
Modeling of Access Control System using Petri-nets
Sunita Kumawat1, G.N.Purohit2

1Amity University,Haryana, Manesar, Gurgaon, India
2Centre for Mathematical Sciences,

Banasthali University, Banasthali (Rajasthan), India
1ksunita86@gmail.com, 2gn_purohitjaipur@yahoo.co.in

Abstract—In this paper we purpose a Petri-net-based
method for describing the model of an object-oriented design
of Access Control System (ACS), by specifying the object
interaction scenarios as Petri nets with an Augmented
Marked Petri Net (AMPN) structure. After synthesizing
these scenarios into an integrated net, we analyze the system
based on the special properties of AMPN. For unique
representation of events and conditions in an object-oriented
ACS, an improved algorithm is applied to the integrated
labelled Petri net of ACS to eliminate duplicate condition
labels and event labels, with preserving the event firing
sequences. Object-based behavioural specifications of ACS
are then obtained as projections of the integrated labelled
Petri nets onto the objects. For the illustration we present
the model of Office access control system in any academic or
industry.

Keywords—Access control System; Petri net; Augmented
marked Petri net Graph; Resources; Siphon.

I. INTRODUCTION
In the past two decades, object orientation has been an
influential discipline in software engineering. According
to the principles of object orientation, an object is an
entity that encapsulates states and behaviours. A system is
considered as a collection of objects which are interacting
with others in order to accomplish the system
functionalities. It can be abstracted in two aspects
(structure and behaviour) and two levels (intra-object and
inter-object) [13], [14], [18], [19], and [25]. Structurally,
objects with the same attributes are grouped into classes
while classes having common attributes are generalized to
form an inheritance hierarchy. Objects exhibit different
behaviour on interacting with others, thus demonstrating
different object interaction scenarios.

In the previous literature, there are only a few
approaches or methods for deriving object-based
behavioural specifications are given set of use cases or
object interaction scenarios [12], [14], [15], [16]. These
use cases are elaborated and expressed in terms of object
interaction scenarios and specified as UML sequence
diagrams and collaboration diagrams [6], [7], [12], [15],
[16], and [17]. Bordeleau proposed an approach which
takes a traceable progression from use cases to the object-
based state machines [10], [11]. Dano proposed an
approach where the use cases are synthesised into a
system design according to some mapping rules [2], [3].
However, these approaches solve only trivial issues. The
system design cannot be rigorously analysed for its
liveness, boundedness and reversibility. Moreover, they
are themselves incomplete and insufficient in the sense
that the derived object-based state machines may not

reflect exactly the given use cases or object interaction
scenarios. On the other hand, there are so many
approaches or methods which derive a system from a
given set of event traces or sequences. Graubmann
proposed a method for constructing an elementary net
system from a set of event traces [28]. The method is
based on the dependence relation between events. A set of
possible states and state transitions, which are compatible
to the dependence relation, are deduced. Smith proposed a
method for constructing a condition-event system from a
set of occurrence nets based on the concept of quotient
nets [8]. Hiraishi proposed a method for constructing a
Petri net from a set of firing sequences [26]. In Hiraishi's
method, a language is first identified from the firing
sequences. Based on the dependency relation extracted
from the language, a safe Petri net is created. Lee also
proposed an approach for integration of use cases using
constraint-based modular Petri nets [33]. However,
without concepts of object-orientation, these approaches
and methods cannot be applied to object-oriented system
design.

There are some behavioral aspects of objects which
are required to analysis the behavioral properties of
Access control system.
 Specification constructs for object interaction
scenarios being too primitive. Conventional specification
constructs for object interaction scenarios lacks the
formality for representing the pre-conditions and post-
conditions for each event occurrence. These are however
essentially required in deriving the object behavioural
specifications, where the conditions, events and their
causal relationships need to be explicitly specified.
 Different abstractions between intra-object
lifecycle and inter-object interaction. It is difficult to
derive individual object behaviours (within a single object
lifecycle) from the object interaction scenarios (among
multiple objects) because of the difference in abstraction
(intra-object versus inter-object). In the literature of
object-oriented system design, there is a lack of
systematic approaches to solving this problem
satisfactorily.

Difficulty in verifying the correctness of the object
behavioural specifications. The object behavioural
specifications so derived should be correct in the sense
that they reflect exactly the given object interaction
scenarios [27], [29]. Without a formal method, one needs
to go through all possible object interaction scenarios to
ensure correctness of the specifications. The process is
time-consuming.

Sunitha Kumawat et al IJCSET |November 2011 | Vol 1, Issue 10, 605-616

605

Lack of rigorous methods for analysing the system
properties. One major objective in system design is to
obtain a live, bounded and reversible system - liveness
implies freeness of deadlocks, and boundedness implies
absence of capacity overflows, while reversibility refers
to recoverability. Without a rigorous analysis method, it is
difficult for one to analyze whether the outcome system
design is live, bounded and reversible.

In this paper, based on Petri nets, we propose a
method for refining Access control system with a given
set of object interaction scenarios into object-based
behavioural specifications, where the above-mentioned
problems can be resolved effectively. It involves the
following steps:

Step1. Each object interaction scenario is specified as
a labelled Petri net (Labelled Petri Net) with an AMPN-
structure (i.e. structurally an Augmented Marked Petri
Net).

Step2. The Labelled Petri Nets are synthesised into an
integrated net which serves to represent the system. Based
on the properties of AMPN-structure, the system is
analysed.

Step 3. Duplicate labels are eliminated from the
integrated net, while preserving the firing sequences
(event sequences).

Step 4. Individual object-based specifications are
obtained as projections of the integrated net onto the
objects.
Fig. 1 shows an overview of the proposed method.
Our proposed method offers a number of distinctive
features.

Formal specification of object interaction scenarios.
The object interaction scenarios are specified as
unambiguous and semantically rich Labelled Petri Nets.

The partial orderings of events as well as the causal
relationships between events and conditions are explicitly
represented.

Effective analysis on the essential system properties.
The integrated system possesses a AMPN-structure. By
making use of the special properties of AMPN-structure,
the system can be effectively analyzed on its liveness,
boundedness, reversibility and conservativeness.

Correctness of the derived specifications. Individual
object behavioural specifications are rigorously derived
from the object interaction scenarios through synthesis
and projection. The specifications so obtained reflect
exactly the given object interaction scenarios.

Readiness for implementation purposes. In the
specifications, every condition or event is uniquely
represented so that they can be readily used for
implementation purposes.

The rest of this paper is organized as follows. Section
2 provides the preliminaries to be used in this paper.
Section 3 introduces the AMPN-structure and its
properties are described. In Section 4, we consider object
interaction scenarios as Labelled Petri Nets (Step 1 of the
proposed method). In Section 5, we focus on synthesizing
the Labelled Petri Nets into an integrated system, and
analyzing the system properties (Step 2 of the proposed
method). Section 6 includes an algorithm for eliminating
duplicate labels from the integrated net (Step 3 of the
proposed method). Section 7 depicts how individual
object-based behavioural specifications are obtained as
projections of the integrated net (Step 4 of the proposed
method). Section 8 gives a labelled integrated net of
office access control system and its projection onto the
objects. The conclusions are included in Section 9.

Fig. 1: Overview of the proposed method.

Sunitha Kumawat et al IJCSET |November 2011 | Vol 1, Issue 10, 605-616

606

II. DESCRIPTION OF PETRI NET
 A Petri net is a graphical and mathematical
modeling tool for describing and simulating the dynamic
and concurrent activities of systems. Petri nets were
invented in 1962 by Carl Adam Petri [9]. A Petri Net also
called place-transition net (PT-Net), is a particular kind of
directed graph together with an initial state called the
initial marking. In general a Petri Net is an underlying
graph of any directed graph, which is in essence a
directed bipartite graph with two types of nodes called
places and transitions. In the Petri Net graph a place is
denoted by a circle, a transition by a rectangular box or a
bar and an arc by a directed line. The arcs are either from
places to transitions (output of places) or from transitions
to places (input of places). In other words, the information
passes from a place to a transition or from a transition to a
place. A Petri Net is a PT-Net with tokens assigned to its
places denoted by black dots, and initially the token
distribution over its places is done by a marking function
denoted by M0. A token is interpreted as a command
given to a condition (place) for the firing of an event
(transition). An enable event may or may not fire, even if
all input conditions are fulfilled. The firing of an event or
transition changes the token distribution in the places.
When a transition fires, it consumes the tokens from its
input places, per forms some processing task, and places a
specified number of tokens into each of its output places.
Fig. 1 illustrates the components and behaviors of an
ordinary Petri net. It also shows the transference process
from the initial state to the final state by the action of firing.
A transition is said to be enabled or fireable at M0 if for
all input places of any transition have at least one token. A
transition may fire if it is enabled. The new marking is
obtained by removing one token from each of its input
places and by putting one token in each of its output
places.

Figure. 1 Petri net model

More detailed and formal description of Petri Nets is
given in [1, 4, 5, 9, 24, 30, 32, 34, 37, 38]. We include
here some basic definitions, which are relevant to this
paper.
Definition 2.1[37, 38]: A place-transition net (PT-Net) is a
quadruplet PN = P, T, F, W, where P is the set of places,
T is the set of transitions, such that P  T and P 
T=, F (P × T)  (T × P) is the set of arcs and W: F
{1, 2 ...} is the weight function. PN is said to be an
ordinary PT-Net if and only if W: F {1}, we ignore
weight one generally in model representation.
A marking is a function M0: P {0, 1, 2...}, which
distributes the tokens to the places initially. Here M0 (p) is
a non-negative integer associated with place p and
represents the number of tokens in the place p at initial
marking M0. M0 (p) is less than or equal to the capacity of
the place p, where capacity of the place is defined as the
capability of having the maximum number of tokens at
any reachable marking M from M0. A marking M0 is said
to reachable to M, if there exists a firing sequence σ = {t1,
t2,…, tn} such that M can be obtained from M0 as firing of
transitions t1, t2,…, tn.
A Petri Net structure PN = P, T, F, W without any
specific initial marking is denoted simply by PN and Petri
Net with the given initial marking is denoted by
  PN, M0. For x P (or T), *x and x* are the set of input
transitions (or places) and the set of output transitions (or
places), respectively. Further| *x | and | x* | stands for
number of the input transitions (or places) and the output
transitions (or places), respectively.
For a PT-Net, a path is a sequence of nodes  =  x1, x2…
xn  where (xi, xi+1) F for i = 1, 2… n-1.  is said to be
elementary if and only if it does not contain the same
node more than once and a cycle is a sequence of places 
p1 , p2 , …pn  such that there exist t1, t2,…, tn  T :  p1,
t1, p2, t2,…., pn , tn  forms an elementary path and (tn, p1)
F [30].
Definition 2.2For a PT-Net PN = P, T, F, W, a transition
t is said to be enabled at a marking M if and only if
 p *t: M (p) > W (p, t). On firing t, M is changed to
M' such that  p P: M'(p) = M (p) -W (p, t) + W (t,
p).And is denoted as, M [PN, t M' or M [t M'.
Definition 2.3 For a PT-Net PN, M0, a sequence of
transitions = t1, t2… tn is called a firing sequence if and
only if M0 [t1... [tn Mn. In notation we use, M0 [PN,  
Mn or M0 [ Mn.
Definition 2.4 For a PT-Net PN, M0, a marking M is
said to be reachable if and only if there exists a firing
sequence a such that M0 [ M. symbolically, M0 [PN,*
M or M0 [* M. [PN, M0 or [M0 represents the set of all
reachable markings of PN, M0.
Definition 2.5 A marked Petri net is an ordinary PT-Net
PN = P, T, F, W such that  p  P: | *p | = | p* | = 1.

 Liveness, boundedness, safeness, reversibility and
conservativeness are well known properties of Petri nets.
Liveness implies deadlock freeness. Boundedness refers
to the property that the system is free from any potential

Sunitha Kumawat et al IJCSET |November 2011 | Vol 1, Issue 10, 605-616

607

capacity overflow. Safeness and conservativeness are two
special cases of boundedness. Reversibility refers to the
capability of a system of being recovered or reinitialised
from any reachable state. In general, liveness,
boundedness and reversibility collectively characterise a
robust or well-behaved system.
Definition 2.6. For a PT-net PN, M0, a transition t is said
to be live if and only if  M [M0, there exists an M': M
[* M' [t. PN, M0 is said to be live if and only if every
transition is live.
Definition 2.7. For a PT-net PN, M0, a place p is said to
be k-bounded (or bounded) if and only if M  [M0 : M
(p) < k, where k > 0. PN, M0 is said to be k-bounded (or
bounded) if and only if every place is k-bounded.
Definition 2.8. A PT-net PN, M0, is said to be safe if and
only if every place is 1-bounded.
Definition 2.9. A PT-net PN, M0, is said to be reversible
if and only if M [M0: M [* M0.
Definition 2.10 A PT-net PN, M0, is said to be well-
behaved if and only if it is live, bounded and reversible.
Definition 2.11 Let PN = P, T, F, W, be a PT-net, where
P = {p1, p2,…, pm} and T = {t1, t2,…, tn}. The incidence
matrix of N is an m  n matrix V whose typical entry vi=
W(pi,tj)- W(tj,pi) represents the change in number of
tokens in pi after firing tj once, for i = 1, 2, ... , m and j =
1, 2, ... , n.
Definition 2.12 A PT-net PN = P, T, F, W, is said to be
conservative if and only if there exists an m-vector > 0
such that V = 0, where m = | P | and V is the incidence
matrix of PN.

Fig. 3 shows a PT-net PN, M0 which is live,
bounded, safe, reversible and conservative.

Fig.3 A live, bounded, safe, reversible and conservative
Petri net.

III. AUGMENTED MARKED PETRI NET
GRAPH AND ITS COMPOSITION

AMPN-structure refers to a augmented-marked-Petri net
structure. In the literature, augmented-marked-Petri net is
not well known, as compared to other sub-classes of Petri
nets such as free-choice nets [33]. However, they possess
many special properties pertaining to liveness,
boundedness and reversibility. This section introduces
Dynamic augmented marked Petri net and their special
properties.
 3.1 Augmented Marked Petri Net: An Augmented
marked Petri net A M P N = MPN, M0; R is a M a r k e d
P e t r i n e t g r a p h MPN, M0 , with a specific subset
of places R called resource places, Such that: (a) every
place in R is marked by marking M0. (b) A n marked
Petri net g r a p h M P N ' , M 0' can be obtained from
MPN, M0 (t); R by removing the places in R and their
associated arcs. (c) For each place pR, there exist k > 1
pairs of transitions Dk = { (ts1, tr1), (ts2, tr2),...,
(tsk, t rk)} s u c h that p* = { ts1, ts2,..., tsk} T a n d *p =
{tr1,tr2,..., trk } T a n d that, for each (tsi, tri)  Dk, there
exists an elementary path in AMPN say,  pi connecting
tsi to tri. (d) In MPN', M0' (t), every cycle is marked and
no pi is marked, see Fig. 4. Here we replace MPN, M0;
R simply by PN, M0; R in our paper.
3.2 Composite Augmented Marked Petri nets: Let
AMPN1, M 0 1 ; R 1  a n d AM P N 2, M 0 2 ; R 2
b e t w o Augmented marked Petri net graphs, in which
R1' = { r 11, r 12,. . . , r 1k } R1 and R2' = {r21, r22 ,...,
r2k} R2 are the common resource places. Let r11 and r21
be fused as one single place r1, r12 and r22 into r2, .. ., r 1k
and r2k into rk, then the resulting net is also an
Augmented marked Petri net graph AMPN, M 0 ; R ,
w h e r e R = (R 1\ R 1')  (R2\ R 2 '){ r 1, r 2, . . . , r k
}.This net AMPN, M 0 ; R  is called the composite
Augmented Marked Petri Net graph of
AMPN1, M 0 1 ; R 1  a n d A M P N 2, M 0 2 ; R 2 via
a set of common resource places { (r11, r 21),
(r12, r 22),…, (r1k, r 2k) . R F = { r 1, r 2,… r k} i s called
the set of fused resource places that are obtained after
fusing (r11, r 21), (r12, r 22),…, (r1k, r 2k) . F i g . 5 (a)
a n d 5 (b) show two Augmented marked Petri net graphs
AMPN1, M 0 1 ; R 1 a n d A M P N 2, M 0 2 ; R 2, Fig.
5 shows the composite Augmented marked Petri net
AMPN,M 0 (t) ; R ofAMPN1, M 0 1 ; R 1 a n d A M P
N 2, M 0 2 ; R 2 v i a (r11, r 21), where R F = { r 1}. A
PN, M0 be a PT-net, where R = {r1, r2, ..., rk} is the set
of marked places such that | *ri | > 0 and | ri* | > 0 for i =
1, 2, k. PN, M0 is said to be of an AMPN-structure if
and only if PN, M0; R is an Augmented Marked Petri
Net. For a PT-net PN, M0, a set of places S is called a
siphon if and only if *S  S*. S is said to be minimal if
and only if there does not exist any siphon S' in N such
that S' S. S is said to be empty at a marking M  [M0 if
and only if S contains no places which are marked by M.
And a set of places Q is called a trap if and only if Q*
*Q. Q is said to be maximal if and only if there does not

Sunitha Kumawat et al IJCSET |November 2011 | Vol 1, Issue 10, 605-616

608

exist any trap Q' in N such that Q  Q'. Q is said to be
marked at a marking M [M0 if and only if Q contains at
least one place which is marked by M.

Fig.4 Augmented Marked Petri net Graph

Fig. 5(a) (AMPN1, M01, R1)

 Fig. 5(B) (AMPN2, M02, R2)

Fig. 5(c) Composition of two augmented Petri nets AMPN1

and AMPN2 in Fig. 5(a) and 5(b) via {r11, r12}

 Property 3.1 [22]. An AMPN = PN, M0; R is live and
reversible if and only if it does not contain any potential
deadlock. (Note: A potential deadlock is a siphon which
would eventually become empty.)
For an AMPN = PN, M0; R, a minimal siphon is called
an R-siphon if and only if it contains at least one place in
R.
Property 3.2 [22]. An AMPN = PN, M0; R is live and
reversible if and only if no R-siphons eventually become
empty.

Property 3.3 [22]. An AMPN = PN, M0; R is live and
reversible if every R-siphon contains a marked trap.
For the AMPN = PN, M0; R shown in Fig. 4, each R-
siphon contains a marked trap, so
PN, M0; R is live and reversible.
Suppose an AMPN = PN, M0; Ris transformed into a
PT-net PN', M0' as follows. For each p R, k pairs of
transitions {(ts1, tr1), (ts2, tr2)… (tsk, trk) }, replace with a set
of places {q1, q2, qk }, such that M0'[qi] = M0[p] and qi

* =
{ tsi } and *qi = { tri } for i = 1, 2, ... , k. PN', M0' is called
the R-transform of PN, M0; R.
Property 3.4 [22]. Let PN', M0' be the R-transform of an
AMPN = PN, M0; R. AMPN is bounded and
conservative if and only if every place in PN', M0'
belongs to a cycle.
Fig. 6 shows the R-transform PN', M0' of the AMPN
PN, M0; R described in Fig.4. PN', M0' is bounded,
where every place belongs to a cycle. PN, M0; R is
bounded and conservative.

IV. Labelled Petri nets with an AMPN-
Structure and Specification of
object interaction scenarios as a
Labelled Petri net

 In this section, we show how an object interaction
scenario can be formally specified as a Labelled Petri Net
with an AMPN-structure (Step 1 of our proposed
method).
A labelled Petri net is a Petri net, where labels are
assigned to places and transitions. Usually, places are
labelled by conditions to denote specific system substates
in which the conditions hold and transitions are labelled
by events (denote specific occurrences of the events).
Definition 4.1. A Labelled Petri net (LPN) is a 7-tuple i.e.,
LPN = P, T, F, C, E, Lp, Lt, where P, T, F  is an
ordinary PT-net, C is a set of condition labels, E is a set of
event labels, Lp: P  C is a function for assigning a
condition label to every place, and Lt: T  E is a
function for assigning an event label to every transition.

Fig.6 The R-transform of the augmented marked Petri net

in Fig.4

Sunitha Kumawat et al IJCSET |November 2011 | Vol 1, Issue 10, 605-616

609

Definition 4.2. Let LPN = P, T, F, C, E, Lp, Lt  be a
Labelled Petri Net. A place p is said to be uniquely
labelled in LPN if and only if  p' P: (Lp(p') = Lp(p)) 
(p' = p). A transition t is said to be uniquely labelled in
LPN if and only if  t'  T: (Lt(t') = Lt(t))  (t' = t). LPN
is said to be uniquely labelled if and only if all places and
transitions are uniquely labelled.
Fig. 7 shows a typical labelled Petri net. Places p3, p4, p5,
p6, p9 and p10 are uniquely labelled, whereas p1, p2, p7 and
p8 are not. As an illustration, condition label c1 appears in
p1 and p7, and c2 in p2 and p8. Transitions t3, t4 and t5 are
uniquely labelled, where as t1, t2, t6 and t7 are not, as an
example, event label e1 appears in t1 and t6, and e2 in t2

and t7. Therefore, the LPN is not uniquely labelled.

Fig. 7 A labelled Petri net which is not uniquely labeled

For an object interaction scenario specified as a Labelled
Petri Net, the location where an event occurs is
represented by a transition and the location of a condition
by a place. The semantic meanings of conditions and
events are denoted by the labels of the places and
transitions respectively. For an event to occur, some
conditions must be fulfilled in advance and some
afterwards. These pre-conditions and post-conditions are
represented by the pre-set and post-set of the transition
representing the event.

Step 1 of the proposed method is to specify the given
object interaction scenarios as Labelled Petri Nets with an
AMPN-structure. Consider an object-oriented system
involving two objects, x and y, of classes X and Y
respectively. There are three typical interaction scenarios
exhibited by x and y, specified as UML sequence
diagrams and collaboration diagrams (BRJ99, RJB99) in
Fig. 8. In conventional UML sequence diagrams and
collaboration diagrams, there are no formal notations for
denoting the pre-condition and post-condition of each
event occurrence in an object interaction scenario.
Therefore, for an explicit representation of the causal
relationship between events and conditions, appropriate
condition labels are appended to these diagrams.

Fig 8. Object interaction scenarios in UML sequence

diagrams and collaboration diagram

Fig. 9 shows object interaction Scenarios 1, 2 and 3,
specified as LPNs LPN1, M01, LPN2, M02 and LPN3,
M03 respectively. They all are of AMPN-structure.

LPN1, M01 is constructed for representing scenario
1 as follows. For each location of a condition, a new place
with a proper condition label is created. For example, p11
denotes a location of condition c11 for object x, so
condition label x.c11 is assigned to p11. For each event
occurrence, a new transition with a proper event label is
constructed. For example, t11 denotes an occurrence of
event e1, so event label e1 is assigned to t11. The event
occurrence has a pre-condition x.c11 and a post-condition
x.c12. Hence, *t11 = {p11} and t11

* = {p12}. Arcs between
p11 (pre-condition) and t11 and between t11 and p12 (post-
condition) are appended for denoting their causal
relationships. The remaining location of conditions and
events are created accordingly. Following the same rules,
LPN2, M02 and LPN3, M03 are constructed for
representing scenarios 2 and 3, respectively.

V. SYNTHESIZING AND ANALYZING THE

INTEGRATED SYSTEM OF
LABELLED PETRI NETS

After specifying the object interaction scenarios as
AMPNs (Step 1 of the proposed method), we synthesize
these scenarios into an integrated system. In principle, a
scenario portrays partial system behaviors of how the
objects are interacted in order to perform a specific
functionality. These AMPNs are essentially partial system
behavioural specifications which are to be synthesized
together to form a single coherent whole. This section
describes Step 2 of our proposed method - the synthesis of
Labelled Petri Nets into an integrated net which
represents the integrated system, and analysis of the
system. The synthesis is based on the authors' earlier work

Sunitha Kumawat et al IJCSET |November 2011 | Vol 1, Issue 10, 605-616

610

[30, 31]. It is made by fusing those places with refer to the
same system initial state or condition. The integrated net
so obtained is of AMPN-structure, For LPN, M0; R),
every R-siphon contains a marked place, and hence,
would never become empty. According to Properties 3.2
and 3.3, LPN, M0; R is live and reversible. Since every
place in its R-transform is covered by cycles, according to
Property 3.4,

LPN, M0; R is also bounded and conservative.
Therefore, it can be concluded that the integrated system
is well-behaved.

VI. ELIMINATING DUPLICATE LABELS

FROM THE INTEGRATED NET

Consolidating the object interaction scenarios, the
integrated net obtained from Step 2 of the proposed
method serves to represent the system as a coherent
integrated whole. In general, this integrated net is not
necessarily uniquely labelled. For the integrated net
LPN, M0 in Fig. 10 for example, places p15 and p26 have
the same condition label y.c22, and transitions t13 and t24
have the same event label e3. This reflects the fact that the
locations or conditions for occurrence of the same event
may be different at different moments within a scenario or
among different scenarios. Yet, every condition is
eventually implemented as a unique system substate and
every event as a unique operation. Thus the integrated net
to be effectively used for implementation purposes, it
needs to be uniquely labelled where all the duplicate
condition labels and duplicate event labels are eliminated.

The elimination cannot be done by just fusing places
with the same condition label, and transitions with the
same event label. In this case the resulting net may
exhibit firing sequences different from the original ones.
In other words, the system behaviours may be distorted.
Step 3 of the proposed method is to eliminate all duplicate
labels while preserving the original firing sequences
(event sequences). We describe this step in detail.

Definition 6.1. Let S be a uniquely labelled subnet of
a Labelled Petri Net LPN. The pattern of S in LPN,
denoted as Patt(LPN, S), is a condition-event net with an
identical structure and label allocation S while ignoring
the identities of places and transitions of S.

Let Lx and Ly be patterns of subnets in a Labelled
Petri Net. Lx  Ly and Lx  Ly denote the union and
intersection of Lx and Ly, respectively. Lx \ Ly denotes the
displacement of Lx from Ly. Lx and Ly are said to be
disjoint if and only if Lx  Ly =. For a Labelled Petri
Net LPN, a uniquely labelled subnet S is called a common
subnet if and only if there exists at least one uniquely
labelled subnet S' such that S'  S and Patt(LPN, S') =
Patt(LPN, S). Let S be a pattern of the common subnets in
LPN. [LPN, L] = {S | Patt(LPN, S) = L} represents the
group of common subnets having the same pattern L. For
a subnet S = P', T', F' of a PT-net, Pre(S) = (*P'\T') 
(*T'\P') is called the pre-set of S, Post(S) = (P'*\T') 
(T'*\P') is called the post-set of S, Head(S) = Pre(S)* 

(P'  T') is called the head of S, and Tail(S) = *Post(S) 
(P'  T') is called the tail of S.

Definition 6.2. A subnet S of a PT-net LPN = P, T,
F is said to be of PP-type if and only if Head(S)  P and
Tail(S)  P.

Fig. 11 shows a uniquely labelled subnet S which is
PP-type. Fig. 12 shows the pattern of S.

Fig.9 Labelled Petri nets representing the objects
interaction scenarios in Fig.8

Fig. 10 The integrated net obtained by synthesizing

the labelled Petri nets in Fig. 9.

Sunitha Kumawat et al IJCSET |November 2011 | Vol 1, Issue 10, 605-616

611

Fig. 11

Fig.12

We propose to eliminate duplicate labels by fusion of
common subnets, as outlined below.

Identify groups of common subnets for fusion. These
groups of common subnets need to be maximal and
disjoint for two reasons. First, the net obtained after the
fusion will become uniquely labelled. Second, the number
of groups of common subnets for fusion can be reduced to
minimum as they are maximal.

Transformation of common subnets. For preservation
of firing sequences, common subnets are transformed
before fusion. Based on coloured Petri nets [36], a unique
colour is assigned to each common subnet as colour labels
of its ingoing and outgoing arcs. A token flowing into the
common subnet is coloured according to the colour label
of the ingoing arc. Its colour is reset as it flows out via the
same colour-labelled outgoing arc. Besides, the subnets
are converted to PP-type.

Fusion of transformed common subnets. The
transformed common subnets of each group are fused into
a single subnet. A uniquely Labelled Petri Net is
ultimately obtained.

The following algorithm formally describes the
elimination process. A detailed elaboration of the
elimination process can be found in [35].
Algorithm for Elimination of Duplicate Labels from a
Labelled Petri Net:
1. Identify maximal disjoint groups of common subnets:
1.1 Find all possible common subnets from LPN. Let  =
{L1, L2, ..., Ln} be their patterns.
1.2 Retain only the maximal patterns: Remove any Li

from  if there exists Lj such that Li is a sub-pattern
of Lj and  Si [LPN, Li],  Sj  [LPN, Lj]: Si is a
subnet of Sj.

1.3 Make the overlapping patterns disjoint : For every Li,
Lj  such that Li  Lj and Li and Lj are not disjoint,
set  = ( - { Li, Lj})  {Li  Lj}  { Li \Lj}  { Lj\Li
}.

1.4 Categorise the common subnets of LPN into groups
{[LPN, Li] | Li  }.
2. For each group of common subnets [LPN, Li]:
2.1 Convert each subnet S [LPN, Li] if S is not of PP-
type:

2.1.1 For each transition ti Head(S): (a) Create
dummy transition ti' with unique label i,
dummy place pi' with label i, and arcs (ti', pi')
and (pi', ti). (b) For each p  *ti : Remove arc
(p, ti), and then create arc (p, ti'). (c) Re-define
S by including pi' and (pi', ti).

2.1.2 For each transition tj  Tail(S): (a) Create
dummy transition tj' with unique label j,
dummy place pj' with label j, and arcs (tj, pj')
and (pj', tj'). (b) For each p  tj*: Remove arc
(tj, p), and then create arc (tj', p). (c) Re-define
S by including pj' and (tj, pj').

2.2 Assign a unique colour label K for each subnet S 
[LPN, Lj]:

2.2.1 For each arc (ti, pi) where ti  Pre(S) and pi 
Head(S): Assign colour label K to (ti, pi).

2.2.2 For each arc (pj, tj) where pj  Tail(S) and tj 
Post(S): Assign colour label K to (pj, tj).

2.3 Fuse the common subnets in [LPN, Li] into one single
subnet.
We apply the algorithm for eliminating the duplicate
labels for the integrated net (LPN, M0) in Fig. 10. The
obtained uniquely Labelled Petri Net (LPN', M0') is given
in Fig. 13.

Fig.13 The uniquely labelled Petri net obtained after

eliminating duplicate labels from the integrated net in
Fig.10

Sunitha Kumawat et al IJCSET |November 2011 | Vol 1, Issue 10, 605-616

612

VII. OBTAINING OBJECT-BASED
BEHAVIOURAL SPECIFICATIONS

 In this section, we implement Step 4 of our proposed
method to obtain the individual object-based behavioural
specifications. These individual object-based behavioural
specifications are obtained by projecting the integrated
net onto individual objects.

The projection is made by ignoring those places,
transitions and arcs which are irrelevant to the object
concerned. The projected net so obtained serves as the
object behavioural specifications.

Consider the integrated net LPN', M0' in Fig. 13.
The projection onto object x is obtained as follows. We
keep those places with object label x (including dummy
places) and those transitions (including dummy
transitions) having at least one input place or output place
labelled by x, as well as their associated arcs. Similarly,
for the projection onto object y, we keep those places with
object label y (including dummy places) and those
transitions (including dummy transitions) having at least
one input place or output place labelled by y, as well as
their associated arcs.

Fig. 14 shows the projections LPNx, M0x and
LPNy, M0y obtained by projecting the net LPN', M0' in
Fig. 13 onto objects x and y, respectively. LPNx, M0x 
and LPNy, M0y  are uniquely labelled, simply because
LPN', M0' is uniquely labelled. They serve as the
behavioural specifications for objects x and y, where
conditions and events are uniquely represented.

Fig. 14 The nets obtained by projecting the integrated net

in Fig. 13 onto objects x and y.

VIII. LABELLED INTEGRATED NET OF
OFFICE ACCESS CONTROL SYSTEM

AND ITS PROJECTION ONTO
INDIVIDUAL OBJECTS

An Office Access Control System (OACS) is a system
used in an academic or a company for controlling staff
access to its offices and laboratories. Among these offices

and laboratories, some can be accessed by all staff
members while other by authorised staff only during
specified time periods. For controlling the staff access,
every entrance is implemented with a card-reader, an
emergency switch and an electronic lock, all being
connected to a centralized server. The server maintains
the access privileges and validates every access to the
offices/laboratories. There are three typical cases for each
access request.

Authorised access (Uj). If a staff member wants to
access an office/laboratory, he/she has to present his/her
staff card via a card-reader. Access is granted and the
door is unlocked for thirty seconds and then re-locked.

Unauthorised access (U2). A staff member wants to
access an office/laboratory. He/She presents his/her staff
card via a card-reader. If the Access is not granted then
the door remains locked.

Emergency access (U3). A staff member wants to
access an office/laboratory for emergency. He/She presses
the emergency key. The door is unlocked immediately,
until it is reset by a security officer.

From the object-oriented perspectives, the server (s:
Server) and doors (d: Door) are objects of the Office
Access Control System. They are interacting with each
other in order to perform the above system functionalities.
For each of the access types U1, U2 and U3, there are
three corresponding object interaction scenarios.
Fig. 15 shows these object interaction scenarios specified
as labelled Petri nets of the Office Access Control
System, where appropriate condition labels are appended
for denoting the pre-conditions and post -conditions for
each event occurrence.
Legends for condition labels and event labels:

C11 Server is ready e1 Request for access is
request

C12 Server is processing
access request

e2 Access is granted

C13 Server is waiting for
re-lock

e3 Time expires after
access granted

C14 Server is writing
log(successful access)

e4 Successful access is
committed

C15 Server is writing
log(unsuccessful
access)

e5 Access is not granted

C16 Server is waiting for
emergency reset

e6 Unsuccessful access is
committed

C17 Server is writing
log(emergency access)

e7 Request for
emergency access is
received

C21 Door is locked e8 Door is reset to
normal

C22 Door is waiting for
response

e9 Emergency access is
committed

C23 Door is unlocked
(Successful access)

C24 Door is unlocked
(emergency access)

Step 1 of the proposed method is to specify object
interaction scenarios as Labelled Petri Nets. Fig. 15 shows
the Labelled Petri Nets LPN1, M01, LPN2, M02 and
LPN3, M03 representing the object interaction scenarios
for U1, U2 and U3, respectively.

Sunitha Kumawat et al IJCSET |November 2011 | Vol 1, Issue 10, 605-616

613

Step 2 of the proposed method is to synthesise the
Labelled Petri Net into an integrated system, and analyse
the system on its liveness, boundedness, reversibility and
conservativeness. LPN1, M01, LPN2, M02 and LPN3,
M03 are synthesised into an integrated net LPN, M0 by
fusing those places which refer to the same system initial
states or conditions : Places p11, p21 and p31 are fused into
one place p41, and p15, p24 and p34 into p42. Fig. 16 shows
the integrated net LPN, M0 so obtained.

 The integrated net LPN, M0 is of a AMPN-
structure. Let R = {p41, p42}. For LPN, M0; R, every R-
siphon contains a marked place and hence would never
become empty. According to Properties 3.2 and 3.3,
LPN, M0; R is live and reversible. Since every place in
its R-transform is covered by cycles, according to
Property 3.4, LPN, M0; R is also bounded and
conservative. Therefore, it may be concluded that the
Office Access Control System is well-behaved.

 As shown in Fig. 16, LPN, M0 is not uniquely
labelled as it contains duplicate labels. For example, place
p12 and p22 have the same condition label s.c12 and
transitions t11 and t21 have the same event label e1. Since
every condition is eventually implemented as a unique
substate and every event as a unique operation, for an
effective use of integrated net for implementation
purposes, these duplicate labels must be eliminated.

We use Step 3 to eliminate duplicate condition labels
and duplicate event labels from the integrated net LPN,
M0 by fusing the common subnets. The elimination
process is done by applying the algorithm described in
Section 6. Fig. 17 shows the uniquely Labelled Petri Net
LPN', M0'.
Step 4 of the proposed method is to obtain the individual
object-based behavioural specification as projections of
the integrated net onto the objects. The projection is made
by ignoring those places, transitions and arcs which are
irrelevant to the object concerned.

Consider the integrated net LPN', M0' in Fig. 17.
For the projection onto object s (the server object), we
keep those places with object label s (including dummy
places) and those transitions (including dummy
transitions) having at least one input place or output place
labelled by s, as well as their associated arcs. Similarly,
for the projection onto object d (the door object), we keep
those places with object label d (including dummy places)
and those transitions (including dummy transitions)
having at least one input place or output place labelled by
d, as well as their associated arcs.

Fig. 18 shows the projections of LPNs, M0s and
LPNd, M0d obtained by projecting the integrated net
LPN', PM0') in Fig. 17 onto objects s and d, respectively.
As the integrated net LPN', M0' is uniquely labelled, its
projections LPNs, M0s and LPNd, M0d are also
uniquely labelled, where every condition or event is
uniquely represented. LPNs, M0s and LPNd, M0d then
serve as the behavioural specifications for the server (s:
Server) and door (d: Door) objects, respectively.

Fig. 15 labelled Petri nets representing the object

interaction scenarios of U1, U2 and U3.

Fig. 16 The integrated net obtained by synthesizing

the labelled Petri nets in Fig. 15

 Fig. 17 The uniquely labelled Petri net obtained after
eliminating duplicate labels from the integrated net in

Fig.16

Sunitha Kumawat et al IJCSET |November 2011 | Vol 1, Issue 10, 605-616

614

Fig. 18 The nets obtained by projecting the integrated net

in Fig. 17 onto objects s and d.

CONCLUSION
 One of the most difficult tasks in object-oriented system
design is to ensure that the derived object-based
behavioural specifications reflect exactly the given object
interaction scenarios and that the system is well-behaved.
In this paper, a Petri-net-based method is proposed for
model the ACS. It begins with specifying each object
interaction scenario as a labelled Petri net with an AMPN-
structure. These labelled Petri nets are synthesized into a
single integrated net which represents the integrated
system. By making use of the special properties of the
AMPN-structure, the system can be effectively analysed
on its liveness, boundedness, reversibility and
conservativeness. Duplicate labels are then eliminated by
fusing common subnets, so as to attain a uniquely
Labelled Petri Net on which individual object-based
behavioural specifications are obtained as projections.
The proposed method can be implemented as tool to
support object-oriented system design. By capturing the
functional requirements of a system as a set of object
interaction scenarios, it helps in performing rigorous
system synthesis and analysis. The correctness of this
refinement can be assured. Moreover, the object-based
behavioral specifications so obtained can be readily used
for code generation. This inevitably contributes towards
smooth transitions from functional requirements through
design to implementation for object-oriented system
development.

REFERENCES

[1]B.Baugarten,”Petri Nets basics and application”, 2nd ed., Berlin:

spectrum akademischer Verlag,
 (1996).
[2] B. Dano, H. Briand and F. Barbier, "Progressing Towards Object-

Oriented Requirements Specifications Using the Use Case
Concept", Proceedings of the IEEE Symposium and Workshop on
Engineering of Computer-Based Systems, pp. 450-456, IEEE
Computer Society Press (1996).

[3] B. Dano, H. Briand and F. Barbier, "An Approach Based on the
Concept of Use Case to Produce Dynamic Object-Oriented
Specifications", Proceedings of the IEEE International Symposium
on Requirements Engineering, pp. 54-64, IEEE Computer Society
Press (1997).

[4] C.A. Petri, "Kommunikation mit Automaten." Bonn: institute fur
Instrumentelle Mathematik, Schriften des MM Nr. 3, 1962. Also,
English translation,"Communication with Auto-mata." New York:
Griffiss Air Force Base.Tech. Rep.RADC-TR-65-377, vol.1,
(1966).

 [5] C.A. Petri, "Fundamentals of a theory of asynchronous information
flow," in Proc. of IP Congress 62, pp. 386-390,(1963).

 [6] D. Rosenberg ,”Use Case Driven Object Modeling with UML : A
Practical Approach”, Addison-Wesley(1999).

 [7] D. Rosenberg and K. Scott, “Applying Use Case Driven Object
Modeling with UML”, Addison-Wesley (2001),.

[8] E. Smith , "On Net Systems Generated by Process Foldings",
Advances in Petri Nets, Lecture Notes in Computer Science, Vol.
524, pp. 253-295, Springer-Verlag (1991).

 [9] F. Commoner, A. W. Holt, S. Even and A. Pnueli, “Marked directed
graph”, Journal of Computer and System Sciences- pp. 511-523,
(1971).

[10] F. Bordeleau and R.J.A. Buhr, "UCM-ROOM Modelling : From
Use Case Maps to Communicating State Machines", Proceedings
of the IEEE International Symposium and Workshop on
Engineering of Computer-Based Systems, pp. 169-178, IEEE
Computer Society Press (1997),.

 [11] F. Bordeleau, J.P. Corriveau and B. Selic, "A Scenario-Based
Approach to Hierarchical State Machine Design", Proceedings of
the International Symposium on Object-Oriented Real-Time
Distributed Computing, pp. 78-85, IEEE Computer Society
Press(2000).

[12] G. Schneider and J.P. Winters, “Applying Use Cases”, Addison-
Wesley (1998).

[13] G. Booch, J. Rumbaugh and I. Jacobson, “ The Unified Modeling
Language : User Guide”, Addison-Wesley (1999).

[14] I. Graham, “Object-Oriented Methods :Principles and Practice”,
Addison-Wesley (2001).

[15] I. Jacobson , “Object-Oriented Software Engineering : A Use-
Case-Driven Approach”, Addison-Wesley (1992).

[16] I. Jacobson, G. Booch and J. Rumbaugh, ”The Unified Software
Development Process”, Addition Wesley (1999).

[17] P. Kruchten , “The Rational Unified Process :An Introduction”,
Addison-Wesley (1999).

[18] J. Iivari, "Object Orientation as Structural, Functional and
Behavioural Modelling: A Comparison of Six Methods for Object-
Oriented Analysis", Information and Software Technology,

 Vol. 37, No. 3, pp. 155-163 (1995).
[19] J. Rumbaugh, I. Jacobson and G. Booch. “The Unified Modeling

Language: Reference Manua”l, Addison-Wesley (1999).
[20] J. Arlow and I. Neustadt, “UML and the Unified Process : Practical

Object-Oriented Analysis and Design”, Addison-Wesley(2002).
[21] J. Desel and J. Esparza, “Free-choice Petri Nets”, Cambridge

University Press (1995).
[22] F. Chu and X. Xie,"Deadlock Analysis of Petri Nets Using Siphons

and Mathematical Programming", IEEE Transactions on Robotics
and Automation, Vol. 13, No. 6, pp. 793-804 (1997).

[23] J. Desel and W. Reisig "Place Transition
Petri Nets", Lectures on Petri Nets 1 : Basic Models, Lecture Notes in

Computer Science, Vol. 1491, pp.122-173, Springer-Verlag
(1998).

[24] J. L., Peterson, “Petri net Theory and the Modeling of Systems”,
Prentice Hall, INC, Englewood, Cliffs, and New Jercy, (1981).

[25] K. O. Chow and S. Yeung, "Behavioural Modellingin Object-
Oriented Methodologies", Information and Software Technology,
Vol. 38, No. 01, pp. 657-666 (1996).

B[26] K. Hiraishi, "Construction of a Class of Safe Petri Nets by
Presenting Firing Sequences", Application and Theory of Petri
Nets, Lecture Notes in Computer Science, Vol. 616, pp. 244-262,
Springer-Verlag (1992).

[27] M. Glinz, "A Lightweight Approach to Consistency of Scenarios
and Class Models", Proceedings of the IEEE International

Sunitha Kumawat et al IJCSET |November 2011 | Vol 1, Issue 10, 605-616

615

Conference on Requirements Engineering, pp. 49-58, IEEE
Computer Society Press(2000).

[28] P. Graubmann, "The Construction of EN Systems from a Given
Trace Behaviour", Advances in Petri Nets, Lecture Notes in
Computer Science, Vol. 340, pp. 133-153, Springer-Verlag(1988).

[29] S. Kirani and W.T. Tsai, "Method Sequence Specification and
Verification of Classes", Journal of Object-Oriented
Programming, Vol. 7, No. 6, pp. 28-38(1994).

[30] Sunita Kumawat and G.N. Purohit, ”Travelling Salesman’s Problem
in weighted directed graph: A Petri net Approach” Proceedings of
APORS 2009, pp.42, (2009).

[31] Sunita Kumawat and G.N. Purohit “Synthesis of The Distributed
Wireless Sensor Networks Base Nodes to a Common Sharing Server
using Dynamic Augmented Marked Petri Net” International Journal
of Advanced Engineering Application, June issue (2010).

[32] T. Murata, "Petri Nets : Properties, Analysis and Applications",
Proceedings of the IEEE, Vol.77, No. 4, pp. 541-580 (1989).

[33] W.J. Lee, S.D. Cha and Y.R. Kwon, "Integration and Analysis of
Use Cases Using Modular Petri Nets in Requirement

Engineering", IEEE Transactions on Software Engineering, Vol.
24, No. 12, pp. 1115-1103(1998).

[34] W. Reisig, “Petri Nets and introduction “Heidelberg: springer-
verlag, (1985).

[35] K.S. Cheung and K.O. Chow, "Elimination of Duplicate Labels in
Petri-Net-Based System Specification", Proceedings of the
International Conference on Computer and Information
Technology, pp. 932-936, IEEE Computer Society Press (2006),.

[36] K. Jensen, "Coloured Petri Nets", Petri Nets : Central Models and
Their Properties, Lecture Notes in Computer Science, Vol. 254,
pp. 248-299, Springer-Verlag (1986).

[37] Sunita Kumawat and G.N. Purohit,”Travelling Salesman’s Problem:
A Petri net Approach”International journal of computer and network
security(IJCNS), vol.II, pp.19-24.(2010).

[38] Sunita Kumawat and G.N. Purohit, ” Extraction of non-
Hamiltonian weighted directed graphs from a Hamiltonian
weighted directed graph” International Journal of Mathematical
Sciences and Engineering Application(IJMSEA), vol. III.. (2010)

.

Sunitha Kumawat et al IJCSET |November 2011 | Vol 1, Issue 10, 605-616

616

