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Abstract—In this paper we purpose a Petri-net-based 
method for describing the model of an object-oriented design 
of Access Control System (ACS), by specifying the object 
interaction scenarios as Petri nets with an Augmented 
Marked Petri Net (AMPN) structure. After synthesizing 
these scenarios into an integrated net, we analyze the system 
based on the special properties of AMPN. For unique 
representation of events and conditions in an object-oriented 
ACS, an improved algorithm is applied to the integrated 
labelled Petri net of ACS to eliminate duplicate condition 
labels and event labels, with preserving the event firing 
sequences. Object-based behavioural specifications of ACS 
are then obtained as projections of the integrated labelled 
Petri nets onto the objects. For the illustration we present 
the model of Office access control system in any academic or 
industry.   
 
Keywords—Access control System; Petri net; Augmented 
marked Petri net Graph; Resources; Siphon. 
 

I. INTRODUCTION 
In the past two decades, object orientation has been an 
influential discipline in software engineering. According 
to the principles of object orientation, an object is an 
entity that encapsulates states and behaviours. A system is 
considered as a collection of objects which are interacting 
with others in order to accomplish the system 
functionalities. It can be abstracted in two aspects 
(structure and behaviour) and two levels (intra-object and 
inter-object) [13], [14], [18], [19], and [25]. Structurally, 
objects with the same attributes are grouped into classes 
while classes having common attributes are generalized to 
form an inheritance hierarchy. Objects exhibit different 
behaviour on interacting with others, thus demonstrating 
different object interaction scenarios.  

In the previous literature, there are only a few 
approaches or methods for deriving object-based 
behavioural specifications are given set of use cases or 
object interaction scenarios [12], [14], [15], [16]. These 
use cases are elaborated and expressed in terms of object 
interaction scenarios and specified as UML sequence 
diagrams and collaboration diagrams [6], [7], [12], [15], 
[16], and [17]. Bordeleau proposed an approach which 
takes a traceable progression from use cases to the object-
based state machines [10], [11]. Dano proposed an 
approach where the use cases are synthesised into a 
system design according to some mapping rules [2], [3]. 
However, these approaches solve only trivial issues. The 
system design cannot be rigorously analysed for its 
liveness, boundedness and reversibility. Moreover, they 
are themselves incomplete and insufficient in the sense 
that the derived object-based state machines may not 

reflect exactly the given use cases or object interaction 
scenarios. On the other hand, there are so many 
approaches or methods which derive a system from a 
given set of event traces or sequences. Graubmann 
proposed a method for constructing an elementary net 
system from a set of event traces [28]. The method is 
based on the dependence relation between events. A set of 
possible states and state transitions, which are compatible 
to the dependence relation, are deduced. Smith proposed a 
method for constructing a condition-event system from a 
set of occurrence nets based on the concept of quotient 
nets [8]. Hiraishi proposed a method for constructing a 
Petri net from a set of firing sequences [26]. In Hiraishi's 
method, a language is first identified from the firing 
sequences. Based on the dependency relation extracted 
from the language, a safe Petri net is created. Lee also 
proposed an approach for integration of use cases using 
constraint-based modular Petri nets [33]. However, 
without concepts of object-orientation, these approaches 
and methods cannot be applied to object-oriented system 
design.  

There are some behavioral aspects of objects which 
are required to analysis the behavioral properties of 
Access control system.  
           Specification constructs for object interaction 
scenarios being too primitive. Conventional specification 
constructs for object interaction scenarios lacks the 
formality for representing the pre-conditions and post-
conditions for each event occurrence. These are however 
essentially required in deriving the object behavioural 
specifications, where the conditions, events and their 
causal relationships need to be explicitly specified. 
           Different abstractions between intra-object 
lifecycle and inter-object interaction. It is difficult to 
derive individual object behaviours (within a single object 
lifecycle) from the object interaction scenarios (among 
multiple objects) because of the difference in abstraction 
(intra-object versus inter-object). In the literature of 
object-oriented system design, there is a lack of 
systematic approaches to solving this problem 
satisfactorily. 

Difficulty in verifying the correctness of the object 
behavioural specifications. The object behavioural 
specifications so derived should be correct in the sense 
that they reflect exactly the given object interaction 
scenarios [27], [29]. Without a formal method, one needs 
to go through all possible object interaction scenarios to 
ensure correctness of the specifications. The process is 
time-consuming. 
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Lack of rigorous methods for analysing the system 
properties. One major objective in system design is to 
obtain a live, bounded and reversible system - liveness 
implies freeness of deadlocks, and boundedness implies 
absence of capacity overflows, while reversibility refers 
to recoverability. Without a rigorous analysis method, it is 
difficult for one to analyze whether the outcome system 
design is live, bounded and reversible. 

In this paper, based on Petri nets, we propose a 
method for refining Access control system with a given 
set of object interaction scenarios into object-based 
behavioural specifications, where the above-mentioned 
problems can be resolved effectively. It involves the 
following steps: 

Step1. Each object interaction scenario is specified as 
a labelled Petri net (Labelled Petri Net) with an AMPN-
structure (i.e. structurally an Augmented Marked Petri 
Net). 

Step2. The Labelled Petri Nets are synthesised into an 
integrated net which serves to represent the system. Based 
on the properties of AMPN-structure, the system is 
analysed. 

Step 3. Duplicate labels are eliminated from the 
integrated net, while preserving the firing sequences 
(event sequences). 

Step 4. Individual object-based specifications are 
obtained as projections of the integrated net onto the 
objects. 
Fig. 1 shows an overview of the proposed method. 
Our proposed method offers a number of distinctive 
features. 

Formal specification of object interaction scenarios. 
The object interaction scenarios are specified as 
unambiguous and semantically rich Labelled Petri Nets. 

The partial orderings of events as well as the causal 
relationships between events and conditions are explicitly 
represented. 

Effective analysis on the essential system properties. 
The integrated system possesses a AMPN-structure. By 
making use of the special properties of AMPN-structure, 
the system can be effectively analyzed on its liveness, 
boundedness, reversibility and conservativeness.  

Correctness of the derived specifications. Individual 
object behavioural specifications are rigorously derived 
from the object interaction scenarios through synthesis 
and projection. The specifications so obtained reflect 
exactly the given object interaction scenarios. 

Readiness for implementation purposes. In the 
specifications, every condition or event is uniquely 
represented so that they can be readily used for 
implementation purposes.  

The rest of this paper is organized as follows. Section 
2 provides the preliminaries to be used in this paper. 
Section 3 introduces the AMPN-structure and its 
properties are described. In Section 4, we consider object 
interaction scenarios as Labelled Petri Nets (Step 1 of the 
proposed method). In Section 5, we focus on synthesizing 
the Labelled Petri Nets into an integrated system, and 
analyzing the system properties (Step 2 of the proposed 
method). Section 6 includes an algorithm for eliminating 
duplicate labels from the integrated net (Step 3 of the 
proposed method).  Section 7 depicts how individual 
object-based behavioural specifications are obtained as 
projections of the integrated net (Step 4 of the proposed 
method). Section 8 gives a labelled integrated net of 
office access control system and its projection onto the 
objects. The conclusions are included in Section 9. 

 
Fig. 1: Overview of the proposed method. 
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II. DESCRIPTION OF PETRI NET 
            A Petri net is a graphical and mathematical 
modeling tool for describing and simulating the dynamic 
and concurrent activities of systems. Petri nets were 
invented in 1962 by Carl Adam Petri [9]. A Petri Net also 
called place-transition net (PT-Net), is a particular kind of 
directed graph together with an initial state called the 
initial marking.  In general a Petri Net is an underlying 
graph of any directed graph, which is in essence a 
directed bipartite graph with two types of nodes called 
places and transitions. In the Petri Net graph a place is 
denoted by a circle, a transition by a rectangular box or a 
bar and an arc by a directed line. The arcs are either from 
places to transitions (output of places) or from transitions 
to places (input of places). In other words, the information 
passes from a place to a transition or from a transition to a 
place. A Petri Net is a PT-Net with tokens assigned to its 
places denoted by black dots, and initially the token 
distribution over its places is done by a marking function 
denoted by M0. A token is interpreted as a command 
given to a condition (place) for the firing of an event 
(transition). An enable event may or may not fire, even if 
all input conditions are fulfilled. The firing of an event or 
transition changes the token distribution in the places. 
When a transition fires, it consumes the tokens from its 
input places, per forms some processing task, and places a 
specified number of tokens into each of its output places. 
Fig. 1 illustrates the components and behaviors of an 
ordinary Petri net. It also shows the transference process 
from the initial state to the final state by the action of firing. 
A transition is said to be enabled or fireable at M0 if for 
all input places of any transition have at least one token. A 
transition may fire if it is enabled. The new marking is 
obtained by removing one token from each of its input 
places and by putting one token in each of its output 
places.  

 
Figure. 1 Petri net model 

 

More detailed and formal description of Petri Nets is 
given in [1, 4, 5, 9, 24, 30, 32, 34, 37, 38]. We include 
here some basic definitions, which are relevant to this 
paper.  
Definition 2.1[37, 38]: A place-transition net (PT-Net) is a 
quadruplet PN = P, T, F, W, where P is the set of places, 
T is the set of transitions, such that P  T and P  
T=, F  (P × T)  (T × P) is the set of arcs and W: F 
{1, 2 ...} is the weight function. PN is said to be an 
ordinary PT-Net if and only if W: F {1}, we ignore 
weight one generally in model representation.   
A marking is a function M0: P {0, 1, 2...}, which 
distributes the tokens to the places initially. Here M0 (p) is 
a non-negative integer associated with place p and 
represents the number of tokens in the place p at initial 
marking M0. M0 (p) is less than or equal to the capacity of 
the place p, where capacity of the place is defined as the 
capability of having the maximum number of tokens at 
any reachable marking M from M0. A marking M0 is said 
to reachable to M, if there exists a firing sequence σ = {t1, 
t2,…, tn} such that M can be obtained from M0 as firing of 
transitions t1, t2,…, tn.  
A Petri Net structure PN = P, T, F, W  without any 
specific initial marking is denoted simply by PN and Petri 
Net with the given initial marking is denoted by 
  PN, M0. For x P (or T), *x and x* are the set of input 
transitions (or places) and the set of output transitions (or 
places), respectively. Further| *x | and | x* | stands for 
number of the input transitions (or places) and the output 
transitions (or places), respectively.  
For a PT-Net, a path is a sequence of nodes  =  x1, x2… 
xn   where (xi, xi+1) F for i = 1, 2… n-1.   is said to be 
elementary if and only if it does not contain the same 
node more than once and  a cycle is a sequence of places  
p1 , p2 , …pn   such that there exist t1, t2,…, tn   T :  p1, 
t1, p2, t2,…., pn , tn  forms an elementary path and (tn, p1) 
F [30].  
Definition 2.2For a PT-Net PN = P, T, F, W, a transition 
t is said to be enabled at a marking M if and only if  
 p  *t: M (p) > W (p, t). On firing t, M is changed to 
M' such that  p P: M'(p) = M (p) -W (p, t) + W (t, 
p).And is denoted as, M [PN, t M' or M [t M'. 
Definition 2.3 For a PT-Net PN, M0, a sequence of 
transitions = t1, t2… tn is called a firing sequence if and 
only if M0 [t1... [tn Mn. In notation we use, M0 [PN,   
Mn or M0 [ Mn.  
Definition 2.4 For a PT-Net PN, M0, a marking M is 
said to be reachable if and only if there exists a firing 
sequence a such that M0 [ M. symbolically, M0 [PN,* 
M or M0 [* M. [PN, M0 or [M0 represents the set of all 
reachable markings of PN, M0. 
Definition 2.5 A marked Petri net is an ordinary PT-Net 
PN = P, T, F, W such that  p  P: | *p | = | p* | = 1. 

 Liveness, boundedness, safeness, reversibility and 
conservativeness are well known properties of Petri nets. 
Liveness implies deadlock freeness. Boundedness refers 
to the property that the system is free from any potential 
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capacity overflow. Safeness and conservativeness are two 
special cases of boundedness. Reversibility refers to the 
capability of a system of being recovered or reinitialised 
from any reachable state. In general, liveness, 
boundedness and reversibility collectively characterise a 
robust or well-behaved system. 
Definition 2.6. For a PT-net PN, M0, a transition t is said 
to be live if and only if  M [M0, there exists an M': M 
[* M' [t. PN, M0 is said to be live if and only if every 
transition is live. 
Definition 2.7. For a PT-net PN, M0, a place p is said to 
be k-bounded (or bounded) if and only if M  [M0 : M 
(p) < k, where k > 0. PN, M0 is said to be k-bounded (or 
bounded) if and only if every place is k-bounded. 
Definition 2.8. A PT-net PN, M0, is said to be safe if and 
only if every place is 1-bounded. 
Definition 2.9. A PT-net PN, M0, is said to be reversible 
if and only if M [M0: M [* M0. 
Definition 2.10 A PT-net PN, M0, is said to be well-
behaved if and only if it is live,  bounded and reversible. 
Definition 2.11 Let PN = P, T, F, W, be a PT-net, where 
P = {p1, p2,…, pm} and T = {t1, t2,…, tn}. The incidence 
matrix of N is an m  n matrix V whose typical entry vi=  
W(pi,tj)- W(tj,pi) represents the change in number of 
tokens in pi after firing tj once, for i = 1, 2, ... , m and j = 
1, 2, ... , n. 
Definition 2.12 A PT-net PN = P, T, F, W, is said to be 
conservative if and only if there exists an m-vector > 0 
such that V = 0, where m = | P | and V is the incidence 
matrix of PN. 

Fig. 3 shows a PT-net PN, M0 which is live, 
bounded, safe, reversible and conservative. 

 

 
 

Fig.3 A live, bounded, safe, reversible and conservative 
Petri net. 

III. AUGMENTED MARKED PETRI NET 
GRAPH AND ITS COMPOSITION 

AMPN-structure refers to a augmented-marked-Petri net 
structure. In the literature, augmented-marked-Petri net is 
not well known, as compared to other sub-classes of Petri 
nets such as free-choice nets [33]. However, they possess 
many special properties pertaining to liveness, 
boundedness and reversibility. This section introduces 
Dynamic augmented marked Petri net and their special 
properties. 
  3.1 Augmented Marked Petri Net: An Augmented 
marked Petri net A M P N = MPN, M0; R is a M a r k e d  
P e t r i  n e t  g r a p h  MPN, M0 ,  with a specific subset 
of places R  called resource places, Such that: (a) every 
place in R is marked by marking M0. ( b )  A n  marked 
Petri net g r a p h M P N ' ,  M 0' can be obtained from 
MPN, M0 (t); R by removing the places in R and their 
associated arcs. (c) For each place pR, there exist k > 1 
pairs of transitions Dk =  { (ts1, tr1), (ts2, tr2),..., 
(tsk, t rk)} s u c h  that p* = { ts1, ts2,..., tsk} T  a n d  *p = 
{tr1,tr2,..., trk } T  a n d  that, for each (tsi, tri)  Dk, there 
exists an elementary path in AMPN say,   pi connecting 
tsi to tri. (d) In MPN', M0' (t), every cycle is marked and 
no pi is marked, see Fig. 4. Here we replace MPN, M0; 
R simply by PN, M0; R in our paper.  
3.2 Composite Augmented Marked Petri nets: Let 
AMPN1, M 0 1 ; R 1  a n d  AM P N 2, M 0 2 ; R 2 
b e  t w o  Augmented marked Petri net graphs, in which 
R1' = { r 11, r 12,. . . , r 1k } R1 and R2' = {r21, r22 ,..., 
r2k} R2 are the common resource places. Let r11 and r21 
be fused as one single place r1, r12 and r22 into r2, .. .,  r 1k 
and r2k into rk, then the resulting net is also an 
Augmented marked Petri net graph AMPN, M 0 ; R ,  
w h e r e  R = ( R 1\ R 1')  (R2\ R 2 '){ r 1, r 2, . . . , r k 
}.This net AMPN, M 0 ; R  is called the composite 
Augmented Marked Petri Net graph of 
AMPN1, M 0 1 ; R 1  a n d  A M P N 2, M 0 2 ; R 2 via 
a set of common resource places { ( r11, r 21), 
(r12, r 22),…, (r1k, r 2k) . R F = { r 1, r 2,… r k} i s  called 
the set of fused resource places that are obtained after 
fusing ( r11, r 21), (r12, r 22),…, (r1k, r 2k) . F i g . 5 ( a )  
a n d  5 ( b )  show two Augmented marked Petri net graphs 
AMPN1, M 0 1 ; R 1 a n d A M P N 2, M 0 2 ; R 2, Fig. 
5 shows the composite Augmented marked Petri net 
AMPN,M 0 ( t ) ; R ofAMPN1, M 0 1 ; R 1 a n d A M P
N 2, M 0 2 ; R 2 v i a  ( r11, r 21), where R F = { r 1}. A 
PN, M0 be a PT-net, where R = {r1, r2, ..., rk} is the set 
of marked places such that | *ri | > 0 and | ri* | > 0 for i = 
1, 2, k. PN, M0 is said to be of an AMPN-structure if 
and only if PN, M0; R is an Augmented Marked Petri 
Net. For a PT-net PN, M0, a set of places S is called a 
siphon if and only if *S  S*. S is said to be minimal if 
and only if there does not exist any siphon S' in N such 
that S' S. S is said to be empty at a marking M  [M0 if 
and only if S contains no places which are marked by M. 
And a set of places Q is called a trap if and only if Q* 
*Q. Q is said to be maximal if and only if there does not 
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exist any trap Q' in N such that Q  Q'. Q is said to be 
marked at a marking M [M0 if and only if Q contains at 
least one place which is marked by M. 

 
Fig.4 Augmented Marked Petri net Graph 

  
Fig. 5(a) (AMPN1, M01, R1) 

 
  Fig. 5(B) (AMPN2, M02, R2) 

 
Fig. 5(c) Composition of two augmented Petri nets AMPN1 

and AMPN2 in Fig. 5(a) and 5(b) via {r11, r12} 
 

    Property 3.1 [22]. An AMPN = PN, M0; R  is live and 
reversible if and only if it does not contain any potential 
deadlock. (Note: A potential deadlock is a siphon which 
would eventually become empty.) 
For an AMPN = PN, M0; R, a minimal siphon is called 
an R-siphon if and only if it contains at least one place in 
R. 
Property 3.2 [22]. An AMPN = PN, M0; R is live and 
reversible if and only if no R-siphons eventually become 
empty. 

Property 3.3 [22]. An AMPN = PN, M0; R is live and 
reversible if every R-siphon contains a marked trap. 
For the AMPN = PN, M0; R shown in Fig. 4, each R-
siphon contains a marked trap, so  
PN, M0; R is live and reversible. 
Suppose an AMPN = PN, M0; Ris transformed into a 
PT-net PN', M0' as follows. For each p R, k pairs of 
transitions {(ts1, tr1), (ts2, tr2)… (tsk, trk) }, replace with a set 
of places {q1, q2, qk }, such that M0'[qi] = M0[p] and qi

* = 
{ tsi } and *qi = { tri } for i = 1, 2, ... , k. PN', M0' is called 
the R-transform of PN, M0; R. 
Property 3.4 [22]. Let PN', M0' be the R-transform of an 
AMPN = PN, M0; R. AMPN is bounded and 
conservative if and only if every place in PN', M0' 
belongs to a cycle. 
Fig. 6 shows the R-transform PN', M0' of the AMPN 
PN, M0; R described in Fig.4. PN', M0' is bounded, 
where every place belongs to a cycle. PN, M0; R is 
bounded and conservative. 
 

IV. Labelled Petri nets with an AMPN-
Structure and Specification of 
object interaction scenarios as a 
Labelled Petri net 

  In this section, we show how an object interaction 
scenario can be formally specified as a Labelled Petri Net 
with an AMPN-structure (Step 1 of our proposed 
method). 
A labelled Petri net is a Petri net, where labels are 
assigned to places and transitions. Usually, places are 
labelled by conditions to denote specific system substates 
in which the conditions hold and transitions are labelled 
by events (denote specific occurrences of the events). 
Definition 4.1. A Labelled Petri net (LPN) is a 7-tuple i.e., 
LPN = P, T, F, C, E, Lp, Lt, where P, T, F  is an 
ordinary PT-net, C is a set of condition labels, E is a set of 
event labels, Lp: P  C is a function for assigning a 
condition label to every place, and Lt: T    E is a 
function for assigning an event label to every transition. 
 

 
Fig.6 The R-transform of the augmented marked Petri net 

in Fig.4 
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Definition 4.2. Let LPN = P, T, F, C, E, Lp, Lt  be a 
Labelled Petri Net. A place p is said to be uniquely 
labelled in LPN if and only if  p' P: (Lp(p') = Lp(p))  
(p' = p). A transition t is said to be uniquely labelled in 
LPN if and only if  t'  T: (Lt(t') = Lt(t))  (t' = t). LPN 
is said to be uniquely labelled if and only if all places and 
transitions are uniquely labelled. 
Fig. 7 shows a typical labelled Petri net. Places p3, p4, p5, 
p6, p9 and p10 are uniquely labelled, whereas p1, p2, p7 and 
p8 are not. As an illustration, condition label c1 appears in 
p1 and p7, and c2 in p2 and p8. Transitions t3, t4 and t5 are 
uniquely labelled, where as t1, t2, t6 and t7 are not, as an 
example, event label e1 appears in t1 and t6, and e2 in t2 

and t7. Therefore, the LPN is not uniquely labelled. 

 
Fig. 7 A labelled Petri net which is not uniquely labeled 

 
For an object interaction scenario specified as a Labelled 
Petri Net, the location where an event occurs is 
represented by a transition and the location of a condition 
by a place. The semantic meanings of conditions and 
events are denoted by the labels of the places and 
transitions respectively. For an event to occur, some 
conditions must be fulfilled in advance and some 
afterwards. These pre-conditions and post-conditions are 
represented by the pre-set and post-set of the transition 
representing the event. 

Step 1 of the proposed method is to specify the given 
object interaction scenarios as Labelled Petri Nets with an 
AMPN-structure. Consider an object-oriented system 
involving two objects, x and y, of classes X and Y 
respectively. There are three typical interaction scenarios 
exhibited by x and y, specified as UML sequence 
diagrams and collaboration diagrams (BRJ99, RJB99) in 
Fig. 8. In conventional UML sequence diagrams and 
collaboration diagrams, there are no formal notations for 
denoting the pre-condition and post-condition of each 
event occurrence in an object interaction scenario. 
Therefore, for an explicit representation of the causal 
relationship between events and conditions, appropriate 
condition labels are appended to these diagrams. 

 
Fig 8. Object interaction scenarios in UML sequence 

diagrams and collaboration diagram 
 

Fig. 9 shows object interaction Scenarios 1, 2 and 3, 
specified as LPNs LPN1, M01, LPN2, M02 and LPN3, 
M03 respectively. They all are of AMPN-structure. 

LPN1, M01 is constructed for representing scenario 
1 as follows. For each location of a condition, a new place 
with a proper condition label is created. For example, p11 
denotes a location of condition c11 for object x, so 
condition label x.c11 is assigned to p11. For each event 
occurrence, a new transition with a proper event label is 
constructed. For example, t11 denotes an occurrence of 
event e1, so event label e1 is assigned to t11. The event 
occurrence has a pre-condition x.c11 and a post-condition 
x.c12. Hence, *t11 = {p11} and t11

* = {p12}. Arcs between 
p11 (pre-condition) and t11 and between t11 and p12 (post-
condition) are appended for denoting their causal 
relationships. The remaining location of conditions and 
events are created accordingly. Following the same rules, 
LPN2, M02 and LPN3, M03 are constructed for 
representing scenarios 2 and 3, respectively. 

 
V. SYNTHESIZING AND ANALYZING THE 

INTEGRATED SYSTEM OF 
LABELLED PETRI NETS 

After specifying the object interaction scenarios as 
AMPNs (Step 1 of the proposed method), we synthesize 
these scenarios into an integrated system. In principle, a 
scenario portrays partial system behaviors of how the 
objects are interacted in order to perform a specific 
functionality. These AMPNs are essentially partial system 
behavioural specifications which are to be synthesized 
together to form a single coherent whole. This section 
describes Step 2 of our proposed method - the synthesis of 
Labelled Petri Nets into an integrated net which 
represents the integrated system, and analysis of the 
system. The synthesis is based on the authors' earlier work 
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[30, 31]. It is made by fusing those places with refer to the 
same system initial state or condition. The integrated net 
so obtained is of AMPN-structure, For LPN, M0; R), 
every R-siphon contains a marked place, and hence, 
would never become empty. According to Properties 3.2 
and 3.3, LPN, M0; R  is live and reversible. Since every 
place in its R-transform is covered by cycles, according to 
Property 3.4,  

LPN, M0; R  is also bounded and conservative. 
Therefore, it can be concluded that the integrated system 
is well-behaved. 

 
VI. ELIMINATING DUPLICATE LABELS 

FROM THE INTEGRATED NET 
 

Consolidating the object interaction scenarios, the 
integrated net obtained from Step 2 of the proposed 
method serves to represent the system as a coherent 
integrated whole. In general, this integrated net is not 
necessarily uniquely labelled. For the integrated net 
LPN, M0  in Fig. 10 for example, places p15 and p26 have 
the same condition label y.c22, and transitions t13 and t24 
have the same event label e3. This reflects the fact that the 
locations or conditions for occurrence of the same event 
may be different at different moments within a scenario or 
among different scenarios. Yet, every condition is 
eventually implemented as a unique system substate and 
every event as a unique operation. Thus the integrated net 
to be effectively used for implementation purposes, it 
needs to be uniquely labelled where all the duplicate 
condition labels and duplicate event labels are eliminated. 

The elimination cannot be done by just fusing places 
with the same condition label, and transitions with the 
same event label.  In this case the resulting net may 
exhibit firing sequences different from the original ones. 
In other words, the system behaviours may be distorted. 
Step 3 of the proposed method is to eliminate all duplicate 
labels while preserving the original firing sequences 
(event sequences). We describe this step in detail. 

Definition 6.1. Let S be a uniquely labelled subnet of 
a Labelled Petri Net LPN. The pattern of S in LPN, 
denoted as Patt(LPN, S), is a condition-event net with an 
identical structure and label allocation S while ignoring 
the identities of places and transitions of S. 

Let Lx and Ly be patterns of subnets in a Labelled 
Petri Net. Lx  Ly and Lx  Ly denote the union and 
intersection of Lx and Ly, respectively. Lx \ Ly denotes the 
displacement of Lx from Ly. Lx and Ly are said to be 
disjoint if and only if Lx   Ly =. For a  Labelled Petri 
Net LPN, a uniquely labelled subnet S is called a common 
subnet if and only if there exists at least one uniquely 
labelled subnet S' such that S'  S and Patt(LPN, S') = 
Patt(LPN, S). Let S be a pattern of the common subnets in 
LPN. [LPN, L] = {S | Patt(LPN, S) = L} represents the 
group of common subnets having the same pattern L. For 
a subnet S =  P', T', F'   of a PT-net, Pre(S) = (*P'\T')   
(*T'\P') is called the pre-set of S, Post(S) = (P'*\T')  
(T'*\P') is called the post-set of S, Head(S) = Pre(S)*   

(P'  T') is called the head of S, and Tail(S) = *Post(S)   
(P'  T') is called the tail of S. 

Definition 6.2. A subnet S of a PT-net LPN = P, T, 
F  is said to be of PP-type if and only if Head(S)   P and 
Tail(S)   P. 

Fig. 11 shows a uniquely labelled subnet S which is 
PP-type. Fig. 12 shows the pattern of S. 

 

 

 
 

Fig.9 Labelled Petri nets representing the objects 
interaction scenarios in Fig.8 

 

 
Fig. 10 The integrated net obtained by synthesizing 

the labelled Petri nets in Fig. 9. 
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Fig. 11 

 
 

 
Fig.12 

 

We propose to eliminate duplicate labels by fusion of 
common subnets, as outlined below. 

Identify groups of common subnets for fusion. These 
groups of common subnets need to be maximal and 
disjoint for two reasons. First, the net obtained after the 
fusion will become uniquely labelled. Second, the number 
of groups of common subnets for fusion can be reduced to 
minimum as they are maximal. 

Transformation of common subnets. For preservation 
of firing sequences, common subnets are transformed 
before fusion. Based on coloured Petri nets [36], a unique 
colour is assigned to each common subnet as colour labels 
of its ingoing and outgoing arcs. A token flowing into the 
common subnet is coloured according to the colour label 
of the ingoing arc. Its colour is reset as it flows out via the 
same colour-labelled outgoing arc. Besides, the subnets 
are converted to PP-type. 

Fusion of transformed common subnets. The 
transformed common subnets of each group are fused into 
a single subnet. A uniquely Labelled Petri Net is 
ultimately obtained. 

The following algorithm formally describes the 
elimination process. A detailed elaboration of the 
elimination process can be found in [35]. 
Algorithm for Elimination of Duplicate Labels from a 
Labelled Petri Net: 
1. Identify maximal disjoint groups of common subnets: 
1.1 Find all possible common subnets from LPN. Let  = 
{L1, L2, ..., Ln} be their patterns. 
1.2   Retain only the maximal patterns: Remove any Li 

from  if there exists Lj  such that Li is a sub-pattern 
of Lj and  Si [LPN, Li],  Sj  [LPN, Lj]: Si is a 
subnet of Sj. 

1.3  Make the overlapping patterns disjoint : For every Li, 
Lj  such that Li  Lj and Li and Lj are not disjoint, 
set  = ( - { Li, Lj})  {Li  Lj}  { Li \Lj}  { Lj\Li 
}. 

1.4  Categorise the common subnets of LPN into groups 
{[LPN, Li] |  Li  }. 
2.  For each group of common subnets [LPN, Li]: 
2.1 Convert each subnet S [LPN, Li] if S is not of PP-
type: 

2.1.1  For each transition ti Head(S): (a) Create 
dummy transition ti' with unique label i, 
dummy place pi' with label i, and arcs (ti', pi') 
and (pi', ti). (b) For each p  *ti : Remove arc 
(p, ti), and then create arc (p, ti'). (c) Re-define 
S by including pi' and (pi', ti). 

2.1.2  For each transition tj  Tail(S): (a) Create 
dummy transition tj' with unique label j, 
dummy place pj' with label j, and arcs (tj, pj') 
and (pj', tj'). (b) For each p  tj*: Remove arc 
(tj, p), and then create arc (tj', p). (c) Re-define 
S by including pj' and (tj, pj'). 

2.2 Assign a unique colour label K for each subnet S   
[LPN, Lj]: 

2.2.1  For each arc (ti, pi) where ti  Pre(S) and pi  
Head(S): Assign colour label K to (ti, pi). 

2.2.2  For each arc (pj, tj) where pj  Tail(S) and tj  
Post(S): Assign colour label K to (pj, tj). 

2.3 Fuse the common subnets in [LPN, Li] into one single 
subnet. 
We apply the algorithm for eliminating the duplicate 
labels for the integrated net (LPN, M0) in Fig. 10. The 
obtained uniquely Labelled Petri Net (LPN', M0') is given 
in Fig. 13. 

 
Fig.13 The uniquely labelled Petri net obtained after 

eliminating duplicate labels from the integrated net in 
Fig.10 
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VII. OBTAINING OBJECT-BASED 
BEHAVIOURAL SPECIFICATIONS 

 
 In this section, we implement Step 4 of our proposed 
method to obtain the individual object-based behavioural 
specifications. These individual object-based behavioural 
specifications are obtained by projecting the integrated 
net onto individual objects. 

The projection is made by ignoring those places, 
transitions and arcs which are irrelevant to the object 
concerned. The projected net so obtained serves as the 
object behavioural specifications. 

Consider the integrated net LPN', M0' in Fig. 13. 
The projection onto object x is obtained as follows. We 
keep those places with object label x (including dummy 
places) and those transitions (including dummy 
transitions) having at least one input place or output place 
labelled by x, as well as their associated arcs. Similarly, 
for the projection onto object y, we keep those places with 
object label y (including dummy places) and those 
transitions (including dummy transitions) having at least 
one input place or output place labelled by y, as well as 
their associated arcs. 

Fig. 14 shows the projections LPNx, M0x and 
LPNy, M0y obtained by projecting the net LPN', M0' in 
Fig. 13 onto objects x and y, respectively. LPNx, M0x  
and LPNy, M0y  are uniquely labelled, simply because 
LPN', M0' is uniquely labelled. They serve as the 
behavioural specifications for objects x and y, where 
conditions and events are uniquely represented. 

 
Fig. 14 The nets obtained by projecting the integrated net 

in Fig. 13 onto objects x and y. 
 

VIII. LABELLED INTEGRATED NET OF 
OFFICE ACCESS CONTROL SYSTEM 

AND ITS PROJECTION ONTO 
INDIVIDUAL OBJECTS  

An Office Access Control System (OACS) is a system 
used in an academic or a company for controlling staff 
access to its offices and laboratories. Among these offices 

and laboratories, some can be accessed by all staff 
members while other by authorised staff only during 
specified time periods. For controlling the staff access, 
every entrance is implemented with a card-reader, an 
emergency switch and an electronic lock, all being 
connected to a centralized server. The server maintains 
the access privileges and validates every access to the 
offices/laboratories. There are three typical cases for each 
access request. 

Authorised access (Uj). If a staff member wants to 
access an office/laboratory, he/she has to present his/her 
staff card via a card-reader. Access is granted and the 
door is unlocked for thirty seconds and then re-locked. 

Unauthorised access (U2). A staff member wants to 
access an office/laboratory. He/She presents his/her staff 
card via a card-reader.  If the Access is not granted then 
the door remains locked. 

Emergency access (U3). A staff member wants to 
access an office/laboratory for emergency. He/She presses 
the emergency key. The door is unlocked immediately, 
until it is reset by a security officer. 

From the object-oriented perspectives, the server (s: 
Server) and doors (d: Door) are objects of the Office 
Access Control System. They are interacting with each 
other in order to perform the above system functionalities.  
For each of the access types U1, U2 and U3, there are 
three corresponding object interaction scenarios. 
Fig. 15  shows these object interaction scenarios specified 
as labelled Petri nets of the Office Access Control 
System, where appropriate condition labels are appended 
for denoting the pre-conditions and post -conditions for 
each event occurrence. 
Legends for condition labels and event labels:  

C11 Server is ready e1 Request for access is 
request 

C12 Server is processing 
access request  

e2 Access is granted 

C13 Server is waiting for 
re-lock 

e3 Time expires after 
access granted  

C14 Server is writing 
log(successful access) 

e4 Successful access is 
committed 

C15 Server is writing 
log(unsuccessful 
access) 

e5 Access is not granted  

C16 Server is waiting for 
emergency reset  

e6 Unsuccessful access is 
committed  

C17 Server is writing 
log(emergency access) 

e7 Request for 
emergency access is 
received 

C21 Door is locked  e8 Door is reset to 
normal  

C22 Door is waiting for 
response  

e9 Emergency access is 
committed 

C23 Door is unlocked 
(Successful access) 

  

C24 Door is unlocked 
(emergency access) 

  

Step 1 of the proposed method is to specify object 
interaction scenarios as Labelled Petri Nets. Fig. 15 shows 
the Labelled Petri Nets LPN1, M01, LPN2, M02 and 
LPN3, M03 representing the object interaction scenarios 
for U1, U2 and U3, respectively. 
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Step 2 of the proposed method is to synthesise the 
Labelled Petri Net into an integrated system, and analyse 
the system on its liveness, boundedness, reversibility and 
conservativeness. LPN1, M01, LPN2, M02 and LPN3, 
M03 are synthesised into an integrated net LPN, M0 by 
fusing those places which refer to the same system initial 
states or conditions : Places p11, p21 and p31 are fused into 
one place p41, and p15, p24 and p34 into p42. Fig. 16 shows 
the integrated net LPN, M0 so obtained. 

      The integrated net LPN, M0 is of a AMPN-
structure. Let R = {p41, p42}. For LPN, M0; R, every R-
siphon contains a marked place and hence would never 
become empty. According to Properties 3.2 and 3.3, 
LPN, M0; R is live and reversible. Since every place in 
its R-transform is covered by cycles, according to 
Property 3.4, LPN, M0; R is also bounded and 
conservative. Therefore, it may be concluded that the 
Office Access Control System is well-behaved. 

 As shown in Fig. 16, LPN, M0 is not uniquely 
labelled as it contains duplicate labels. For example, place 
p12 and p22 have the same condition label s.c12 and 
transitions t11 and t21 have the same event label e1. Since 
every condition is eventually implemented as a unique 
substate and every event as a unique operation, for an 
effective use of integrated net for implementation 
purposes, these duplicate labels must be eliminated.  

We use Step 3 to eliminate duplicate condition labels 
and duplicate event labels from the integrated net LPN, 
M0 by fusing the common subnets. The elimination 
process is done by applying the algorithm described in 
Section 6. Fig. 17 shows the uniquely Labelled Petri Net 
LPN', M0'.  
Step 4 of the proposed method is to obtain the individual 
object-based behavioural specification as projections of 
the integrated net onto the objects. The projection is made 
by ignoring those places, transitions and arcs which are 
irrelevant to the object concerned. 

Consider the integrated net LPN', M0' in Fig. 17. 
For the projection onto object s (the server object), we 
keep those places with object label s (including dummy 
places) and those transitions (including dummy 
transitions) having at least one input place or output place 
labelled by s, as well as their associated arcs. Similarly, 
for the projection onto object d (the door object), we keep 
those places with object label d (including dummy places) 
and those transitions (including dummy transitions) 
having at least one input place or output place labelled by 
d, as well as their associated arcs.  

Fig. 18 shows the projections of LPNs, M0s and 
LPNd, M0d obtained by projecting the integrated net 
LPN', PM0') in Fig. 17 onto objects s and d, respectively. 
As the integrated net LPN', M0' is uniquely labelled, its 
projections LPNs, M0s and LPNd, M0d are also 
uniquely labelled, where every condition or event is 
uniquely represented. LPNs, M0s and LPNd, M0d then 
serve as the behavioural specifications for the server (s: 
Server) and door (d: Door) objects, respectively. 

 
Fig. 15 labelled Petri nets representing the object 

interaction scenarios of U1, U2 and U3. 

 
Fig. 16 The integrated net obtained by synthesizing 

the labelled Petri nets in Fig. 15 
 

 
 Fig. 17 The uniquely labelled Petri net obtained after 
eliminating duplicate labels from the integrated net in 

Fig.16 
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Fig. 18 The nets obtained by projecting the integrated net 

in Fig. 17 onto objects s and d. 
 

CONCLUSION 
   One of the most difficult tasks in object-oriented system 
design is to ensure that the derived object-based 
behavioural specifications reflect exactly the given object 
interaction scenarios and that the system is well-behaved. 
In this paper, a Petri-net-based method is proposed for 
model the ACS. It begins with specifying each object 
interaction scenario as a labelled Petri net with an AMPN-
structure. These labelled Petri nets are synthesized into a 
single integrated net which represents the integrated 
system. By making use of the special properties of the 
AMPN-structure, the system can be effectively analysed 
on its liveness, boundedness, reversibility and 
conservativeness. Duplicate labels are then eliminated by 
fusing common subnets, so as to attain a uniquely 
Labelled Petri Net on which individual object-based 
behavioural specifications are obtained as projections. 
The proposed method can be implemented as tool to 
support object-oriented system design. By capturing the 
functional requirements of a system as a set of object 
interaction scenarios, it helps in performing rigorous 
system synthesis and analysis. The correctness of this 
refinement can be assured. Moreover, the object-based 
behavioral specifications so obtained can be readily used 
for code generation. This inevitably contributes towards 
smooth transitions from functional requirements through 
design to implementation for object-oriented system 
development. 
 

REFERENCES 
 
[1]B.Baugarten,”Petri Nets basics and application”, 2nd ed., Berlin: 

spectrum akademischer Verlag,   
      (1996).  
[2] B. Dano, H. Briand and F. Barbier, "Progressing Towards Object-

Oriented Requirements Specifications Using the Use Case 
Concept", Proceedings of the IEEE Symposium and Workshop on 
Engineering of Computer-Based Systems, pp. 450-456, IEEE 
Computer Society Press (1996). 

[3] B. Dano, H. Briand and F. Barbier, "An Approach Based on the 
Concept of Use Case to Produce Dynamic Object-Oriented 
Specifications", Proceedings of the IEEE International Symposium 
on Requirements Engineering, pp. 54-64, IEEE Computer Society 
Press (1997). 

[4] C.A. Petri, "Kommunikation mit Automaten." Bonn: institute fur 
Instrumentelle Mathematik, Schriften des MM Nr. 3, 1962. Also, 
English translation,"Communication with Auto-mata." New York: 
Griffiss Air Force Base.Tech. Rep.RADC-TR-65-377, vol.1, 
(1966). 

 [5] C.A. Petri, "Fundamentals of a theory of asynchronous information 
flow," in Proc. of IP Congress 62, pp. 386-390,(1963). 

 [6] D. Rosenberg ,”Use Case Driven Object Modeling with UML : A 
Practical Approach”, Addison-Wesley(1999). 

 [7] D. Rosenberg and K. Scott, “Applying Use Case Driven Object 
Modeling with UML”, Addison-Wesley (2001),. 

[8] E. Smith , "On Net Systems Generated by Process Foldings", 
Advances in Petri Nets, Lecture Notes in Computer Science, Vol. 
524, pp. 253-295, Springer-Verlag (1991). 

 [9] F. Commoner, A. W. Holt, S. Even and A. Pnueli, “Marked directed 
graph”, Journal of Computer and System Sciences- pp. 511-523, 
(1971).  

[10] F. Bordeleau and R.J.A. Buhr, "UCM-ROOM Modelling : From 
Use Case Maps to Communicating State Machines", Proceedings 
of the IEEE International Symposium and Workshop on 
Engineering of Computer-Based Systems, pp. 169-178, IEEE 
Computer Society Press (1997),. 

 [11] F. Bordeleau, J.P. Corriveau and B. Selic, "A Scenario-Based 
Approach to Hierarchical State Machine Design", Proceedings of 
the International Symposium on Object-Oriented Real-Time 
Distributed Computing, pp. 78-85, IEEE Computer Society 
Press(2000). 

[12] G. Schneider and J.P. Winters, “Applying Use Cases”, Addison-
Wesley (1998).  

[13] G. Booch, J. Rumbaugh and I. Jacobson, “ The Unified Modeling 
Language : User Guide”, Addison-Wesley (1999). 

[14]   I. Graham, “Object-Oriented Methods :Principles and Practice”, 
Addison-Wesley (2001).   

[15] I. Jacobson , “Object-Oriented Software Engineering   :   A   Use-
Case-Driven  Approach”, Addison-Wesley (1992).  

[16] I. Jacobson, G. Booch and J. Rumbaugh, ”The Unified   Software   
Development   Process”, Addition Wesley (1999).  

[17] P. Kruchten , “The Rational Unified Process :An Introduction”, 
Addison-Wesley (1999).  

[18] J. Iivari, "Object Orientation as Structural, Functional and 
Behavioural Modelling: A Comparison of Six Methods for Object-
Oriented Analysis", Information and Software Technology, 

       Vol. 37, No. 3, pp. 155-163 (1995).  
[19] J. Rumbaugh, I. Jacobson and G. Booch. “The   Unified Modeling 

Language:  Reference Manua”l, Addison-Wesley (1999). 
[20] J. Arlow and I. Neustadt, “UML and the Unified Process : Practical 

Object-Oriented Analysis and Design”, Addison-Wesley(2002).  
[21] J. Desel and J. Esparza, “Free-choice Petri Nets”, Cambridge 

University Press (1995).  
[22] F. Chu and X. Xie,"Deadlock Analysis of Petri Nets Using Siphons 

and Mathematical Programming", IEEE Transactions on Robotics 
and Automation, Vol. 13, No. 6, pp. 793-804 (1997). 

[23] J. Desel and W. Reisig "Place Transition 
Petri Nets", Lectures on Petri Nets 1 : Basic Models, Lecture Notes in 

Computer Science, Vol. 1491, pp.122-173, Springer-Verlag 
(1998). 

[24] J. L., Peterson, “Petri net Theory and the Modeling of Systems”, 
Prentice Hall, INC, Englewood, Cliffs, and New Jercy, (1981). 

[25] K. O. Chow and S. Yeung, "Behavioural Modellingin Object-
Oriented Methodologies", Information and Software Technology, 
Vol. 38, No. 01, pp. 657-666 (1996). 

B[26] K. Hiraishi, "Construction of a Class of Safe Petri Nets by 
Presenting Firing Sequences", Application and Theory of Petri 
Nets, Lecture Notes in Computer Science, Vol. 616, pp. 244-262, 
Springer-Verlag (1992).  

[27] M. Glinz,  "A Lightweight Approach to Consistency of Scenarios 
and Class Models", Proceedings of the IEEE International 

Sunitha Kumawat et al IJCSET |November 2011 | Vol 1, Issue 10, 605-616

615



Conference on Requirements Engineering, pp. 49-58, IEEE 
Computer Society Press(2000).  

[28] P. Graubmann, "The Construction of EN Systems from a Given 
Trace Behaviour", Advances in Petri Nets, Lecture Notes in 
Computer Science, Vol. 340, pp. 133-153, Springer-Verlag(1988). 

[29] S. Kirani and W.T. Tsai, "Method Sequence Specification and 
Verification of Classes", Journal of Object-Oriented 
Programming, Vol. 7, No. 6, pp. 28-38(1994). 

[30]  Sunita Kumawat and G.N. Purohit, ”Travelling Salesman’s Problem 
in weighted directed graph: A Petri net Approach” Proceedings  of 
APORS 2009, pp.42, (2009).  

[31] Sunita Kumawat and G.N. Purohit “Synthesis of The Distributed 
Wireless Sensor Networks Base Nodes to a Common Sharing Server 
using Dynamic Augmented Marked Petri Net”  International  Journal 
of  Advanced Engineering Application,  June issue (2010). 

[32] T. Murata, "Petri Nets : Properties, Analysis and Applications", 
Proceedings of the IEEE, Vol.77, No. 4, pp. 541-580 (1989). 

[33] W.J. Lee, S.D. Cha and Y.R. Kwon,  "Integration and Analysis of 
Use Cases Using Modular Petri Nets in Requirement 

Engineering", IEEE Transactions on Software Engineering, Vol. 
24, No. 12, pp. 1115-1103(1998). 

[34] W. Reisig, “Petri Nets and introduction “Heidelberg:  springer-
verlag, (1985).  

[35] K.S. Cheung and K.O. Chow, "Elimination of Duplicate Labels in 
Petri-Net-Based System Specification", Proceedings of the 
International Conference on Computer and Information 
Technology, pp. 932-936, IEEE Computer Society Press (2006),. 

[36] K. Jensen, "Coloured Petri Nets", Petri Nets : Central Models and 
Their Properties, Lecture Notes in Computer Science, Vol. 254, 
pp. 248-299, Springer-Verlag (1986). 

[37] Sunita Kumawat and G.N. Purohit,”Travelling Salesman’s Problem: 
A Petri net Approach”International journal of computer and network 
security(IJCNS), vol.II, pp.19-24.(2010).  

[38] Sunita Kumawat and G.N. Purohit, ” Extraction of non-
Hamiltonian weighted directed graphs from a Hamiltonian 
weighted directed graph” International Journal of Mathematical 
Sciences and Engineering Application(IJMSEA), vol. III.. (2010) 

 
. 

Sunitha Kumawat et al IJCSET |November 2011 | Vol 1, Issue 10, 605-616

616




