Siva Pr

nd technology,
ntur, Andhra Pr
@gmail.com

mail.com

much load on
requirements [
Flooding, whi
default search
this method, th
all of its ne
message, it fir
yes, it sends
indicate a qu
messages to a
query message
the search cos
even when the
is especially i
query source
would grow e
illustrates the
each vertex i
unlimited from
messages gen
12, 36, . . . , re
one of the thir
messages to ge

2.1 About Se
Flooding and
blind search a
to neighbors
locations of th
the directions
include modif
expanding rin
(RPF) [24]. T
of flooding to
generate a lar
propose a Lig
of the initial
flooding [25],
work: the com
management o
2.2Compressi
The probl
multidimensio
investigated m

Histo
P2P N

rasad2

KL University
radesh, India

n the system
[6].
ich belongs t

h algorithm for
he query sour
ighbors. Whe
rst checks if
a response

uery hit. Ot
all of its neig
e comes from
st. It produces
e resource dis
inefficient wh

because the
exponentially
operation of

in this graph
m the query
erated by floo
espectively. If
rd neighbors,
et just one que

2 RELAT

earching
Random Wal

algorithms by
without any
he queried re
to send. Some
fied BFS (M
ng [17], and

These algorithm
 improve the

rge amount o
ghtFlood algor

pure floodin
, [26].Two to
mpression of m
of multidimen
ion of Multid
lem of
onal data int
mainly in the c

orical D
Netwo

[4], [5], or n

to BFS-based
r Gnutella net
rce sends its q
en a node r
it has the qu
back to the

therwise, it s
ghbors, excep

m. The drawba
s considerable
stribution is sc
hen the targe
e number of
y with the ho
f flooding. Th
h is 4. If the

source, the n
oding at each
f the queried r
it takes 4 +12
ery hit.

TED WORKS

lk are two typ
which query m
knowledge ab

esources or an
e other blind

MBFS) [23], d
d random per
ms try to mod
efficiency. H
f query mess
rithm, which
ng and subse
pics are stric
multidimensio

nsional data in
dimensional D

effectively
to lossy syn
contexts of qu

Data
orks

not meeting

d methods, is
twork [7], [8]
query message
receives a qu
eried resource
query source

sends the qu
pt for the one
ack of floodin
e query messa
carce. The sea

et is far from
query messa

op counts. Fig
he link degre
e network gr
number of qu
hop would b

esource locate
2+ 36 = 52 qu

pical example
messages are
bout the poss
ny preference
search algorit

directed BFS
riodical flood
dify the opera
owever, they
ages. Jiang e
is a combina

equent tree-ba
tly related to
onal data and

n P2P network
Data

summariz
nopses has b
uery optimiza

user

the
. By
es to
uery
e. If
e to
uery

e the
ng is
ages
arch

m the
ages
g. 1
e of
rows
uery

be 4,
es at
uery

es of
sent

sible
e for
thms

[6],
ding
ation

still
t al.

ation
ased
our

d the
ks.

zing
been
ation

D.Raghava Lavanya et al IJCSET |December 2011 | Vol 1, Issue 11,761-766

761

[38] and exploratory OLAP analysis [6]. Some techniques
are said to be parametric, as they rely on the assumption
that data are distributed according to a mathematical
(either statistical or polynomial) model. In particular,
wavelet-based techniques (which are the most
investigated in this group) work in two steps. First, a
wavelet transform is applied to the data, yielding a set of
coefficients. Then, these coefficients are suitably filtered
and the “most relevant” ones are kept. Applying the
inverse wavelet transform to these coefficients results in
an approximate reconstruction of the data.

3 OPERATION OF QUISEA ALGORITHM

There are main 4 steps in algorithm
Step-1: Data is to be compressed and indexed.
Step-2 : Data should be distributed.
Step-3: Searching process will be started based on

number of hops.
Step-4:After method is selected required

multidimensional data will be returned from
node.

3.1 Partitioning the Data Domain
The aim of the partitioning step is to divide the data
domain into nonoverlapping blocks. These blocks will be
compressed separately, yielding distinct subsynopses. For
each of them, a portion of the amount of storage space B
chosen to represent the whole synopsis will be invested.
The distribution of B among blocks will take into account
the following requirements:
 B must be fairly distributed among blocks: The
assignment of different amounts of storage space to the
blocks for representing their subsynopses should depend
on the differences in homogeneity among the blocks.
Intuitively enough, the more homogeneous the data inside
a block, the smaller the amount of information needed to
effectively accomplish its summarization. Each block
must be assigned a “small” portion of B: The subsynopses
over the blocks are the data that will be hosted by peers
and exchanged across the P2P network. As explained
above, building subsynopses with “large” size would
impose a significant constraint on the amount of storage
space which should be made available by each peer. On
the contrary, defining small-size subsynopses results in
limiting the storage and computational resources required
at each peer for storing and querying data, as well as
reducing both the download and upload traffic needed for
supporting data exchange.
We denote the maximum amount of storage space which
can be invested for summarizing a single block as Bmax.
In our prototype, we set Bmax ¼ 256 KB: this is the
threshold value which proved effectiveness in several file
sharing applications (such as Gnutella itself) for limiting
the download segment size, i.e., the size of the atomic file
portions exchanged among peers.

In order to satisfy the afore mentioned requirements, the
partitioning of the data domain and the distribution of the
storage space are accomplished according to the
following iterative scheme. We start from a partition
consisting of a single block (corresponding to the whole
data domain) which is assigned the overall amount of
storage space B. At each step, a block b_ of the partition
is chosen and its range is split into two subranges: two
new blocks b0 and b00 are created (corresponding to the
MBRs1 of these subranges) and the partition is refined by
replacing b_ with b0 and b00. Then, the distribution of B
among blocks is updated accordingly. The partitioning
ends when every block is assigned an amount of storage
space which does not exceed Bmax. In Fig. 2, a
partitioning of a 2D data population is shown (dashed line
boxes represent the MBRs of the blocks). We now explain
the criteria adopted to select and split blocks, and the
strategy for distributing B among the blocks of a partition.
3.1.1 Selecting and Splitting Blocks of the Partition
At each step, the least homogeneous block b_ in the
current partition is split. The homogeneity of a block b of
a data population D is measured by evaluating the Sum
Squared Error of its data population, that is, SSEðbÞ ¼
Pi2bðb½i_ _ bÞ2, where i 2 b means that i is a point (i.e.,
a set of multidimensional coordinates) inside the range of
b, D½i_ is the value associated with point I of D, and b is
the average value in b. After b_ is selected, the split is
performed which results in the pair of blocks b0, b00
having the most similar SSE with respect to all the
possible splits of b_ performed along every dimension.
Observe that splitting a block always results in a pair of
blocks more homogeneous than the original one (in fact, it
is well known that SSE is superaddictive, as SSEðb_Þ _
SSEðb0Þ þ SSEðb00Þ). Hence, employing this splitting
strategy aims at creating blocks with similar degrees of
homogeneity, while refining the partition toward more
and more homogeneous blocks. Specifically, having
blocks with similar homogeneity is likely to yield
subsynopses with similar accuracy, while having blocks
as much homogeneous as possible is likely to enhance the
accuracy of each subsynopsis.
3.1.2 Distributing B among the Blocks of the Current
Partition
First, a fixed portion Bmin of B is assigned to every block
(the meaning of Bmin will be clearer in the following),
and then, the remainder of B is distributed on the basis of
the homogeneity of the blocks. That is, if the current
partition consists of k blocks b1; . . . ; bk, then each bi is
assigned the following amount of storage space:
BðbiÞ ¼ Bmin þ
SSEðbiÞ
Pk
j¼1 SSEðbjÞ
_ ðB _ k _ BminÞ:
The value of Bmin is the amount of space needed to store
the most compact representation of a block according to
the compression technique adopted. For instance, if a

D.Raghava Lavanya et al IJCSET |December 2011 | Vol 1, Issue 11,761-766

762

histogram is employed, Bmin is the space consumption of
representing both the range of the block and a set of
aggregate values (such as the sum) summarizing the data
inside a block. Basically, assigning at least Bmin to each
block means that every block of the partition is
guaranteed to be represented in the overall data synopsis.

1. The minimum bounding rectangle (MBR) of a range r
is the minimum subrange of r containing all non-null data
in r.

Fig. 2. Partitioning a 2D data population.

The iterative algorithm accomplishing the partitioning is
shown in Fig. 3. It uses a priority queue which, at each
step, contains the blocks of the current partition, ordered
by their SSE. Variable SSEtot stores the sum of the SSEs
of the blocks in the current partition, whereas variables
SSEmax and spacemax represent the SSE of the least
homogeneous block of the partition (i.e., the block at the
head of the queue) and the storage space assigned to it,
respectively. Iteratively, the least homogeneous block is
extracted from the queue and split into two new blocks,
which are, in turn, inserted into the queue. After splitting
a block, SSEtot is updated to take into account the overall
SSE reduction due to the split, SSEmax is assigned the
SSE of the new head of the queue, and spacemax is
recomputed on the basis of the new values of SSEtot and
SSEmax. The partitioning ends when spacemax reaches a
value less than Bmax (obviously, since spacemax refers to
the least homogeneous block of the partition, the fact that
spacemax < Bmax implies that every block of the
partition is assigned less than Bmax). The algorithm
returns the partition of the input data population
represented as a set of pairs hr; si, where r is the range of
a block and s is the amount of storage space to be
invested for its summarization.

3.2 Compressing Data Blocks
At this step, a suitable compression algorithm is run on
each of the k pairs hb1; s1i; . . . ; hbk; ski resulting from
the partitioning step, and subsynopses h1; . . . ; hk are
obtained, where each hi is a compressed representation of
bi consuming storage space si. Several compression
techniques (such as histograms or sampling [23]) can be
employed to accomplish data summarization, as both the

partitioning strategy and the techniques used for
distributing and querying the subsynopses (which will be
described in the following sections) are orthogonal to this
choice. Our prototype embeds CHIST [10], which has
been shown to be very effective in constructing
multidimensional histograms providing accurate estimates
of range queries. Briefly, Clustering-based Histogram
(CHIST) exploits a density-based clustering algorithm to
construct a set of (possibly overlapping) blocks covering
the nonempty portions of the data domain. For each block
(called bucket, according to standard histogram
terminology), its boundaries as well as some aggregate
value summarizing its data are stored. In our current
implementation, each bucket is associated with the result
of evaluating the sum aggregate operator: this way, the
summary data suffice to estimate range sum queries.

3.3 Indexing Compressed Data
At this step, an index is built on top of the subsynopses
resulting from the compression step. This index will be
exploited for locating the data involved in the queries
across the network.
Since each subsynopsis can be viewed as a hyper
rectangular object, any indexing technique suitable for
spatial data can be employed at this step. Specifically, in
our prototype, an aggregate R-Tree [22], [26] was used,
which is an R-Tree augmented with some aggregate
information supporting aggregate range queries. The
objects inserted in the aggregate R-Tree are pairs
hIDðhiÞ;MBRðhiÞi, where IDðhiÞ is the identifier
assigned to the subsynopsis hi and MBRðhiÞ is the
hyperrectangular range covered by hi. The index is first
populated and then partitioned, in order to make it prone
to be distributed across the network. These two steps are
described in the following.
3.3.1 Creating the Index
In order to limit the traffic needed for the maintenance of
the index after its distribution, a compact index is
desirable. Since data are historical, the storage space
consumption of the R-Tree can be reduced by adopting
packing strategies for its construction, which aim at
obtaining 100 percent space utilization in each node. In
particular, we adopt the R-Tree-packing technique
proposed in [27]. This was shown to perform better than
other packing strategies in supporting region queries on
rectangular data, which is the feature of interest in our
case. Briefly, this technique works in three steps. First,
the data domain is linearized according to a Hilbert space
filling curve. Then, the MBRs of the subsynopses are
sorted on the Hilbert values of their centers. Finally, the
list of MBRs is packed in groups of cardinality f (where f
is the R-Tree fan-out), and for each group, a node is
created containing the MBRs in the group as well as the
identifiers of the corresponding subsynopses. These nodes
are the leafs of the R-Tree. Inner nodes are constructed by
proceeding bottom-up on the tree level: the ith level is
built by first sorting the nodes at the ði þ 1Þth level on

D.Raghava Lavanya et al IJCSET |December 2011 | Vol 1, Issue 11,761-766

763

ascending creation time, and then, packing this sequence
of nodes in the same way as explained for the leaf level.
This way, every MBR m in a node at the ith level covers
the MBRs of a node n at the i þ 1th level, and n is
referenced by m. Each MBR m in (both inner and leaf)
nodes of the aggregate R-Tree is stored along with the
sum sumðmÞ of the values lying inside it. As it will be
clearer in the following, this enhances the query
evaluation, as it reduces the number of peers to be
accessed for computing query answers.
This strategy yields almost 100 percent space utilization
and due to the good clustering properties of the Hilbert
curves, it tends to create leafs referencing subsynopses
whose MBRs are “close” to one another. The aggregate
R-tree indexing the subsynopses will be denoted as I.
3.3.2 Partitioning the Index
After being populated, I is partitioned in “small”-size
portions which are prone to be distributed across the
network. The reason for partitioning the index is the same
as for limiting the amount of storage space invested for a
single synopsis, that is, distributing small-size index
portions across the network prevents peers from being
overloaded in terms of upload and download traffic
needed for supporting index replication.
Our approach for partitioning I is similar to that proposed
in [30], where a distributed version of the R-Tree (Master
R-Tree) was introduced, and works as follows: First, I is
divided into two portions Isup and Iinf , which consist of
the inner nodes and the leafs of I, respectively. Then, Iinf
is, in turn, subpartitioned into m leaf portions inf1, . . . ,
infm: each leaf portion infi contains a number of leafs in
Iinf whose overall storage space consumption is Bmax.
Specifically,
inf1, . . . , infm are obtained by sorting the leafs in Iinf on
their creation time and grouping them into sequences of
cardinality bBmax P c, where P is the size of the pages of
I. After the creation of leaf portions, the pointers in Isup
to single leafs of Iinf are replaced with identifiers of entire
leaf portions.
From now on, we will refer to portions of the index and
subsynopses generically as s-blocks.
Observe that due to the packing-based index creation, the
order of leafs is determined by the Hilbert ordering of the
MBRs inside them. Hence, each infi is likely to contain
leafs whose MBRs are close to one another. This aims at
reducing the number of leaf portions to be accessed in
order to evaluate range queries, as the data involved in a
range query belong to subsynopses whose MBRs are
close to one another. As it will be clearer in the following,
since the index will be distributed across the network by
assigning inf1, . . . , infm to different peers, this strategy
will result in reducing the number of peers to be accessed
for locating the subsynopses involved in range queries.
Fig. 3 shows the aforementioned index partitioning
scheme. Unlike Iinf , the Isup s-block is not
subpartitioned: in fact, its size is very small (in all
practical cases, smaller than 256 KB).

The main difference of our approach from the Master
RTree is the grouping strategy adopted at the leaf level.
Briefly, in the Master R-Tree, Iinf is partitioned into
portions containing chunks of data whose MBRs are far
from one another, and this aims at parallelizing query
evaluation as much as possible. We do not use this
strategy as in our approach, index leafs do not contain
data, but references to data: thus, employing the same
grouping strategy as Master R-Tree would result in
increasing the number of leaf portions to be accessed for
locating the subsynopses involved in the queries, thus
increasing network traffic. Indeed, in our framework,
parallelization of query evaluation is obtained by
distributing the subsynopses among different.
QuiSea is designed as a generalization of flooding,
MBFS, and RW. There are two phases in QuiSea. Each
phase has a different searching strategy. The choice of
search strategy at each phase depends on the relationship
between the hop count h of query messages and the
decision threshold n of QuiSea.
3.3.1 Phase 1. When h _ n
At this phase, QuiSea acts as flooding or MBFS. The
number of neighbors that a query source sends the query
messages to depends on the predefined transmission
probability p. If the link degree of this query source is d, it
would only send the query messages to d _ p neighbors.
When p is equal to 1, QuiSea resembles flooding.
Otherwise, it operates as MBFS with the transmission
probability p.
3.3.2 Phase 2. When h > n
At this phase, the search strategy switches to RW. Each
node that receives the query message would send the
query message to one of its neighbors if it does not have
the queried resource. Assume that the number of nodes
visited by QuiSea at hop h ¼ n is the coverage cn, and
then the operation of QuiSea at that time can be regarded
as RW with cn walkers. However, there are some
differences between QuiSea and RW when we consider
the whole operation. Consider the simple scenario shown
in Fig. 1. Assume that the decision threshold n is set as 2.
When h > 2, QuiSea performs the same as RW with c2 ¼
12 walkers. Let us consider an RW search with K ¼ 12
walkers. At the first hop, the walkers only visit four
nodes, but the cost is 12 messages.
Pseudo code of QuiSea
Algorithm: The pseudo-code of dynamic search
QuiSea
Input: query source s, queried multidimensional data f,
transmission
probability p
Output: the location information of f
QuiSea(s, f, p)
call domain partitioning()
h ← 0
if (h <= n)
h ← h + 1
s choose p portion of its neighbors

D.Raghava Lavanya et al IJCSET |December 2011 | Vol 1, Issue 11,761-766

764

mi carring h visits these chosen neighbors
if f matches index key
return node info
elseif (h > n)
h ← h + 1
mi carring h visits one neighbor of s
foreach (r)
if (r has the location information of f)
r returns the information to s
mi stops
elseif (h > TTL)
mi stops
elseif (h <= n)
h ← h + 1
r choose p portion of its neighbors
mi carring h visits these chosen neighbors
if f matches index key
return node info

elseif (h > n)
h ← h + 1
mi carring h visits one neighbor of r
if f matches index key
return node info

Fig. 3. Data domain partitioning algorithm.

4 CONCLUSION:
We proposed a framework with compressing, indexing,
searching methodologies to simplify searching process.
This is applicable to large networks also. In this paper, we
have proposed the QuiSea algorithm, which is a
generalization of the flooding, MBFS, and RW. QuiSea
overcomes the disadvantages of flooding and RW, and
takes advantage of various contexts under which each
search algorithm performs very well. In our approach,
participants make their resources (and possibly their data
in a suitable compressed format) available for the other
peers in exchange for the possibility of accessing and
posing range queries against the data published by others.
Our solution is based on suitable data summarization and
indexing techniques, and on mechanisms for data
distribution and replication that properly take into account
the need of preserving the autonomy of peers as well as
the interest exhibited by the users in the data to support an
efficient query evaluation. The experimental results
showed the effectiveness of our approach in providing
fast and accurate query answers, and ensuring the
robustness that is mandatory in peer-to-peer settings.

REFERENCES

[1] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger,
“Sampling Techniques for Large, Dynamic Graphs,” Proc. Ninth
IEEE Global Internet Symp. (Global Internet ’06), Apr. 2006.

[2] A.H. Rasti, D. Stutzbach, and R. Rejaie, “On the Long-Term
Evolution of the Two-Tier Gnutella Overlay,” Proc. Ninth IEEE
Global Internet Symp. (Global Internet ’06), Apr. 2006.

[3] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B.
Richard, S. Rollins, and Z. Xu, “Peer-to-Peer Computing,”
Technical Report HPL-2002-57, HP, 2002.

[4] K. Sripanidkulchai, The Popularity of Gnutella Queries and Its
Implications on Scalability, white paper, Carnegie Mellon Univ.,
Feb. 2001.

[5] M. Jovanovic, F. Annexstein, and K. Berman, “Scalability Issues in
Large Peer-to-Peer Networks: A Case Study of Gnutella,”
technical report, Laboratory for Networks and Applied Graph
Theory, Univ. of Cincinnati, 2001.

[6] B. Yang and H. Garcia-Molina, “Improving Search in Peer-to-Peer
Networks,” Proc. 22nd Int’l Conf. Distributed Computing Systems
(ICDCS ’02), pp. 5-14, July 2002.

[7] G. Kan, “Gnutella,” Peer-to-Peer Harnessing the Power of Disruptive
Technologies, O’Reilly, pp. 94-122, 2001.

[8] RFC-Gnutella 0.6, http://rfc-gnutella.sourceforge.net
/developer/testing/index.html, 2008.

[9] C. Gkantsidis, M. Mihail, and A. Saberi, “Random Walks inPeer-to-
Peer Networks,” Proc. IEEE INFOCOM ’04, pp. 120-130,2004.

[10] L.A. Adamic, R.M. Lukose, A.R. Puniyani, and B.A. Huberman,
“Search in Power-Law Networks,” Physical Rev., E, vol. 64,
046135,2001.

[11] L.A. Adamic, R.M. Lukose, and B.A. Huberman, “Local Search in
Unstructured Networks,” Handbook of Graphs and Networks.pp.
295-317, Wiley-VCH, 2003.

[12] C. Gkantsidis, M. Mihail, and A. Saberi, “Hybrid Search Schemes
for Unstructured Peer-to-Peer Networks,” Proc. IEEE INFOCOM
’05, pp. 1526-1537, 2005.

[13] N. Bisnik and A. Abouzeid, “Modeling and Analysis of Random
Walk Search Algorithm in P2P Networks,” Proc. Second Int’l
Workshop Hot Topics in Peer-to-Peer Systems (HOT-P2P ’05), pp.
95-103, 2005.

D.Raghava Lavanya et al IJCSET |December 2011 | Vol 1, Issue 11,761-766

765

[14] M.E.J. Newman, S.H. Strogatz, and D.J. Watts, “Random Graphs
with Arbitrary Degree Distribution and Their Applications,”
Physical Rev., E, vol. 64, 026118, 2001.

[15] H. Wang and T. Lin, “On Efficiency in Searching Networks,” Proc.
IEEE INFOCOM ’05, pp. 1490-1501, 2005.

[16] P. Lin, T. Lin, and H. Wang, “Dynamic Search Algorithm in
Unstructured Peer-to-Peer Networks,” Proc. Global Telecomm.
Conf. (GLOBECOM ’06), Nov. 2006.

[17] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
Replication in Unstructured Peer-to-Peer Networks,” Proc. 16th
Ann. Int’l Conf. Supercomputing (ICS ’02), pp. 84-95, June 2002.

[18] Z. Ge, D.R. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley,
“Modeling Peer-Peer File Sharing Systems,” Proc. IEEE
INFOCOM ’03, pp. 2188-2198, 2003.

[19] K. Sripanidkulchai, The Popularity of Gnutella Queries and Its
Implications on Scalability, O’Reilly, www.openp2p.com, Feb.
2001.

[20] M. Ripeanu, A. Iamnitchi, and I. Foster, “Mapping the Gnutella
Network,” IEEE Internet Computing, vol. 6, no. 1, pp. 50-56,
Jan./Feb. 2002.

[21] S. Saroiu, P.K. Gummadi, and .D. Gribble, A Measurement Study
of Peer-to-Peer File Sharing Systems. MMCN, Jan. 2002.

[22] J. Chu, K. Labonte, and B. Levine, “Availability and Locality
Measurements of Peer-to-Peer File Systems,” ITCom: Scalability
and Traffic Control in IP Networks, July 2002.

[23] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti, “A Local
Search Mechanism for Peer-to-Peer Networks,” Proc. ACM CIKM
Int’l Conf. Information and Knowledge Management (CIKM ’02),
pp. 300-307, Nov. 2002.

[24] Z. Zhuang, Y. Liu, L. Xiao, and L.M. Ni, “Hybrid Periodical
Flooding in Unstructured Peer-to-Peer Networks,” Proc. 32nd Int’l
Conf. Parallel Processing (ICPP ’03), pp. 171-178, Oct. 2003.

[25] S. Jiang, L. Guo, and X. Zhang, “LightFlood: An Efficient Flooding
Scheme for File Search in Unstructured Peer-to-Peer Systems,”
Proc. 32nd Int’l Conf. Parallel Processing (ICPP ’03),

pp. 627-635, Oct. 2003.
[26] S. Jiang, L. Guo, X. Zhang, and H. Wang, “LightFlood: Minimizing

Redundant Messages and Maximizing Scope of Peer-to-Peer
Search,” IEEE Trans. Parallel and Distributed Systems, vol. 19, no.
5, pp. 601-614, May 2008.

[27] D. Tsoumakos and N. Roussopoulos, “Adaptive Probabilistic
Search for Peer-to-Peer Networks,” Proc. Third Int’l Conf. Peer-to-
Peer Computing (P2P ’03), pp. 102-109, Sept. 2003.

[28] D. Tsoumakos and N. Roussopoulos, “Analysis and Comparison of
P2P Search Methods,” Technical Report CS-TR-4539,
UMIACSTR- 2003-107, Dept. of Computer Science, Univ. of
Maryland, 2003.

[29] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S.
Shenker, “Making Gnutella-Like P2P Systems Scalable,” Proc.
ACM SIGCOMM ’03, pp. 407-418, Aug. 2003.

[30] A. Crespo and H. Garcia-Molina, “Routing Indices for Peer-to- Peer
Systems,” Proc. 22nd Int’l Conf. Distributed Computing Systems
(ICDCS ’02), pp. 23-32, July 2002.

[31] B. Yang and H. Garcia-Molina, “Improving Search in Peer-to-Peer
Networks,” Proc. 22nd Int’l Conf. Distributed Computing Systems
(ICDCS ’02), pp. 5-14, July 2002.

[32] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti, “A Local
Search Mechanism for Peer-to-Peer Networks,” Proc. 11th Int’l
Conf. Information and Knowledge Management (CIKM ’02), pp.
300-307, Nov. 2002.

[33] R.A. Ferreira, M.K. Ramanathan, A. Awan, A. Grama, and S.
Jagannathan, “Search with Probabilistic Guarantees in
Unstructured Peer-to-Peer Networks,” Proc. Fifth IEEE Int’l Conf.
Peer-to-Peer Computing (P2P ’05), pp. 165-172, Aug. 2005.

[34] N. Sarshar, P.O. Boykin, and V.P. Roychowdhury, “Percolation
Search in Power Law Networks: Making Unstructured Peer-to-
Peer Networks Scalable,” Proc. Fourth IEEE Int’l Conf. Peer-to-
Peer Computing (P2P ’04), pp. 2-9, Aug. 2004.

[35] S. Acharya, V. Poosala, and S. Ramaswamy, “Selectivity
Estimation in Spatial Databases,” Proc. 1999 ACM SIGMOD,
1999.

[36] A. Andrzejak and Z. Xu, “Scalable, Efficient Range Queries for
Grid Information Services,” Proc. Second Int’l Conf. Peer-to-Peer
Computing, 2002.

[37] B. Arai, G. Das, D. Gunopulos, and V. Kalogeraki, “Approximating
Aggregation Queries in Peer-to-Peer Networks,” Proc. 22nd Int’l
Conf. Data Eng., 2006.

[38] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani,
“Estimating Aggregates on a Peer-to-Peer Network,” technical
report, Stanford InfoLab, 2003.

[39] N. Bruno, S. Chaudhuri, and L. Gravano, “STHoles: A
Multidimensional Workload-Aware Histogram,” Proc. 2001 ACM
SIGMOD, 2001.

[40] S. Chaudhuri and U. Dayal, “An Overview of Data Warehousing
and OLAP

D.Raghava Lavanya et al IJCSET |December 2011 | Vol 1, Issue 11,761-766

766

