Ayman Khalafallah

I55N:2231-0711

www.ijcset.net

IJCSET |December 2011 | Vol 1, Issue 11, 722-724

Constructing Near Optimal Binary Decision Tree
Classifier Using Genetic Algorithm

Ayman Khalafallah
Department of Computer and Systems Engineering
Faculty of Engineering Alexandria University
Alexandria, Egypt
ayman.khalafallah@gmail.com

Abstract—Decision Trees are extensively used in classification,
pattern recognition and Data Mining. Classical decision tree
building algorithms Iterative Dichotomiser 3 (id3) [3] uses one
attribute to test at each internal node, resulting in the decision
boundaries being paralle to the axis and builds the tree one
node at a time. In this paper a new method is proposed where
at each internal node a hyperplane is selected based on all
attributes, this hyperplane partitions the training set into two
disioint sets. Our method also tries to build most of the treein
a single optimization problem. Genetic Algorithm isused asthe
optimization methods. The resulting tree using the proposed
algorithm may be more compact and accurate in the
classification problems.

Keywords : Decison Tree, Genetic algorithm, classifier,
Optimization

l. INTRODUCTION

A classification problem is a problem where a label is assigned to
an object based on this object attributes. A classical example is
character recognition when a character is scanned at the scanned
image is used to classify the character. This attributes might be the
size the orientation, the contour or the scanned black and white
matrix of the character. Classification problems are widely used in
biology for example to detect possible diseases based on the
outcome of a genetest.

To solve the classification problem a classifier has to be built, the
classifier is built using training examples. In the case of supervised
training considered in this paper, the training examples consist of
objects identified with their attributes and labeled with their
classes. The training process of the classifier is called learning
process.

Decision trees are an important tool in decision making, pattern
recognition, classification and data mining. Because of their
importance many agorithms exists to build decision trees
[1][2][3][6]. The purpose of these agorithms is to build as
compact as possible decision tree to classify the data from the
training examples. It is believed that a shorter decision tree is the
best possible tree according to Occam Razor principle[1][2][3]. It
has to be noted though that constructing an optimal decision treeis
an NP-hard problem [4][5] so one must accept a heuristic to build a
near optimal search tree. The references [6][7][10] show many
attempts to build near optimal decision tree.

In this paper a new method to construct near optimal binary
decision tree is presented this method defers from the above
methods in the following:

At each node a hyperplane test is used to decide on which

branch to follow not just a single attribute test.

722

The agorithm tries to construct a complete binary tree to
make sure that the tree is as compact and balanced as
possible.

The algorithm does not attempt to completely construct the
decision tree in order to reduce the complexity of the
chromosome representation in Genetic algorithm.

Il. GENETIC ALGORITHM

A Genetic algorithm (GA) is an optimization method that tries to
mimic the natural selection and mutations of living organisms
[9]. The genetic algorithm is an iterative optimization technique
in which a pool of possible alterative solution to an optimization
problem is maintained. This pool is called the population and
then using the basic GA operations which are Cross Over and
mutation a new generation of the population is produced[9].
Genetic algorithm is widely used in optimization because it
combines to benefits of random and steepest decent like search
and it is a powerful mix between exploration and exploitation.

To be able to use genetic algorithm possible solution of the
problem has to be encoded as a chromosome. A chromosome in
GA is nothing than an array of bits or digits. The basic operation
of GA is cross over and can be described as in Figure 1 Cross
Over in GA

Chromosomel.:

BEEERER @ © X 7 9|
Chromosome 2:

76 11 1 |EHEIEEIEIE
Offspring 1

Offspring 2
|1|2|2|3|45|22|-13|11|7o|

Figure 1l Cross Over in GA

Here a random point is chosen and the two chromosomes change
content at this random point. Another GA operation is mutation
where a single hit or digit changes value randomly, typically, with
a very small probability. Crossover make sure that a new
population is being generated from the old one while mutation
ensure diversity and make sure that the algorithm is not trapped in
alocal minimum.

Important to the Genetic algorithm is what is called a fitness of the

Ayman Khalafallah

chromosome. The fitness of chromosome is problem dependent
and depends on the kind of the optimization problem and whether
it isaminimization or the maximization. According to the survival
of the fittest the higher the fitness value of the chromosome, the
more the possibility of it or its offspring survival to the next
population.

Many parameters have to be chosen for GA including crossover
and mutation probabilities, population size, crossover type and
number of generations. But the most important part is how to
represent a possible solution as a chromosome and how to evaluate
itsfitness.

I1l. DECISON TREES

A decision tree is a tree data structure with the additional
properties that at each node there is a test of a set of attributes to
decide which branch to follow and also each leaf is labeled with
the name of a class. The root and each internal node are called
decision nodes. The node attributes’ check can be looked at as a
partition of the search space. Classical decision tree building
algorithms [3] uses a single attribute range tests at each interna
node and this will result in each node parathion the search space
parallel to the basic axis. A quick look at Figure 2 will show that
this partition might be highly inefficient and generaly a
hyperplane test of the following equation might be more useful.
n

(ap + Z(aixi))

i=1
Using the above equation samples are classified to the left or right
node branch depending on the sign of above term. In this equation
Xi's are the set of attributes and a's are the set of weight the
algorithm must find in order increase the efficiency of the
hyperplane cut.
There are mainly three alternatives to build decision trees, the main
objective of each method is to build as compact as possible
decision tree in hoping that it will be the most useful tree according
to the debated but highly accepted Occam's Razor[3] principle.
These three are
1 Build the tree one node at a time using a selected
attribute at each node to partition the search space.
2. Use hyperplanes to partition the search space.
3. Build the tree as a single optimization problem.

The Survey in [6] gives more concrete examples about those
methods.

Any of these three approaches has its merits but suffers from some
shortcomings. The first aternative is the simplest and tends to
produce trees that rules can be extracted from them easily but
looking at Figure 2, it will become clear that trees built using this
method might be not optimal. Methodl though is the preferred
method because the resulting tree and the rules associated with
traversing the tree is easier to read and interpret.

Method2 athough superior at each node may suffer from local
anomalies as the cuts defined at upper levels may result in bad cuts
later down the tree. Method3 is superior but suffer from the
deficiency in Methodl though tends to be more robust. Also the
optimization problem associated with method3 turns to be much
more difficult and no guarantee of reaching the global optimization
goal in areasonable amount of time. Also alowing the tree to be of
arbitrary structure tends to render the problem very difficult and
time consuming and the gain from such method might not justified.

723

IJCSET |December 2011 | Vol 1, Issue 11, 722-724

Figure2

IV. PROPOSED ALGORITHM

The proposed method tries to overcome al the previous
shortcomings. The method builds a binary search tree using
hyperplane as the separation method at each node. Because of the
complexity of optimizing both the tree structure and the
hyperplane simultaneously a decision was made to look for a
particular binary tree structure namely a complete binary tree.
Complete binary tree as shown in Figure 3 is a binary tree is a
binary tree in which every level, except possibly the lagt, is
completely filled, and all nodes are as far left as possible. The
number of leafsis chosen to be the number classes. Which leads to
the fact that the number of decision nodes to be equal to number
of classes minus one.

Any binary decision tree will have a number of leafs greater than
or equal to the number of classes and a complete binary tree has
the shortest length and least average length of al binary trees of
given size making it the most compact of all decision trees.
Another advantage of complete binary treeis that it has a compact
array representation the following array is a representation of the
treein Figure 3

(A [B [c |b [E [F [e [H

U\\/‘-‘\
(¢)

Figure3

Basically the children of node at position i at the array if they exist
are at position 2i and 2i+1. This achieves two goals

1. Traversing thetreeiseasy.

2. Encoding the tree as achromosome in GA issimple.

Ayman Khalafallah

The first step of the Algorithm uses GA to find a possible optimal
search tree of this structure and as noted above the tree
representation as a chromosomeis simple.

Since there is no guarantee that neither such tree exist as a solution
to the classification problem nor the GA will be able to find one if
one actually does exist, another method has to be carried from the
leafs of the tree found in stepl of the algorithm. Method2, namely
finding a hyperplane cut at each leaf node of the tree in step 1, is
chosen to complete the tree with GA as the optimization method.
Figure 4 shows a possible tree resulting from step 1 identifying
the places where the hyperplane cuts must be found by the number
lto7.

f(’ " \1‘.
I‘ -~ .-I
L &\/\
/‘<_l P
‘,&:-—-d k};fﬂi\\
‘_f.-—_'-:a‘_ .-"'-__-_1“\ !,-!'_“—;\ j_
o Y { E TP OF } 7
oo A M AN A)
//..--- - f
| 1 2 3 4 3 =
Figure4

The last part is chosing the fitness function. For step 2 the usual
entropy based[3] fitness is used. Step 1 fitness is a bit tricky
though as near complete classification is preferred over minimum
entropy so the fitness function is defined as follows: first the
number of classes staying alive (having a probability of reaching
this leaf more than 2%) at each leaf and this number is denoted by
v, second the fitness of each leaf is ((2-v)/total number of classes).
Thefitness of the whole tree is the sum of the fitness of its leafs.
The logic behind that is that if aleaf node has only one classit will
not need to be extended in step 2 which is best possible. If it has
two classes classical methods in pattern recognition can separate
them and the contribution of this node to fitness of the tree is zero.
Whileif aleaf has more than two classes it will need more than on
level in step 2 of the algorithm and this a bad outcome so it is
assigned a negative value and it is subtractive to fitness of the tree.
The more the classes that end aive in aleaf node the lessits fitness
value. Finally in Table | a smple pseudo code of step 1 of the
algorithm is given as step 2 ismore or |ess straight forward.

TABLEI. STEP 1TREE BUILDING PSEUDO CODE

IJCSET |December 2011 | Vol 1, Issue 11, 722-724

/I Holding Array size is the population size
/I Internal arrays size are chromosome size}
Procedure Crossover(Chromosome: CH1,CH1){
/I Do Crossover between CH1 and CH2}
Procedure M utation(Chromosome CH){
/I Mutate Chromosome CH}
Procedure GA (){
InitializePopul ation()
Repeat
Repeat
Pick two Chromosomes CH1,CH2
Crossover(CH1,CH2)
Evaluate fitness(Off Springl)
Evaluate fitness(Off Springl)
EndRepeat
Mutate Some chromosomes
End}

function classify(chromosome Ch, Pattern t){
i=1
While (i<Ch.length){
If <t,Ch>>0
i=2i
else
i =2i+1}
Returni - ch.length-1}
Function Evaluatefitness(Chromosome Ch){
For every pattern t
classify(ch,t)
return the fitness as described in the text above}
Procedure InitializePopulation(){
Generate an array of arrays of random input;

724

V.

In this paper a novel method for constructing a near optimal binary
search tree is given. Arguments are given to show why this method
should be robust. Experimental results is needed to confirm the
benefits of the proposed algorithm. Also experiments must be
carried out to test different fitness function. The possibility of
pruning the tree resulting from the first part of the algorithm before
the second step has also to be explored.

CONCLUSION AND FUTURE WORK

REFERENCES
[1] Mitchell, T. M., "Machine Learning” ,McGraw-hill, 1997.

[2] Duda, R. O., Hat, P. E, and Stork, D. G., Pattern
Classification, 2nd Ed., Wiley interscience, 2001.

[3] Quinlan, J. R., Induction of decision trees, Machine Learning,
1(1), 81-106.

[4] L. Hyafil and R. L. Rivest, Constructing optimal binary
decision trees is NP-complete , Information Processing L etters,
Voal. 5, No. 1, 15-17, 1976.

[5] Bodlaender, L.H. and Zantema H., Finding Small Equivalent
Decision Trees is Hard, International Journa of Foundations of
Computer Science, Vol. 11, No. 2 World Scientific Publishing,
2000, pp. 343-354.

[6] Safavian, S.R. and Landgrebe, D., A survey of decision tree
classifier methodology,|EEE Transactions on Systems, Man and
Cybernetics, Vol 21, No. 3, pp 660-674, 1991.

[7] Gehrke, J., Ganti, V., Ramakrishnan R., and Loh, W., BOAT-
Optimistic Decision Tree Congtruction, in Proc. of the ACM
SIGMOD Conference on Management of Data, 1999, p169-180.

[8] Zhao, Q. and Shirasaka, M., A Study on Evolutionary Design
of Binary Decision Trees, in Proceedings of the Congress on
Evolutionary Computation, Vol 3, IEEE, 1999, pp. 1988-1993.

[9] Goldberg D. L., Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, 1989.

[10] S. Chaand C. C. Tappert, Constructing Binary Decision Trees
using Genetic Algorithms, in Proceedings of International
Conference on Genetic and Evolutionary Methods, July 14-17,
2008, Las Vegas, Nevada. Systems, Systems, |EEE Systems, Man,
and Cybernetics, Vol. 21, No. 5, pp.1231-1238, 1991

