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Abstract—Decision Trees are extensively used in classification, 
pattern recognition and Data Mining.  Classical decision tree 
building algorithms Iterative Dichotomiser 3 (id3) [3] uses one 
attribute to test at each internal node, resulting in the decision 
boundaries being parallel to the axis and builds the tree one 
node at a time. In this paper a new method is proposed where 
at each internal node a hyperplane is selected based on all 
attributes, this hyperplane partitions the training set into two 
disjoint sets. Our method also tries to build most of the tree in 
a single optimization problem. Genetic Algorithm is used as the 
optimization methods. The resulting tree using the proposed 
algorithm may be more compact and accurate in the 
classification problems.  
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I. INTRODUCTION 

A classification problem is a problem where a label is assigned to 
an object based on this object attributes. A classical example is 
character recognition when a character is scanned at the scanned 
image is used to classify the character. This attributes might be the 
size the orientation, the contour or the scanned black and white 
matrix of the character. Classification problems are widely used in 
biology for example to detect possible diseases based on the 
outcome of a gene test.  
To solve the classification problem a classifier has to be built, the 
classifier is built using training examples. In the case of supervised 
training considered in this paper, the training examples consist of 
objects identified with their attributes and labeled with their 
classes. The training process of the classifier is called learning 
process.  
Decision trees are an important tool in decision making, pattern 
recognition, classification and data mining.  Because of their 
importance many algorithms exists to build decision trees 
[1][2][3][6]. The purpose of these algorithms is to build as 
compact as possible decision tree to classify the data from the 
training examples. It is believed that a shorter decision tree is the 
best possible tree according to Occam Razor principle[1][2][3]. It 
has to be noted though that constructing an optimal decision tree is 
an NP-hard problem [4][5] so one must accept a heuristic to build a 
near optimal search tree. The references [6][7][10] show many 
attempts to build near optimal decision tree.  
In this paper a new method to construct near optimal binary 
decision tree is presented this method defers from the above 
methods in the following: 
• At each node a hyperplane test is used to decide on which 

branch to follow not just a single attribute test. 

• The algorithm tries to construct a complete binary tree to 
make sure that the tree is as compact and balanced as 
possible. 

• The algorithm does not attempt to completely construct the 
decision tree in order to reduce the complexity of the 
chromosome representation in Genetic algorithm. 

II. GENETIC ALGORITHM 

A Genetic algorithm (GA) is an optimization method that tries to 
mimic the natural selection and mutations of living organisms 
[9]. The genetic algorithm is an iterative optimization technique 
in which a pool of possible alterative solution to an optimization 
problem is maintained. This pool is called the population and 
then using the basic GA operations which are Cross Over and 
mutation a new generation of the population is produced[9].  
Genetic algorithm is widely used in optimization because it 
combines to benefits of random and steepest decent like search 
and it is a powerful mix between exploration and exploitation.  
To be able to use genetic algorithm possible solution of the 
problem has to be encoded as a chromosome. A chromosome in 
GA is nothing than an array of bits or digits. The basic operation 
of GA is cross over and can be described as in Figure 1 Cross 
Over in GA 
Chromosome1: 

 
1 2 2 3 1 4 -1 7 9 

 
Chromosome 2: 

7 6 11 12 45 22 -13 11 70 
 

Offspring 1 
7 6 11 12 1 4 -1 7 9 

 
Offspring 2 

1 2 2 3 45 22 -13 11 70 
 

Figure 1 Cross Over in GA 

Here a random point is chosen and the two chromosomes change 
content at this random point. Another GA operation is mutation 
where a single bit or digit changes value randomly, typically, with 
a very small probability.  Crossover make sure that a new 
population is being generated from the old one while mutation 
ensure diversity and make sure that the algorithm is not trapped in 
a local minimum. 
Important to the Genetic algorithm is what is called a fitness of the 
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