
Modeling and Automated Containment of Worms

P.Daniel Ratna Raju G.Neelima
HOD CSE Dept Asst. Prof CSE Dept

Priyadarshini Institute of Technology & Science Acharya Nagarjuna University,
ratnaraju.daniel@gmail.com neelima_raju2003@yahoo.co.in

Abstract -While much recent research concentrates on
propagation models, the defense against worms is largely
an open problem. Classical containment strategies, based
on manual application of traffic filters, will be almost
totally ineffective in the wide area since the worms are
able to spread at rates that effectively preclude any
human-directed reaction. Consequently, developing an
automated, flexible and adaptive containment strategy is
the most viable way to defeat worm propagation in an
acceptable time. As a case in point, we look to natural
immune systems, which solve a similar problem, but in a
radically different way. Accordingly, we present a
cooperative immunization system inspired in principles
and structure by the natural immune system that helps in
defending against these types of attacks. Our system
automatically detects pathologic traffic conditions due to
an infection and informs, according to a cooperative
communication principle, all the reachable networked
nodes about the ongoing attack, triggering the actions
required to their defence.To evaluate our proposal, we
formulated a simple worm propagation and containment
model, and evaluated our system using numerical solution
and sensitivity analysis. Our measurements show that our
reaction strategy is sufficiently robust against all the most
common malicious agents. We envision that the above
solution will be an effective line of defense against more
aggressive worms.

Keywords: worms; viruses; automatic
detection/containment; network immune systems.

1 INTRODUCTION
Computer worms and viruses are the first and the only
form of ‘artificial life’ to have had a measurable impact
on our society, since it has been widely experienced that
the massive worldwide spreading of very fast and
aggressive worms may easily disrupt or damage the
connectivity of large sections of the internet, affecting
millions of users. There are few reactions to the above
threat. Risk may be kept at a minimum by applying the
patches that remove the security defects exploited by
worms and viruses in their propagation, as soon as those
patches are made available. But software bugs seem to
always increase as computer systems become more and
more complicated and not all people have the habit of
keeping an eye on the pact releases or engage
themselves to constantly keep their systems up-to-date.
What’s worse, the relatively homogeneous software
base in almost all the networked nodes in the internet,
coupled with the current high-bandwidth connectivity,
provides an ideal climate (Nachenberg, 2000) for self-
propagating attacks.
Furthermore, the ability of worms to spread at rates that
make very difficult or actually preclude human-directed
reaction has elevated them to a first-class security threat

to all networked systems. Most computer security issues
can be viewed as the problem of distinguishing self
(legitimate traffic, authorized actions, original source
code, uncorrupted data, etc.) from non-self (intruders,
computer viruses, spoofing, worms, etc.). Nature, more
specifically the natural immune system, has been
solving a similar problem for hundreds of millions of
years, using methods quite different from those
typically used to protect computers and networks. For
example, consider the human immune system. It is
composed of many unreliable, short-lived and imperfect
components. It is autonomous. It is not ‘correct’,
because it sometimes makes mistakes. However, in
spite of these mistakes, it functions well enough to help
keep most of us alive for 70 years, even though we
encounter potentially deadly parasites, bacteria and
viruses everyday. Accordingly, to address the
widespread worm and virus infection problems, we
propose a network immune system that takes much of
its inspiration from nature, thinking that a deeper
understanding of the natural immune system can help us
design a more robust and practical ‘computer immune
The nodes in our system cooperate in detecting and
informing each other of ongoing attacks and of the
actions necessary to the defense, driving, when
possible, the automatic software update to fix the
exploited vulnerabilities on the infected hosts. To
evaluate our proposal, we formulated a simple worm
propagation and containment model, based on the above
principles and evaluated our system using numerical
solution and sensitivity analysis. Our observations show
that our framework seems to be robust and effective
against viruses and worms. From the above experience,
we argue that building self-reacting distributed
containment systems that, like the natural immune
systems, can detect and prevent in a matter of minutes
widespread network infections will be one of the most
promising and challenging lines of defense against
next-generation more aggressive worms.

2 WORMS AND VIRUSES
A worm is a self-replicating, segmented and distributed
computer program spreading from host to host via an
available network connection. Most often, worms
exploit vulnerabilities in the host computer’s operating
system or network service handlers that can accept
network requests or outside connections. More
properly, a worm has been defined (Navarro et al.,
2001) as a software component that is capable, under its
own means, of infecting a computer system and using
it, in an automated fashion, to infect other systems.
Worms are viruses that can spread on their own. In

P.Daniel Ratna Raju et al IJCSET |November 2011 | Vol 1, Issue 10, 674-679

674

contrast, viruses rely on passive means of transfer. For
example, a virus can spread by tricking a user into
executing an e-mail attachment or otherwise executing
an infected file. When the file is copied from an
infected host to another host, it will infect the new host
when the file is opened for the first time. Thus,
malicious agents that spread via human interaction are
not typically classified as worms. Worms were
originally considered a benign paradigm to ensure the
longevity of distributed applications and originally ran
only on machines that supported either general or
special purpose remote execution facilities. Two factors
have changed both the perception and reality of worms
to be largely malignant platforms for distributed
applications. Firstly, even when programmers’ motives
are pure, small bugs can cause worms to proliferate and
grow more rapidly than it was desired and overwhelm
the resources of a distributed remote-execution system,
as in fact occurred on the internet in November 1988.
Secondly, most worms or viruses no longer use
legitimate remote execution interfaces to acquire a
bounded number of nodes. Rather, they exploit bugs
and loop holes and install themselves on machines
where they are unwanted. They often try to grow
without bound, attempting to infect every machine
accessible to them. many parallels can be drawn
between biological systems and computer networks.
Thankfully, computer worms currently are not as
effective at spreading as their real life counterparts
because of the passive nature of biological infections
(Navarro et al., 2001). This is because biological agents
can survive in the transport media such as blood, bodily
fluids, etc., just waiting for a host to pick them up.
Computer worms rely on active methods of infecting
host that requires searching through the network
(scanning) for their next target. The analogy of the
internet worms to that of living systems is not lost when
it comes to classifying how worms behave. Albanese et
al. (2004) describes a system that they believe can be
used to classify any past, present or future worm. Based
on life functions, the criteria used to classify worms are:
1 infection
2 survival
3 propagation and
4 payload.
Infection is accomplished using two general methods –
the worm either exploits a flaw in the software on a
running system or a user’s action on the system
executes the worm code. The second life function,
survival, is essential for any autonomous agent that
wishes to spread throughout a system or network. To
this end, many worms employ techniques that are
designed to hide their existence and foothold on a
system. The longer a worm can operate undetected, the
more likely it is to accomplish its objectives. Survival
alone is not enough. The worm must also be able to
spread effectively and this is something that can be
done only once a worm has gained control of the host.
Many viruses work by harvesting e-mail addresses on
the host computer and sending e-mails with infected
attachments to these addresses; when the attachment is
executed, the virus infects the new host and begins its
life functions all over again. With the popularity of

music and application file sharing on networks such as
Kazaa or Napster, it is becoming easier to trick users
into downloading infected files. Once the files are
executed or viewed, the worm is unleashed. The newly
infected host then places more infected files on the file-
sharing network. On the other side, the most obvious
defense against worms and viruses is to prevent their
attacks by repairing the vulnerabilities they are based
on, before those can be exploited. Typically, software
vendors develop and distribute reparative patches to
their software as soon as possible after learning of
vulnerability. Customers can then install the patch and
prevent attacks that exploit the vulnerability. Software
patching has not been effective as a first-line defense
against large-scale worm attacks, even when patches
have been available long before the worm outbreak.
Generally, people have been reluctant to patch their
systems immediately, because patches are perceived to
be unreliable and disruptive to apply. Experience has
shown, in addition, that administrators often do not
install patches until long after they are made available,
if at all (Rescorla, 2003). As a result, attacks such as the
widely publicized Code Red, SQL Slammer, Blaster
and Sesser worms, that exploit known vulnerabilities,
for which patches had been available for pretty some
time, have nevertheless been quite successful, causing
widespread damage by attacking the large cohort of still
vulnerable hosts. In fact, more than 90% of the attacks
today are exploiting known vulnerabilities (Arbaugh et
al., 2000).Consequently, to prevent widespread
infection in the internet, any viable containment
strategy will require automated detection of
pathological traffic anomalies generated by infections
and triggering, via a cooperatively deployed
communication facility, immediate system updates (by
applying all the available patches) on the networked
host to ensure just-in-time reaction to worm epidemics.

3 THE DETECTION AND CONTAINMENT PARADIGM
Traditional antivirus techniques focus typically on
detecting the static signatures of viruses. While these
techniques are somewhat effective in their own right,
they do not address the dynamic nature of a worm
infection within the context of the underlying system. In
a computer network, a worm can propagate through the
network quickly and it might infect and damage many,
perhaps all, machines before the severity of the
situation is recognized valuable mechanism for
mitigating the damage would be to detect the presence
of an infection in a network at an early stage and to
have the network react to the attack in real time. A
number of challenges exist in developing such a
scheme. On one side, activities such as signature
matching, static access control and formal verification
on system configuration and current state are not really
effective in coping with the extreme flexibility and
adaptability of recent worms/viruses, operating in the
highly dynamic modern computer and networking
environment. Computers and in particular the
networked ones are not static systems: vendors, system
administrators and users constantly change the state of a
system. Programs are added and removed and
configurations are changed.

P.Daniel Ratna Raju et al IJCSET |November 2011 | Vol 1, Issue 10, 674-679

675

Several types of sensors may be employed
concurrently: Passive sensors, installed on independent
boxes, perform eavesdropping on traffic to and from the
hosts operating on their network segment or at least on
their routing domain to immediately identify any
anomaly or condition due to a probable worm outbreak
and to inform all the modes participating to the artificial
immune system about the dangerous condition,
eventually triggering, when accepted, an automatic
update in the installed software base. Active sensors,
operating on the corporate routers and firewall routers,
actively monitor the traffic flows passing through them
and apply, when an anomalous traffic condition
generated by a worm attack is detected, the proper
countermeasures in terms of IP or port based filtering or
rate-limiting. Active sensors, when handling a detected
infection process, operate like passive sensors in
cooperatively spreading the alert information through
the nodes participating to the network immune system
to ensure just-in-time triggering of the proper actions.
The whole paradigm is simply sketched in Figure 1
below.

3.1 Anomaly detection and first epidemic Containment
Most worms that have been observed so far in the
internet have the following common characteristics.
Firstly, they generate a substantial volume of identical
or similar traffic to the targets, although polymorphic
worms may not follow this pattern. Secondly, the worm
infects vulnerable hosts for propagation. Thirdly, many
worms, for example, Code Red and SQL Slammer, use
random scanning to probe vulnerable hosts. Therefore,
scans generated by this type of worm can reach inactive
IP addresses. Our anomaly detection strategy focuses on
the above characteristics and is based on continuously
analyzing some properly chosen health parameters,
directly reflecting the network behavior in the presence
of worms and checking them against a ‘sanity’ per-time
limit threshold. The most significant parameters used in
our anomaly detection facility are the outgoing flow and
the connection failure rate. The rate of failed
connection requests from a host or failure rate can be
measured by monitoring the failure replies that are sent
to the host. The failure rate measured for a normal host
is likely to be low. For most internet applications
(www, telnet, ftp, etc.), a user normally types domain
names instead of raw IP addresses to identify the
servers. Domain names are resolved by Domain Name
System (DNS) for IP addresses. If DNS cannot find the
address of a given name, the application will not issue a
connection request. Hence, mistyping or stale web links
do not result in failed connection requests. An ICMP
host-unreachable packet is returned only when the
server is offline or the DNS record is stale, which are
both uncommon for popular or regularly-maintained
sites (e.g. Yahoo, Google, E-bay, CNN, universities,
governments, enterprises, etc.) that attract most of
internet traffic. Moreover, a frequent user typically has
a list of favorite sites (servers) to which most
connections are made. Since those sites are known to
work most of the time, the failure rate for such a user is
likely to be low. If connection fails due to network

congestion, it does not the measurement of the failure
rate because no ICMP host-unreachable or RESET
packet is returned. On the other hand, the failure rate
measured for a worm-infected host is likely to be high.
Unlike normal traffic, most connection requests
initiated by a worm fail because the destination
addresses are randomly picked, thus including those
that are not in use or not listening on the port that the
worm targets at. Consequently, the failure rate can be
conceived as a very good indicator of the scanning rate.
Let be the address space size and N the number of hosts
that listen on the attacked port(s).With N , the relation
between the scanning rate and the failure rate of a worm
is:1 _N (1)

Figure 1 The operating paradigm

In our system, each active or passive sensor informs
both instantaneously and on a periodic base the other
detectors about the observed scanning activity, the
potential offenders and the involved services/ports. A
continuous, steady increase in the gross scanning
activity raises the flag of a possible worm attack. The
worm propagation can be further slowed or even
stopped by blocking the hosts or ports with persistently
high rates. In more detail, the edge routers with the role
of active detectors can be configured to block out the
addresses or the traffic flow related to specific ports
whose indicators exceed for a time t the above fixed
threshold values, where t is a system ‘tolerance time’
parameter selected so that if the worm-infected hosts
perform high-speed scanning, they will be blocked out
after a time t of activity. Hence if t is assigned a
sufficiently low (and carefully chosen) value, the worm
propagation may be stopped before an epidemic
materializes. The t parameter can also be made
dynamic: once the threat of a worm is strongly
confirmed, the edge routers/detectors may decide to
reduce t, which increases the chance of fully stopping
the worm.

3.2 Information sharing and communication
A second major direction has been toward the design of
cooperative information sharing and reaction facility,
by using the proper models, to help recognize the
emergence of a propagating worm or virus and then
take coordinated action before it can saturate the
network. (type 0 02), typically sent to the agents to

P.Daniel Ratna Raju et al IJCSET |November 2011 | Vol 1, Issue 10, 674-679

676

trigger an update, a restart or a shutdown, according to
the value inserted in the Action field and the
information update (type 0 01) messages that can be
used to transport information about one or more traffic
flows and related filtering control and anomaly
detection status(Figure 2).

Figure 2 Information and activity communication
messages

The Traffic Flow entry, describing the information to be
transported in inter-detector messages, allows sensors to
express any detected conditions in terms of traffic
discriminator list (like an ACL), traffic rate, detected
alert conditions and suggested action. It supports
multiple protocol filtering, based on a combination of
source/destination IP prefix with exact, range or
wildcard based matching and source/destination TCP or
UDP port.
A Traffic Flow entry is defined below (Figure 3):

Figure 3 The traffic flow entry

The Traffic rate field is a 4-octet value that specifies the
measured 5 min sustained traffic rate (in Kbits) of the
traffic flow. The Alert flags field is an 8-bit mask
reporting the status of each implemented worm activity
indicator (0 threshold not exceeded, 1 exceeded) for the
specified flow. At the moment only the first two bits
(outgoing flow and outgoing connection failure rate,
respectively) are meaningful. The Action field specifies
whether this traffic flow entry should be filtered
through rate limiting (value 0 01) or definitely blocked
(value 0 10). A zero action value specifies the
suggestion to remove any filter for the specified flow.
The Protocol field is an octet (value 0 255) specifies the
protocol number to which the specific traffic control
rule is referred.

The Source and Destination Prefix Length fields (1
octet) indicate respectively the length in bits of the
portion of the Source and destination address prefixes
that must be matched in the traffic control. This allows
wildcard-based prefix matching. A length of zero
indicates a prefix that matches all addresses (with prefix
itself of zero octets).
The Source and Destination Prefix fields (4 octets each)
contain respectively the source and destination IP
prefixes eventually used in the filtering entry. If the
corresponding Prefix Length octet is zero, as defined
above for ‘match any’ source or destination prefix
entries, this field is a do not care.
The Source and Destination Port field (2 octets,
unsigned) indicate the source and destination TCP or
UDP port referred in the traffic control filter. The field
is considered as un-specified with a ‘don’t care’ value
for any protocol other than TCP (value 6), UDP(value
17) or ICMP (value 1). When the Protocol value is
ICMP the source and destination port fields contain
respectively the ICMP type and code values (Table 1).

Table 1 Variable meaning of the port fields

Protocol Source port Destination port
0 (IP) NA NA
1 (ICMP) ICMP Type ICMP code
6 (TCP) TCP source port TCP destination port
17 (UDP) UDP source port UDP destination port

4 MODELING AND PROOF OF CONCEPT
The two model levels use different time advancement
mechanisms: the network model is event oriented and
the epidemic model is time-stepped. However, this does
not present a problem since a single recurrent event
timer can be used to advance the epidemic model. The
available epidemic infection models that can be used to
describe the spread of the worm as it infects hosts in the
internet are based either on a discrete stochastic (time-
stepped) approach or on a deterministic one (using
differential equations). For ‘sufficiently large’
populations, such as the global internet it is common to
approximate the stochastic model by the better
continuous state, continuous-time deterministic model,
capturing the mean behavior of the observed
phenomenon.

4.1 Analysis and results
We chose to analyze Slammer in our model, since its
average scanning rate of 4000 scans/sec makes it a
prototype of a very aggressive worm. The scanning
speed of Slammer was mainly due to the code being
contained in a single UDP packet, so Slammer could
broadcast scans without having to wait for any
response. A TCP-based worm, on the other hand, would
have to wait at least a packet round-trip time for
successful connections to be established. Worse yet, it
must wait for unsuccessful connection attempts to time-
out. It thus can be expected to have a significantly
lower average scan rate. We used a scan rate of 4000
scans/sec, a baseline removal rate 5.2 removals/sec, a
total population of N 120,000 hosts, a detection time 20

P.Daniel Ratna Raju et al IJCSET |November 2011 | Vol 1, Issue 10, 674-679

677

sec and I(0) 1 initially infected host. Figure 4 shows I(t)
IU(t) ID(t) for different rate-limiting factors, when no
stimulated patching is in place. It should be noted that
the choice of rate-limiting factors is prudent: even a
rate-limit of 0.01 brings a 100 Mbit/sec Ethernet
connection at the speed of a DSL line.

Figure 4 Sensitivity to with no stimulated patching

We observe that rate limiting alone cannot stop a worm
as aggressive as Slammer. Even a small rate-limiting
factor, though, can delay the infection for some
valuable time before communication links become
saturated and exchange of information becomes
difficult. In addition, it was an important design
requirement that the system should provide some
benefit even in a limited version, without stimulated
patching, because it may be argued that users may resist
the installation of an agent on their machines. This
would probably be an issue in some environments, but
we believe that user resistance would not be higher than
what can be expected of protocol stack implementation
that limit the number of hosts contacted. Figure 5 shows
the same data as Figure 4, but with stimulated patching
at 10,that is, updates are increased by a factor of ten.

Figure 5 Sensitivity to with stimulated patching

Here, the rate-limiting factor influences the maximum
percentage of hosts affected, as well as the time at
which this maximum is reached. Again, a rate-limiting
factor of 0.01 achieves good performance. This can be
favourably weighed in consideration of the confined
effects that false positives may have. A machine
legitimately doing traffic that resembles scanning would

not undergo a complete block, only a slowdown. Figure
6 above illustrates I(t) IU(t) ID(t) for different patch
rate increase factors, with no rate limiting in place. We
see that a factor of 10 is needed for the infection to be
contained somewhat. Figure 7 shows again I(t) for
different patch rate increase factors, but with rate
limiting fixed at 0.01.

Figure 6 Sensitivity to with no rate limiting

The effects of stimulated updating are amplified by rate
limiting. At 10 the infection is restrained to 70% of the
total population and recovery time is acceptable.

5 RELATED WORK
Most research on the internet worms concentrates on
studying propagation models (Liljenstam et al., 2002;
Stanford et al., 2002). In particular, Zou et al. (2002)
proposed a modified ‘two-factor’ epidemic model that
accurately described the Code Red worm propagation
and can be considered as a milestone in representing
worm infection processes. They considered the
infection factor as a variable, scaling it down as more
hosts are infected. They described the recovery and the
immunization processes with two separate
compartments whose evolution is regulated by distinct
differential equations. However, the problem of
conceiving effective automatic defense mechanisms
against worms is still an open problem. Moore et al.
(2003) have recently studied the effectiveness of worm
containment technologies (such as address blacklisting
and content filtering) and concluded that such systems
must react in a matter of minutes and interdict nearly all
the internet paths in order to be successful. Williamson
proposed to modify the network stack so that the rate of
connection requests to distinct destinations is bounded
(Williamson, 2002) thus limiting in advance the
infection virulence. The main problem is that this
approach becomes effective only after the majority of
all the internet hosts are upgraded with the new network
stack, that is, in the real world, almost unpractical.
Recent work has focused on automated distributed
mechanisms fo containment (Moore et al., 2003) and
disinfection (Nojiri et al., 2003) that may be able to
spread fast enough to mitigate the effect of the virus.
Some believe that there is reason for guarded optimism.
Studies have shown that fairly low-levels of
immunization (Wang et al., 2000) or low-level
responses (Kephart and White, 1991) can be enough to

P.Daniel Ratna Raju et al IJCSET |November 2011 | Vol 1, Issue 10, 674-679

678

contain the virus or significantly slow the spread of the
virus. The automated response mechanisms may be able
to detect, filter and disinfect or immunize quickly
enough to prevent runaway infection and allow human
intervention.

Figure 7 Sensitivity to with drastic rate limiting

6 .CONCLUSION

As millions of users migrate between home, office,
coffee shop and bookstore, they take with them not only
their computer, but also electronic hitchhikers such as
fast propagating worms and viruses they picked up in
elsewhere, threatening the integrity of all the network
environments they access in. This problem will only be
exacerbated as wireless coverage expands and nomadic
behavior becomes more and more common. This is a
fundamental security threat that must be effectively
addressed. Accordingly, our work pursues the idea that
only an automated reaction system approach can
present an effective defense against fast (or flash)
viruses and worms in modern heterogeneous network
environments. We started from the consideration that
many recent efforts, focused on network and host
protection, typically based on a conservative prevention
approach, produced solutions that either presented
considerable impact on performance or have been
demonstrated inadequate or extremely difficult to
implement. Our first-reaction adaptive and cooperative
approach is inspired by the natural immune system and
tries to automatically solve the infection problems at the
single host level by patching, when necessary all the
vulnerable software, thus circumventing the need for
human intervention in time-critical infection
containment. Since the proposed system can identify
anomalous traffic shortly after the scanning activity
starts, this information can be also used to quickly limit
the scan rate, for example, by applying suitable access
lists aimed at rate-limiting the IP traffic coming from
the offending machine. While filters are much more
precise in limiting only the scans, leaving legitimate
traffic undisturbed, setting them up requires detailed
knowledge of the scan traffic. Without such knowledge,
rate limiting the suspect host can however protect the
network at the earliest stage of the infection, although in
some cases false positives may occur. This reaction
system, like the natural immune system, is massively
parallel and its functioning is truly distributed.

Individual components, like the different kinds of
human cells, are disposable and unreliable, yet the
system as a whole is robust and effective like the results
of our analysis assess. Novel or already known
infections can be detected and eliminated quickly, using
a variety of adaptive mechanisms, which can be further
enriched. The system is autonomous, controlling its
own behavior both at the detector and effecter levels.

REFERENCES

Albanese, D., Wiacek, M., Salter, C. and Six, J. (2004) The Case for

Using Layered Defenses to Stop Worms, National Security
Agancy, June.

Anderson, R.M. and May, R.M. (1991) Infectious Diseases of
Humans: Dynamics and Control, Oxford: Oxford University
Press.

Arbaugh, W.A., Fithen, W.L. and McHugh, J. (2000) ‘Windows of
vulnerability: a case study analysis’,IEEEComputer, Vol. 33,
No. 12, pp.52–59.

Cohen, F. (1987) ‘Computer viruses – theory and
experiments’,Computers and Security, Vol. 6, pp.22–35.

Daley, D.J. and Gani, J. (1999) Epidemic Modeling: An Introduction,
Cambridge: Cambridge University Press.

Ganger, G., Economou, G. and Bielski, S. (2002) ‘Self-securing
network interfaces: what, why, and how’, Carnegie Mellon
University Technical Report, CMU-CS-02-144, August.

Gualtieri, M. and Mosse, D. (2003) Limiting Worms via QoS
Degradation, University of Pittsburgh.

Kephart, J. and White, S. (1991) ‘Directed-graph epidemiological
models of computer viruses’, Proceedings of the IEEE
Symposium on Security and Privacy, pp.343–361.

Liljenstam, M., Yuan, Y., Premore, B. and Nicol, D. (2002) ‘A mixed
abstraction level simulation model of large-scale internet worm
infestations’, Proceedings of 10th IEEE/ACM Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS),October.

Moore, D., Shannon, C., Voelker, G. and Savage, S. (2003) ‘Internet
quarantine: requirements for containing self-propagating code’,
Proceedings of 22nd Annual Joint Conference of IEEE
Computer and Communication Societies (INFOCOM 2003),
April.

Nachenberg, C. (2000) ‘The evolving virus threat’, Proceedings of
23rd NISSC, Baltimore, Maryland.

Nazario, J., Anderson, J., Walsh, R. and Connelly, C. (2001) ‘Future
of internet worms’, Crimelabs Research, July

Nojiri, D., Rowe, J. and Levitt, K. (2003) ‘Cooperative
responsestrategies for large scale attack mitigation’,
Proceedings of the Third DARPA Information Survivability
Conference and Exposition, April.

Rescorla, E. (2003) ‘Security holes... Who cares?’ Proceedings of
USENIX Security Symposium, August.

Staniford, S. (2003) ‘Containment of scanning worms in enterprise
networks’, Journal of Computer Security,to appear.

Staniford, S., Paxson, V. and Weaver, N. (2002) ‘How to own the
internet in your spare time’, Proceedings of 11th USENIX
Security Symposium, San Francisco, August.

Wang, C., Knight, J.C. and Elder, M.C. (2000) ‘On computer viral
infection and the effect of immunization’, Proceedings of the
16th Annual Computer Security Applications Conference,
pp.246–256.

Williamson, M. (2002) ‘Throttling viruses: restricting propagation to
defeat malicious mobile code’, Proceedings of Annual
Computer Security Application Conference (ACSAC’02),
December.

Wong, C., Wang, C., Song, D., Bielski, S. and Granger, G.R.(2004)
‘Dynamic quarantine of internet worms’, Proceedings of the
International Conference on Dependable Systems and Networks
(DSN-2004), Florence, Italy, June.

Zou, C.C., Gong, W. and Towsley, D. (2002) ‘Code red worm
propagation modeling and analysis’, Proceedings of the Ninth
ACM Conference on Computer and Communications
Security(CCS), November, pp.138–147.

P.Daniel Ratna Raju et al IJCSET |November 2011 | Vol 1, Issue 10, 674-679

679

