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[38] and exploratory OLAP analysis [6]. Some techniques 
are said to be parametric, as they rely on the assumption 
that data are distributed according to a mathematical 
(either statistical or polynomial) model. In particular, 
wavelet-based techniques (which are the most 
investigated in this group) work in two steps. First, a 
wavelet transform is applied to the data, yielding a set of 
coefficients. Then, these coefficients are suitably filtered 
and the “most relevant” ones are kept. Applying the 
inverse wavelet transform to these coefficients results in 
an approximate reconstruction of the data.  
 

3 OPERATION OF QUISEA ALGORITHM 
 
There are main 4 steps in algorithm 
Step-1:  Data is to be compressed and indexed. 
Step-2 : Data should be distributed. 
Step-3:  Searching process will be started based on 

number of hops. 
Step-4:After method is selected required 

multidimensional data will be returned from 
node. 

 
3.1 Partitioning the Data Domain 
The aim of the partitioning step is to divide the data 
domain into nonoverlapping blocks. These blocks will be 
compressed separately, yielding distinct subsynopses. For 
each of them, a portion of the amount of storage space B 
chosen to represent the whole synopsis will be invested. 
The distribution of B among blocks will take into account 
the following requirements: 
 B must be fairly distributed among blocks: The 
assignment of different amounts of storage space to the 
blocks for representing their subsynopses should depend 
on the differences in homogeneity among the blocks. 
Intuitively enough, the more homogeneous the data inside 
a block, the smaller the amount of information needed to 
effectively accomplish its summarization. Each block 
must be assigned a “small” portion of B: The subsynopses 
over the blocks are the data that will be hosted by peers 
and exchanged across the P2P network. As explained 
above, building subsynopses with “large” size would 
impose a significant constraint on the amount of storage 
space which should be made available by each peer. On 
the contrary, defining small-size subsynopses results in 
limiting the storage and computational resources required 
at each peer for storing and querying data, as well as 
reducing both the download and upload traffic needed for 
supporting data exchange.  
We denote the maximum amount of storage space which 
can be invested for summarizing a single block as Bmax. 
In our prototype, we set Bmax ¼ 256 KB: this is the 
threshold value which proved effectiveness in several file 
sharing applications (such as Gnutella itself) for limiting 
the download segment size, i.e., the size of the atomic file 
portions exchanged among peers. 

In order to satisfy the afore mentioned requirements, the 
partitioning of the data domain and the distribution of the 
storage space are accomplished according to the 
following iterative scheme. We start from a partition 
consisting of a single block (corresponding to the whole 
data domain) which is assigned the overall amount of 
storage space B. At each step, a block b_ of the partition 
is chosen and its range is split into two subranges: two 
new blocks b0 and b00 are created (corresponding to the 
MBRs1 of these subranges) and the partition is refined by 
replacing b_ with b0 and b00. Then, the distribution of B 
among blocks is updated accordingly. The partitioning 
ends when every block is assigned an amount of storage 
space which does not exceed Bmax. In Fig. 2, a 
partitioning of a 2D data population is shown (dashed line 
boxes represent the MBRs of the blocks). We now explain 
the criteria adopted to select and split blocks, and the 
strategy for distributing B among the blocks of a partition. 
3.1.1 Selecting and Splitting Blocks of the Partition  
At each step, the least homogeneous block b_ in the 
current partition is split. The homogeneity of a block b of 
a data population D is measured by evaluating the Sum 
Squared Error of its data population, that is, SSEðbÞ ¼ 
Pi2bðb½i_ _ bÞ2, where i 2 b means that i is a point (i.e., 
a set of multidimensional coordinates) inside the range of 
b, D½i_ is the value associated with point I of D, and b is 
the average value in b. After b_ is selected, the split is 
performed which results in the pair of blocks b0, b00 
having the most similar SSE with respect to all the 
possible splits of b_ performed along every dimension.  
Observe that splitting a block always results in a pair of 
blocks more homogeneous than the original one (in fact, it 
is well known that SSE is superaddictive, as SSEðb_Þ _ 
SSEðb0Þ þ SSEðb00Þ). Hence, employing this splitting 
strategy aims at creating blocks with similar degrees of 
homogeneity, while refining the partition toward more 
and more homogeneous blocks. Specifically, having 
blocks with similar homogeneity is likely to yield 
subsynopses with similar accuracy, while having blocks 
as much homogeneous as possible is likely to enhance the 
accuracy of each subsynopsis. 
3.1.2 Distributing B among the Blocks of the Current 
Partition 
First, a fixed portion Bmin of B is assigned to every block 
(the meaning of Bmin will be clearer in the following), 
and then, the remainder of B is distributed on the basis of 
the homogeneity of the blocks. That is, if the current 
partition consists of k blocks b1; . . . ; bk, then each bi is 
assigned the following amount of storage space: 
BðbiÞ ¼ Bmin þ 
SSEðbiÞ 
Pk 
j¼1 SSEðbjÞ 
_ ðB _ k _ BminÞ: 
The value of Bmin is the amount of space needed to store 
the most compact representation of a block according to 
the compression technique adopted. For instance, if a 
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histogram is employed, Bmin is the space consumption of 
representing both the range of the block and a set of 
aggregate values (such as the sum) summarizing the data 
inside a block. Basically, assigning at least Bmin to each 
block means that every block of the partition is 
guaranteed to be represented in the overall data synopsis. 
 
1. The minimum bounding rectangle (MBR) of a range r 
is the minimum subrange of r containing all non-null data 
in r. 

 
Fig. 2. Partitioning a 2D data population. 

 
The iterative algorithm accomplishing the partitioning is 
shown in Fig. 3. It uses a priority queue which, at each 
step, contains the blocks of the current partition, ordered 
by their SSE. Variable SSEtot stores the sum of the SSEs 
of the blocks in the current partition, whereas variables 
SSEmax and spacemax represent the SSE of the least 
homogeneous block of the partition (i.e., the block at the 
head of the queue) and the storage space assigned to it, 
respectively. Iteratively, the least homogeneous block is 
extracted from the queue and split into two new blocks, 
which are, in turn, inserted into the queue. After splitting 
a block, SSEtot is updated to take into account the overall 
SSE reduction due to the split, SSEmax is assigned the 
SSE of the new head of the queue, and spacemax is 
recomputed on the basis of the new values of SSEtot and 
SSEmax. The partitioning ends when spacemax reaches a 
value less than Bmax (obviously, since spacemax refers to 
the least homogeneous block of the partition, the fact that 
spacemax < Bmax implies that every block of the 
partition is assigned less than Bmax). The algorithm 
returns the partition of the input data population 
represented as a set of pairs hr; si, where r is the range of 
a block and s is the amount of  storage space to be 
invested for its summarization. 
 
3.2 Compressing Data Blocks 
At this step, a suitable compression algorithm is run on 
each of the k pairs hb1; s1i; . . . ; hbk; ski resulting from 
the partitioning step, and subsynopses h1; . . . ; hk are 
obtained, where each hi is a compressed representation of 
bi consuming storage space si. Several compression 
techniques (such as histograms or sampling [23]) can be 
employed to accomplish data summarization, as both the 

partitioning strategy and the techniques used for 
distributing and querying the subsynopses (which will be 
described in the following sections) are orthogonal to this 
choice. Our prototype embeds CHIST [10], which has 
been shown to be very effective in constructing 
multidimensional histograms providing accurate estimates 
of range queries. Briefly, Clustering-based Histogram 
(CHIST) exploits a density-based clustering algorithm to 
construct a set of (possibly overlapping) blocks covering 
the nonempty portions of the data domain. For each block 
(called bucket, according to standard histogram 
terminology), its boundaries as well as some aggregate 
value summarizing its data are stored. In our current 
implementation, each bucket is associated with the result 
of evaluating the sum aggregate operator: this way, the 
summary data suffice to estimate range sum queries. 
 
3.3 Indexing Compressed Data 
At this step, an index is built on top of the subsynopses 
resulting from the compression step. This index will be 
exploited for locating the data involved in the queries 
across the network. 
Since each subsynopsis can be viewed as a hyper 
rectangular object, any indexing technique suitable for 
spatial data can be employed at this step. Specifically, in 
our prototype, an aggregate R-Tree [22], [26] was used, 
which is an R-Tree augmented with some aggregate 
information supporting aggregate range queries. The 
objects inserted in the aggregate R-Tree are pairs 
hIDðhiÞ;MBRðhiÞi, where IDðhiÞ is the identifier 
assigned to the subsynopsis hi and MBRðhiÞ is the 
hyperrectangular range covered by hi. The index is first 
populated and then partitioned, in order to make it prone 
to be distributed across the network. These two steps are 
described in the following. 
3.3.1 Creating the Index 
In order to limit the traffic needed for the maintenance of 
the index after its distribution, a compact index is 
desirable. Since data are historical, the storage space 
consumption of the R-Tree can be reduced by adopting 
packing strategies for its construction, which aim at 
obtaining 100 percent space utilization in each node. In 
particular, we adopt the R-Tree-packing technique 
proposed in [27]. This was shown to perform better than 
other packing strategies in supporting region queries on 
rectangular data, which is the feature of interest in our 
case. Briefly, this technique works in three steps. First, 
the data domain is linearized according to a Hilbert space 
filling curve. Then, the MBRs of the subsynopses are 
sorted on the Hilbert values of their centers. Finally, the 
list of MBRs is packed in groups of cardinality f (where f 
is the R-Tree fan-out), and for each group, a node is 
created containing the MBRs in the group as well as the 
identifiers of the corresponding subsynopses. These nodes 
are the leafs of the R-Tree. Inner nodes are constructed by 
proceeding bottom-up on the tree level: the ith level is 
built by first sorting the nodes at the ði þ 1Þth level on 
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ascending creation time, and then, packing this sequence 
of nodes in the same way as explained for the leaf level. 
This way, every MBR m in a node at the ith level covers 
the MBRs of a node n at the i þ 1th level, and n is 
referenced by m. Each MBR m in (both inner and leaf) 
nodes of the aggregate R-Tree is stored along with the 
sum sumðmÞ of the values lying inside it. As it will be 
clearer in the following, this enhances the query 
evaluation, as it reduces the number of peers to be 
accessed for computing query answers. 
This strategy yields almost 100 percent space utilization 
and due to the good clustering   properties of the Hilbert 
curves, it tends to create leafs referencing subsynopses 
whose MBRs are “close” to one another. The aggregate 
R-tree indexing the subsynopses will be denoted as I. 
3.3.2 Partitioning the Index 
After being populated, I is partitioned in “small”-size 
portions which are prone to be distributed across the 
network. The reason for partitioning the index is the same 
as for limiting the amount of storage space invested for a 
single synopsis, that is, distributing small-size index 
portions across the network prevents peers from being 
overloaded in terms of upload and download traffic 
needed for supporting index replication. 
Our approach for partitioning I is similar to that proposed 
in [30], where a distributed version of the R-Tree (Master 
R-Tree) was introduced, and works as follows: First, I is 
divided into two portions Isup and Iinf , which consist of 
the inner nodes and the leafs of I, respectively. Then, Iinf 
is, in turn, subpartitioned into m leaf portions inf1, . . . , 
infm: each leaf portion infi contains a number of leafs in 
Iinf whose overall storage space consumption is Bmax. 
Specifically, 
inf1, . . . , infm are obtained by sorting the leafs in Iinf on 
their creation time and grouping them into sequences of 
cardinality bBmax P c, where P is the size of the pages of 
I. After the creation of leaf portions, the pointers in Isup 
to single leafs of Iinf are replaced with identifiers of entire 
leaf portions.  
From now on, we will refer to portions of the index and 
subsynopses generically as s-blocks. 
Observe that due to the packing-based index creation, the 
order of leafs is determined by the Hilbert ordering of the 
MBRs inside them. Hence, each infi is likely to contain 
leafs whose MBRs are close to one another. This aims at 
reducing the number of leaf portions to be accessed in 
order to evaluate range queries, as the data involved in a 
range query belong to subsynopses whose MBRs are 
close to one another. As it will be clearer in the following, 
since the index will be distributed across the network by 
assigning inf1, . . . , infm to different peers, this strategy 
will result in reducing the number of peers to be accessed 
for locating the subsynopses involved in range queries.  
Fig. 3 shows the aforementioned index partitioning 
scheme. Unlike Iinf , the Isup s-block is not 
subpartitioned: in fact, its size is very small (in all 
practical cases, smaller than 256 KB).  

The main difference of our approach from the Master 
RTree is the grouping strategy adopted at the leaf level. 
Briefly, in the Master R-Tree, Iinf is partitioned into 
portions containing chunks of data whose MBRs are far 
from one another, and this aims at parallelizing query 
evaluation as much as possible. We do not use this 
strategy as in our approach, index leafs do not contain 
data, but references to data: thus, employing the same 
grouping strategy as Master R-Tree would result in 
increasing the number of leaf portions to be accessed for 
locating the subsynopses involved in the queries, thus 
increasing network traffic. Indeed, in our framework, 
parallelization of query evaluation is obtained by 
distributing the subsynopses among different. 
QuiSea is designed as a generalization of flooding, 
MBFS, and RW. There are two phases in QuiSea. Each 
phase has a different searching strategy. The choice of 
search strategy at each phase depends on the relationship 
between the hop count h of query messages and the 
decision threshold n of QuiSea. 
3.3.1 Phase 1. When h _ n 
At this phase, QuiSea acts as flooding or MBFS. The 
number of neighbors that a query source sends the query 
messages to depends on the predefined transmission 
probability p. If the link degree of this query source is d, it 
would only send the query messages to d _ p neighbors. 
When p is equal to 1, QuiSea resembles flooding. 
Otherwise, it operates as MBFS with the transmission 
probability p. 
3.3.2 Phase 2. When h > n 
At this phase, the search strategy switches to RW. Each 
node that receives the query message would send the 
query message to one of its neighbors if it does not have 
the queried resource. Assume that the number of nodes 
visited by QuiSea at hop h ¼ n is the coverage cn, and 
then the operation of QuiSea at that time can be regarded 
as RW with cn walkers. However, there are some 
differences between QuiSea and RW when we consider 
the whole operation. Consider the simple scenario shown 
in Fig. 1. Assume that the decision threshold n is set as 2. 
When h > 2, QuiSea performs the same as RW with c2 ¼ 
12 walkers. Let us consider an RW search with K ¼ 12 
walkers. At the first hop, the walkers only visit four 
nodes, but the cost is 12 messages. 
Pseudo code of QuiSea 
Algorithm: The pseudo-code of dynamic search 
QuiSea 
Input: query source s, queried multidimensional data f, 
transmission 
probability p 
Output: the location information of f 
QuiSea(s, f, p) 
call domain partitioning() 
h ← 0 
if (h <= n) 
h ← h + 1 
s choose p portion of its neighbors 
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mi carring h visits these chosen neighbors 
if f matches index key 
return node info 
elseif (h > n) 
h ← h + 1 
mi carring h visits one neighbor of s 
foreach (r) 
if (r has the location information of f) 
r returns the information to s 
mi stops 
elseif (h > TTL) 
mi stops 
elseif (h <= n) 
h ← h + 1 
r choose p portion of its neighbors 
mi carring h visits these chosen neighbors 
if f matches index key 
return node info 
 
elseif (h > n) 
h ← h + 1 
mi carring h visits one neighbor of r 
if f matches index key 
return node info 
 
 

 
Fig. 3. Data domain partitioning algorithm. 

 

4 CONCLUSION: 
We proposed a framework with compressing, indexing, 
searching methodologies to simplify searching process. 
This is applicable to large networks also. In this paper, we 
have proposed the QuiSea algorithm, which is a 
generalization of the flooding, MBFS, and RW. QuiSea 
overcomes the disadvantages of flooding and RW, and 
takes advantage of various contexts under which each 
search algorithm performs very well. In our approach, 
participants make their resources (and possibly their data 
in a suitable compressed format) available for the other 
peers in exchange for the possibility of accessing and 
posing range queries against the data published by others. 
Our solution is based on suitable data summarization and 
indexing techniques, and on mechanisms for data 
distribution and replication that properly take into account 
the need of preserving the autonomy of peers as well as 
the interest exhibited by the users in the data to support an 
efficient query evaluation. The experimental results 
showed the effectiveness of our approach in providing 
fast and accurate query answers, and ensuring the 
robustness that is mandatory in peer-to-peer settings. 
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